
PetriDotNet 1.5

András Vörös Dániel Darvas Ákos Hajdu
Attila Jámbor Attila Klenik Kristóf Marussy
Vince Molnár Tamás Bartha István Majzik∗

User Manual

∗E-mail of the developer team: petridotnet@inf.mit.bme.hu

1

petridotnet@inf.mit.bme.hu

2

Contents

1 Introduction 7

1.1 System Requirements . 7

2 Basic Operation 9

2.1 Starting the Tool . 9

2.2 Load, Save . 9

2.3 Creating and Editing Petri Nets 10

2.4 Editing Hierarchical Petri Nets 13

2.5 Coloured Petri Nets . 16

2.5.1 Editing Coloured Petri Nets 16

2.5.2 Handling Colour Sets . 16

2.5.3 Handling Coloured Tokens 20

2.5.4 Edge Expressions, Guards and Variables 21

2.5.5 Limitations . 23

2.6 Petri Net Simulation . 23

3 CTL Model Checking 27

3.1 Unbounded CTL Model Checking 27

3.2 Bounded CTL Model Checking 30

4 Stochastic Analysis Module 33

4.1 Performance measures . 33

4.2 Model and reward settings . 35

4.2.1 Sensitivity Variables . 35

4.2.2 Sensitivity Variable Configurations 35

4.2.3 Transition Rates . 36

4.2.4 State Rewards . 37

4.2.5 Event Rewards . 39

4.2.6 Composite Rewards . 41

4.2.7 Reference consistency . 42

4.3 Formalizing the performance measures 42

4.4 Reward evaluation . 43

4.4.1 Analysis Configuration . 43

4.4.2 Selecting the rewards . 46

4.4.3 Running the analysis . 48

4.5 Mean Time to First Failure calculation 48

3

4 CONTENTS

5 CEGAR-based Reachability Analysis 51
5.1 Overview of the algorithms . 51

5.1.1 Abstraction . 51
5.1.2 CEGAR approach on Petri nets 51

5.2 Usage . 53
5.2.1 Overview of the GUI . 53
5.2.2 Information about the net 54
5.2.3 Parameters of the reachability problem 55
5.2.4 Configuration of the algorithm 56
5.2.5 Examination of the result of the algorithm 58

6 Quick Introduction to Plug-in Development 61

List of Figures

2.1 Empty editor window. 9
2.2 Main window with a loaded Petri net. 10
2.3 The toolbox in Design mode. 11
2.4 Drawing edges between Petri net elements. 12
2.5 Edit helper tool. 12
2.6 Properties panel. 13
2.7 Example Petri net with coarse transition. 14
2.8 Example subnet. 14
2.9 The flat Petri net equivalent to Figure 2.7 and 2.8. 15
2.10 The Coloured token types window. 16
2.11 The Token type editor window for single token types. 17
2.12 The Token type editor window filled with example data. 18
2.13 The Token type editor window for complex token types. 19
2.14 The Add and remove coloured tokens window. 20
2.15 The Coloured tokens window. 21
2.16 The Variables window. 22
2.17 The Net analysis window. 23
2.18 Settings of the interactive simulation. 24
2.19 Settings of the non-interactive simulation. 25
2.20 Large scale statistics plug-in. 25

3.1 Form to select decomposition strategy. 28
3.2 The State space generation finished window. 29
3.3 CTL expression editor. 30
3.4 CTL expression editor with an example expression. 31
3.5 Example CTL model checking result. 31
3.6 Settings of bounded CTL model checking. 32

4.1 The example hybrid cloud model. 34
4.2 A simple load balancer model. 34
4.3 Sensitivity variables tab. 35
4.4 Sensitivity variable configurations tab. 36
4.5 Transition rates tab. 37
4.6 State rewards tab. 38
4.7 Place–based reward window. 38
4.8 CTL editor window. 39
4.9 Arithmetic expression editor window. 40
4.10 Event rewards tab. 40

5

6 LIST OF FIGURES

4.11 Event rewards tab. 41
4.12 Invalid transition rate warning. 42
4.13 Analysis configuration form. 43
4.14 Reward selection form for steady state analysis. 47
4.15 Reward selection form for transient analysis. 47
4.16 The running analysis. 48
4.17 The finished analysis. 49

5.1 Petri net CEGAR algorithm . 52
5.2 Solution space of the state equation 53
5.3 Main window of the CEGAR plug-in. 54
5.4 Place names with IDs. 54
5.5 Marking editor dialogue. 55
5.6 Predicates tab. 56
5.7 Predicate editor. 56
5.8 Configuration dialogue. 57
5.9 Result of a problem, where the target is reachable. 58
5.10 Place selector dialogue. 59

Chapter 1

Introduction

PetriDotNet is a tool to edit, simulate and analyse Petri nets. It has been devel-
oped at the Fault Tolerant Systems Research Group (FTSRG) of the Budapest
University of Technology and Economics (BUTE), Hungary to provide an easily
usable and extensible tool.

1.1 System Requirements

PetriDotNet requires the Microsoft .NET framework (4.5 or newer) on Windows
operating system (Vista or newer). During the development we have tried to
maintain compatibility with the Mono framework in order to support Linux
and Mac OS X operating systems, however, running PetriDotNet with Mono
framework is not tested, therefore not supported.

Editing and simulation smaller Petri nets (containing hundreds of nodes)
have a negligible memory consumption (10–20 MB). The tool is not optimised to
graphically show or to edit huge Petri nets (with thousands of nodes). However,
it is possible to open these nets in order to run the analysis modules on them.

The program does not need any installation. After extracting the com-
pressed file to any directory, the program is ready to be used by running the
PetriDotNet.exe.

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Operation

This chapter discusses the basic operations in the PetriDotNet tool. It aims to
be an easy-to-use tool, thus learning its basic functionality should be simple. In
the following, we introduce the reader to the basic operations of PetriDotNet.

2.1 Starting the Tool

After starting the tool by executing PetriDotNet.exe, the tool opens with an
empty editor window (see Figure 2.1).

The PetriDotNet tool can be operated from the main menu or by clicking
on the toolbar icons. After starting the tool, the user can create a new, empty
Petri net (File / New) or load an existing net (File / Open).

2.2 Load, Save

The tool natively supports two different file formats.

• .pnml This is a standardised, XML-based file format, supported by several
Petri net editor tools. This is the preferred file format to store Petri nets.

• .pn This is a binary file format. Its advantage is the faster loading time,
however it is a non-standard format.

Figure 2.1: Empty editor window.

9

10 CHAPTER 2. BASIC OPERATION

Figure 2.2: Main window with a loaded Petri net.

Besides these file formats, PetriDotNet can provide export or import func-
tionalities via plug-ins. Currently there is a possibility to export the edited Petri
nets into other Petri net formalisms, such as to the syntax of the GPenSim1,
LivePN2 and .pnt format of INA3 (Integrated Net Analyzer) tools. Also, the
Petri nets can be translated into to the input format of SAL4 (Symbolic Analy-
sis Laboratory). Furthermore, importation from the .net textual Petri net file
format, used by e.g. the INA tool, is also provided.

2.3 Creating and Editing Petri Nets

PetriDotNet provides a multi-document interface (MDI) for editing, i.e. multiple
Petri nets can be opened in different windows inside the main PetriDotNet tool
window. The user can change the currently edited Petri net or rearrange the
Petri net windows in the Window menu.

The size of the editor pane (where the Petri net can be edited) is fixed. It
can be changed by various commands: the View / Fit to net (Alt+F7) resizes
the editor pane to the size of the currently edited Petri net, while the ViewGrow

width (Alt+Right) increases the width, the ViewGrow height (Alt+Down) in-
creases the height of the editor pane. These commands can be directly accessed
from the toolbar. The size of the editor pane is automatically increased when a
Petri net element is placed at the edge of the editor pane.

By default the tool is in Design mode. In this mode the left side of the editor

1http://www.davidrajuh.net/gpensim/
2?TODO:What is this?
3http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
4http://sal.csl.sri.com/

http://www.davidrajuh.net/gpensim/
?
http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
http://sal.csl.sri.com/

2.3. CREATING AND EDITING PETRI NETS 11

Figure 2.3: The toolbox in Design mode.

window contains a Toolbox, where the Petri net elements (place, transition, edge,
token, etc.) to be inserted can be selected. To insert a Petri net element, first the
element type has to be selected in the Toolbox, then the element can be inserted
by clicking on the editor pane. By using the Token tool, the initial token count
of a selected place can be increased by one.

To insert an edge, select first the source node by clicking on it, then click on
the target node (thus the edges are not drawn by click-and-drag mechanism).
Edge mid-points can be added by clicking on an empty part of the editor pane
after before clicking on the target node of the edge.

In Select mode (after clicking on the [Select] button in the Toolbox), the
Petri net elements can be selected and their properties can be changed. After
selecting an edge, its mid-points are visible and editable. If the position of a
mid-point should be changed, it can be simply dragged with the cursor after
selecting the edge. If a mid-point should be deleted, right click on the mid-point
after selecting the edge and click on the Delete edge point menu item. Mid-
points can be inserted after an edge is inserted. To do this, press [Ctrl] and
click on the edge where the mid-point should be placed.

If the Enable edit helper tool feature is enabled in the View tab of the Settings
panel, a small toolbar becomes visible when a place or transition is selected (see
Figure 2.5). This allows to easily insert a new item, connected to the selected
node.

The properties of the selected node can be changed in the Properties panel
on the sidebar (see Figure 2.6). A short description is visible about the selected
property. The properties of the Petri net elements can be edited directly from
the editor pane, by right clicking on the element and selecting the Properties

menu item.

Some of the properties can be changed without using the Properties panel.
Using the previously mentioned Token tool, the initial token count of the places
can be increased. The token count of the selected place can also be increased or
decreased by one by using the Ctrl+Num+ or Ctrl+Num- hotkeys.

The same hotkeys work for selected edges, in this case they increase or
decrease the weight of the selected edges by one.

12 CHAPTER 2. BASIC OPERATION

Figure 2.4: Drawing edges between Petri net elements.

Figure 2.5: Edit helper tool.

2.4. EDITING HIERARCHICAL PETRI NETS 13

Figure 2.6: Properties panel.

Another property that can be quickly changed without using the Properties
panel is the orientation of a transition (vertical or horizontal). To change the
orientation of a transition, press Ctrl and click on the transition whose orienta-
tion should be changed. The orientation of a transition is only a visual property
and it does not affect the behaviour of the Petri net.

To improve the readability of the Petri net, the name of a transition or place
is not visible by default. The visibility of the names can be controlled using the
Name Visibility property in the Properties panel. When the name of a node is
manually changed, the name visibility will be set to visible. The names can be
made visible using a hotkey too: press Alt, then click on the nodes.

The names of the transitions and places can be shown on the top, bottom,
left or right side of the element. This can be changed by modifying the Text Align
property in the Properties panel or by using the following hotkeys: Ctrl+Up,
Ctrl+Down, Ctrl+Left, Ctrl+Right.

2.4 Editing Hierarchical Petri Nets

In order to help the readability of the edited Petri nets, PetriDotNet supports
hierarchical modelling. The hierarchy (the tree structure of nets and subnets)
can be seen in the Hierarchy box. By clicking on one of the nets in the Hierarchy
box the selected (sub)net will be displayed. The subnets are handled via coarse
transitions (CTs). A coarse transition enables to refine a modelled event or
process (originally modelled by a single transition) into a subnet.

Consequently, each subnet is represented by a CT in its parent net. The CT
behaves “syntactically” as a transition, thus it can only be connected to places.

14 CHAPTER 2. BASIC OPERATION

Figure 2.7: Example Petri net with coarse transition.

Figure 2.8: Example subnet.

When an edge is drawn between a place p and a coarse transition t, a reference
place is created referring to p in the subnet represented by t. The behaviour
of the reference places are exactly the same as their parents. By default the
reference places are coloured to blue, but this can be overwritten by the user.

When an edge is drawn between a place p and a coarse transition t, the user
might not want to create a new reference place in the subnet of t. Alternatively,
one of the existing places of the subnet can be transformed into a reference
place. To do this, hold the Ctrl key while connecting the place and the coarse
transition, then select from the displayed list which place of the subnet should
be transformed into a reference place.

The edges between the places and the CTs in the parent net are only to
visualize connections. As these are not real Petri net edges, they are displayed
as dashed lines and they have no multiplicity. The arrows denote the directions
of the edges in the subnet.

Example 2.1 Consider the example Petri net in Figure 2.7. The coarse tran-
sition represents the subnet shown in Figure 2.8. This hierarchical Petri net is
equivalent to the flat Petri net in Figure 2.9.

The coarse transitions can be copied. When a CT is copied, the represented
subnet is copied too. This subnet will have exactly the same reference places,
except if some of the parents of the reference places were selected while copying.
If a parent place is selected while copying, they will be copied in the parent net,
and in the copied subnet the reference places will point to the copies in the
parent net. Check Table 2.1 for an example.

2.4. EDITING HIERARCHICAL PETRI NETS 15

Figure 2.9: The flat Petri net equivalent to Figure 2.7 and 2.8.

Table 2.1: Example for copying coarse transitions

Selected elements before copying Result of the copy operation

16 CHAPTER 2. BASIC OPERATION

Figure 2.10: The Coloured token types window.

2.5 Coloured Petri Nets

2.5.1 Editing Coloured Petri Nets

The coloured Petri nets can be edited similarly to the uncoloured Petri nets.
To insert a coloured place or coloured transition, click on the [Other elements]

button in the Toolbox, then select the Coloured Place or Coloured Transition

item. The edges between coloured places and coloured transitions can be drawn
using the Edge tool.

2.5.2 Handling Colour Sets

The coloured Petri nets rely on the defined colour sets (or token types). The
token types can be defined in the CPN / Token types menu item.

The Coloured token types window (Figure 2.10) shows the defined token
types and allows the user to define new token types. Two token types are dis-
tinguished: single and complex (compound) token types. The simple token types
are enumerations, while the complex token types are cross products of single to-
ken types.

2.5. COLOURED PETRI NETS 17

Figure 2.11: The Token type editor window for single token types.

Adding Single Token Types. By clicking on the [Add single] button, a
new single token type can be added. To define a new colour set, the following
information is needed (Figure 2.11):

• Long name: the long name of the token type.

• Short name: the short name of the token type.

• Minimal value: the minimum integer value in the colour set.

• Maximal value: the maximum integer value in the colour set.

• Ordered color set : if this checkbox is checked, the succ (successor) opera-
tion is defined for the elements of the colour set based in the items’ integer
values.

• Color : the color used on the graphical user interface to show the tokens
of this type.

Furthermore, the user can assign names to each items by modifying the Value
text in the table.

Example 2.2 To represent Dijkstra’s famous dining philosophers model using
coloured Petri nets, a philosopher token type is needed, as shown in Figure 2.12.

18 CHAPTER 2. BASIC OPERATION

Figure 2.12: The Token type editor window filled with example data.

2.5. COLOURED PETRI NETS 19

Figure 2.13: The Token type editor window for complex token types.

Adding Complex Token Types. By clicking on the [Add complex] button
in the Coloured token types window, a new complex token type can be added.
To define a new complex token type, the following information is needed (Fig-
ure 2.13):

• Long name: the long name of the token type.

• Short name: the short name of the token type.

• Dimensions: the ordered list of the single token types. New item can be
added by selecting a single token type and clicking on the [Add dimension]

button. The selected token type can be removed by clicking on [Delete

selected dimension].

• Color : the color used on the graphical user interface to show the tokens
of this type.

The token type of a selected coloured place can be easily set or modified
by selecting a token type in the Coloured set section of the Properties box. In
a valid coloured Petri net, each coloured place should have an assigned token
type. If a coloured place has no defined token type, it is drawn in red.

20 CHAPTER 2. BASIC OPERATION

Figure 2.14: The Add and remove coloured tokens window.

2.5.3 Handling Coloured Tokens

The initial tokens of a coloured place can be changed in the Initial tokens row
of the Properties box, by clicking on the [...] button. This opens the Add
and remove coloured tokens window (Figure 2.14). The left side of the window
shows the current initial tokens of the selected coloured place, together with
their multiplicity. The right side of the window shows the tokens available in
the selected token type. To add a new token, select one or more tokens from the
list on the right side, then click on the [<Add one]. This will add one of each
selected tokens to the initial token set of the selected coloured place. To remove
initial tokens, select the tokens in the list on the left, then click on the [Remove

one >]. This reduces the multiplicity of each selected tokens by one. Clicking
on the [Remove all >] removes all the selected tokens.

The initial tokens of a coloured place can also be given in the Properties box
in a textual format, using the following format: <multiplicity>‘<value vector>.
The definition of <value vector> can be found in Section 2.5.4. The all is
a special word, meaning all elements of the selected token type. If the initial
token set contains multiple tokens, they can be separated using a ++ sign.

Example 2.3 The following examples are valid textual representations of initial
token sets:

• 1‘Aristotle

• 2‘[0,3]++1‘[0,0]

• all

The editor shows only the number of tokens visually. To get more informa-
tion, select the View / Show coloured tokens form command. This opens a
small window (Figure 2.15) that shows more information about the place that
is under the mouse cursor at the moment. This window can be used both in
Design and Simulation modes.

2.5. COLOURED PETRI NETS 21

Figure 2.15: The Coloured tokens window.

2.5.4 Edge Expressions, Guards and Variables

The dynamic behaviour of a coloured Petri net relies on the expressions written
on the coloured edges. These edge expressions control the flow of tokens.

The edge expression of a selected edge can be set or modified in the Arc
expression row of the Properties box. An edge expression can only contain vari-
ables and constants. If the edge expression contains multiple elements, they
have to be separated by ++ characters. The valid edge expressions are defined
as follows:
<EdgeExpr> ::= <value vector> |<EdgeExpr> ’++’ <value vector>
<value vector> ::= ’[’ <value> ’,’ <value> ’,’ . . . ’]’
<value> ::= <variable name> |<constant>

Another tool to control the token flow is the usage of guard expressions,
assigned to coloured transitions. A coloured transition can fire only if its guard
expression is satisfied. The guard expression of a selected coloured transition
can be set or modified in the Guard row of the Properties box. The syntax of
the guard expressions is the following:
<GuardExpr> ::= <expression> |<GuardExpr> <bool op> <GuardExpr>
<bool op> ::= ’&&’ |’||’

<comp op> ::= ’>’ |’>=’ |’<’ |’<=’ |’=’ |’!=’ |’<>’

<expression> ::= <gvalue> <comp op> <integer> |

<gvalue> <comp op> <gvalue>
<gvalue> ::= <variable name> |’succ’ <gvalue>

Example 2.4 Examples for syntactically correct guard expressions:

• fb=succ fj

• fb >2

• fb >2 && fj <1

The variables used in guard expressions have to be defined explicitly. This
can be done by selecting the CPN / Variables menu item that opens the Vari-
ables window (Figure 2.16).

In the Variables window, the defined variables and their types are listed.
New variable can be added by clicking on [Add]. The selected variable can be
deleted by clicking on [Remove]. The type of each variable should be a single
token type.

22 CHAPTER 2. BASIC OPERATION

Figure 2.16: The Variables window.

2.6. PETRI NET SIMULATION 23

Figure 2.17: The Net analysis window.

2.5.5 Limitations

Hierarchical coloured Petri nets are not supported currently . Coloured and
uncoloured nodes cannot be connected.

2.6 Petri Net Simulation

There are two main ways to use a Petri net: simulation (or token game) and
analysis (e.g. checking dynamic properties, computing invariants, perform model
checking). PetriDotNet has a built-in support for simulation and various analysis
algorithms can be used as plug-ins. This section discusses the simulation capabil-
ities of PetriDotNet. The analysis plug-ins are discussed in detail in the following
chapters. Most of them can be accessed in the Add-in / Net analysis menu
(Figure 2.17).

In the Simulation mode the user can intuitively check the behaviour of a
Petri net. Two types of simulation can be used in PetriDotNet: an interactive,
step-by-step simulation and a non-interactive simulation (execution).

In case of the step-by-step simulation (Step by step mode, Figure 2.18) the
currently enabled transitions are denoted by a red border. In this mode the
enabled transitions can be fired one-by-one, by clicking on them or by choosing
from the list on the panel on the left. By clicking on the [Step one] button, a

24 CHAPTER 2. BASIC OPERATION

Figure 2.18: Settings of the interactive simulation.

randomly chosen enabled transition will be fired. The [Reset net] button will
reset the net to the initial marking.

The execution mode can be accessed on the Run tab (Figure 2.19). In this
mode a randomly chosen enabled transition is fired automatically at regular
intervals. This interval can be set using the Tick interval input. The execution
can be started by clicking on the [Run] button. The conflicts of the Petri net
are resolved non-deterministically. The Transitions fired last field shows the last
fired transitions.

Non-interactive simulation can also be performed using the Large scale statis-
tics plug-in (Add-in / Statistics / Large scale statistics, Figure 2.20).
The execution can be started by clicking on the [Run] button. This will start
a firing sequence containing a pre-defined number of firings (Number of firings
setting). After the execution, statistics about the firing sequence are presented
in the window.

2.6. PETRI NET SIMULATION 25

Figure 2.19: Settings of the non-interactive simulation.

Figure 2.20: Large scale statistics plug-in.

26 CHAPTER 2. BASIC OPERATION

Chapter 3

CTL Model Checking

This chapter overviews the CTL model checking capabilities of PetriDotNet.
The CTL model checking algorithms rely on saturation, a symbolic state space
exploration and model checking algorithm [1] for finite Petri nets. This chapter
discusses the usage of the algorithms. The theoretical details of the implemented
algorithms can be read in [10, 9, 2].

Saturation-based model checking algorithms typically have three steps:

1. Model decomposition. In this step, the model is decomposed into “lev-
els”. One model level will be represented by one level in the decision dia-
gram.

2. State space exploration. In this step, the reachable state space of the
model is explored and symbolically stored.

3. Evaluation of the requirement. In this step, the given requirement (in
our case: CTL expression) is evaluated.

The implementation used in PetriDotNet follows these steps.
PetriDotNet provides both unbounded and bounded CTL model checking

algorithms. The details of these algorithms are discussed in the following.

3.1 Unbounded CTL Model Checking

Unbounded CTL model checking can be executed by clicking on the [Unbounded
Saturation CTL] button in the Petri Net Analysis window (Add-in / Net

analysis, Figure 2.17).

Model Decomposition. After clicking on the [Unbounded Saturation CTL]

button, first the model decomposition has to be given. There are three possibil-
ities for the decomposition (Figure 3.1):

• Setting the decomposition manually ([Manually]),

• Load a previously saved decomposition ([Load from file]),

• Generate a decomposition automatically using experimental P-Invariants
based heuristics ([P-Invariants]).

27

28 CHAPTER 3. CTL MODEL CHECKING

Figure 3.1: Form to select decomposition strategy.

If the manual decomposition definition option was selected, the user has to
set up the decomposition. First, some places have to be selected. They will be
assigned to Level 1. This choice is confirmed by clicking on the [OK] button.
Then the places for Level 2 have to be selected. This continues while there are
unassigned places. By selecting a number in the input box and clicking on the
[Every N] button the places will be split into levels: the 1st, 2nd, ..., Nth places
will be assigned to Level 1, the N + 1th, ..., 2Nth places to Level 2, etc.

CTL Expressions. After the level decomposition is done, the state space
exploration algorithm is executed. After that a window (Figure 3.2) notifies
the user that the state space exploration is finished. It shows some basic met-
rics, such as the runtime (Runtime of saturation algorithm) and the size of the
decision diagram describing the state space of the Petri net (Nodes in MDD af-
ter maintain). By clicking on [Go to CTL model checking] button the CTL
expression to be checked can be given and evaluated.

The following grammar defines the syntax of the accepted CTL expressions
(<Expr>).

<Expr> ::= <CTL expr> |

<place expr> |

’!’ <Expr> |

’(’ <Expr> ’)’ |

<Expr> <bool op> <Expr>
<CTL expr> ::= <CTL un op> ’(’ <Expr> ’)’ |

<CTL bin op> ’(’ <Expr> <bin separator> <Expr> ’)’

<CTL un op> ::= ’EX’ |’EF’ |’EG’ |’AX’ |’AF’ |’AG’

<CTL bin op> ::= ’EU’ |’EW’ |’ER’ |’AU’ |’AW’ |’AR’

<bin sep> ::= ’u’ |’w’ |’r’

<place expr> ::= <place identifier> <comp op> <integer>
<bool op> ::= ’&&’ |’||’

<comp op> ::= ’>’ |’>=’ |’<’ |’<=’ |’=’ |’!=’ |’<>’

3.1. UNBOUNDED CTL MODEL CHECKING 29

Figure 3.2: The State space generation finished window.

30 CHAPTER 3. CTL MODEL CHECKING

Figure 3.3: CTL expression editor.

The <place identifier> denotes the name or ID of a place. To help
the user, a CTL expression editor with syntax highlighting is available when-
ever a CTL expression has to be provided (Figures 3.3 and 3.4). A complete
<place expr> expression can be inserted to the CTL expression editor field by
selecting a place the drop-down list, setting the comparison operator and the
integer, and finally clicking on the [Insert full expression].

After clicking on the [OK] button, the given CTL expression is evaluated.
The result is presented in a simple message box (Figure 3.5). By clicking [OK] on
this message box, the CTL expression editor is shown again, where another CTL
expression can be specified for evaluation. In this way multiple CTL expressions
can be checked after a single state space exploration step. By closing the CTL
expression editor, the main window of PetriDotNet is accessible again.

3.2 Bounded CTL Model Checking

3.2. BOUNDED CTL MODEL CHECKING 31

Figure 3.4: CTL expression editor with an example expression.

Figure 3.5: Example CTL model checking result.

32 CHAPTER 3. CTL MODEL CHECKING

Figure 3.6: Settings of bounded CTL model checking.

Chapter 4

Stochastic Analysis Module

The capabilities of the stochastic analysis component will be demonstrated with
the help of the example model depicted in Figure 4.1. In this manual we will only
introduce the features provided by the user interface. For more details please
refer to [7].

Example 4.1 Hybrid cloud The system processes a finite number of incom-
ing jobs (to ensure a finite state space) with the help of a private or a public
cloud chosen by a simple probability based load balancer. The submodel for
the load balancer is shown in Figure 4.2.

We assume that there are infinite servers available in the public cloud that
never fail. In the private cloud we have a finite number of resources and
there is a chance that a server will fail and needs to be repaired.

4.1 Performance measures

Before presenting the various stochastic analysis features of the tool we gather
some interesting question about the model we would like to answer with stochas-
tic analysis.

1. In steady state how much time does it take to process an incoming job?

2. In steady state how much is the operational cost of the system?

3. How will these values change if the rate of the incoming jobs or the settings
of the load balancer changes?

4. How many jobs can be processed in the first hour?

5. What is the mean time to first failure (MTFF) and mean uptime (MUT)
of the system?

In the next sections we will present the various features of the tool that will
aid us in answering these questions.

33

34 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

Figure 4.1: The example hybrid cloud model.

Figure 4.2: A simple load balancer model.

4.2. MODEL AND REWARD SETTINGS 35

Figure 4.3: Sensitivity variables tab.

4.2 Model and reward settings

In order to answer the questions in Section 4.1 we need to define some variables,
set the transitions rates and formalize the questions as reward expressions. These
steps can be performed by selecting the Add-in / NET ANALYSIS menu item
and clicking the [Reward and Sensitivity Settings] button in the shown
form.

4.2.1 Sensitivity Variables

On the first tab on the settings form we can define variables for the model. We
can use these variables later in reward and transition rate expressions as well as
for sensitivity analysis. The settings tab is shown in Figure 4.3.

The existing sensitivity variables are listed on the left side of the form. We
can add or remove variables with the [+] and [-] buttons, respectively. Once a
variable is selected we can set its name, description (optional) and default value.
The new name can be applied with the [Rename] button. The description and
the default value are applied automatically as typed. In Figure 4.3 the selected
sensitivity variable will denote the failure rate of the private servers.

4.2.2 Sensitivity Variable Configurations

On the second tab (shown in Figure 4.4) we can create different configurations
for the sensitivity variables defined in the previous tab. At the top of the form
the selected value of the combobox denotes the currently active configuration for
the variables. The empty selection corresponds to the configuration containing
the default values of the variables set in the previous tab.

The available configurations (beside the default configuration) are listed on
the left side of the form. We can add or remove configurations with the [+] and
[-] buttons, respectively. Once a configuration is selected we can set its name
and the new values of the existing variables. The new name can be applied with

36 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

Figure 4.4: Sensitivity variable configurations tab.

the [Rename] button. The values of the variables are applied automatically as
typed.

In Figure 4.4 the PreferCloud configuration is highlighted (but not selected!)
which changes the default value of the p variable so that the load balancer will
choose the public cloud resources with higher probability.

4.2.3 Transition Rates

On the third tab (shown in Figure 4.5) we can set the rate functions for the
transitions of the Petri net. The transitions are listed on the left side of the form.
By default the transitions don’t have exponentially distributed firing delays
associated with them, so this form provides a quick way to set this for every
transition by clicking the [Set all to exponential] button.

Once a transition is selected additional options become available on the
right side. We can set an exponential distribution for the selected transition
or remove the distribution by clicking the [Set to exponential] or [Clear]

buttons, respectively.
Once the distribution is set we can provide the rate of the transition as an

arithmetic expression. In this expression we can use:

1. The common arithmetic operators (+, −,ˆ, ∗, / and // for integer division)

2. Some predefined functions (exp(), lg(), lb(), ln(), log(), sin(), cos())

3. The defined sensitivity variables

The available variables and functions can be inserted from the combobox
below using the [Insert] button or typed directly into the expression editor
textbox.

The provided expression can be checked for errors without applying it using
the [Check] button. The expression can be applied as the rate function using

4.2. MODEL AND REWARD SETTINGS 37

Figure 4.5: Transition rates tab.

the [Set] button. After setting the rate function it is evaluated and the result
is displayed based on the currently selected variable configuration.

Important: in order to perform stochastic analysis, every transition
needs to have an exponentially distributed firing rate that evaluates
to a nonzero positive number!

4.2.4 State Rewards

On the fourth tab (shown in Figure 4.6) we can define state reward configu-
rations whose expected value can be evaluated during the stochastic analysis.
Defining a state reward configuration means that we assign a value (i.e. a re-
ward) to certain states of the system. The expected value of the configuration
is calculated as the weighted sum of the assigned state rewards using the prob-
abilities that the system is in the given state as weights.

The defined configurations are listed on the left side of the form. We can
add or remove configurations with the [+] or [-] buttons, respectively. Once
a configuration is selected we can set its name and add multiple reward assign-
ments to the configuration which makes it possible to describe complex metrics
with a single configuration. The new name can be applied with the [Rename]

button.
The tool provides multiple ways to add a reward assignment to the configu-

ration. The added assignments can be edited or removed with the [...] or [-]
buttons, respectively.

Place–based assignment

Using a place–based assignment we essentially say that to every state (Petri net
marking) of the model assign the following reward: the number of tokens on
that place in that state multiplied by the given constant number.

We can add a place–based assignment using the [Place] button. In the
appearing window (shown in Figure 4.7) we can select the place and set the

38 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

Figure 4.6: State rewards tab.

Figure 4.7: Place–based reward window.

constant multiplier for the assignment.

Transition–based assignment

Using a transition–based assignment we essentially say that to every state of
the model where that transition is enabled assign the following reward: the rate
of the transition multiplied by the given constant number.

We can add a transition–based assignment using the [Transition] button.
In the appearing window (same as Figure 4.7) we can select the transition and
set the constant multiplier for the assignment.

CTL–based assignment

Using a CTL–based assignment we essentially say that to every state of the
model where the CTL expression is true assign the following reward: the eval-
uated value of an arbitrary arithmetic expression. In this expression we can
use:

1. The common arithmetic operators (+, −,ˆ, ∗, / and // for integer division)

4.2. MODEL AND REWARD SETTINGS 39

Figure 4.8: CTL editor window.

2. Some predefined functions (exp(), lg(), lb(), ln(), log(,), sin(), cos())

3. The defined sensitivity variables

4. The rate of a transition (accessed with the rate() function and the tran-
sition name)

5. The number of tokens on a place in the currently evaluated state (accessed
with the place name)

We can add a CTL–based assignment using the [CTL] button. In the ap-
pearing window (shown in Figure 4.8) we can type the CTL expression. The
buttons on the left can be used to insert basic elements (like operators) and the
[Insert] or [Insert full expression] buttons can be used to insert place
names or full logical expressions (given by the states of the surrounding con-
trols), respectively. The CTL expression can be applied by clicking the [OK]

button.
After setting the CTL expression another window pops up (shown in Fig-

ure 4.9) where we can set the arithmetic expression for the reward assignment.
The available variables and functions can be inserted from the combobox below
using the [Insert] button or typed directly into the expression editor textbox.
The provided expression can be checked for errors without applying it using the
[Check] button. The checked expression can be applied using the [OK] button.

4.2.5 Event Rewards

On the fifth tab (shown in Figure 4.10) we can define event reward configurations
whose expected value can be evaluated during the stochastic analysis. Defining

40 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

Figure 4.9: Arithmetic expression editor window.

Figure 4.10: Event rewards tab.

an event reward configuration means that we assign a value (i.e. a reward) to
certain state transitions of the system. The expected value of the configuration
is calculated as the weighted sum of the assigned event rewards (first multiplied
by the rate of the occurring event) using the probabilities that the system is in
the given source state (i.e. the event can occur) as weights.

The defined configurations are listed on the left side of the form. We can
add or remove configurations with the [+] or [-] buttons, respectively. Once
a configuration is selected we can set its name and add multiple reward assign-
ments to the configuration which makes it possible to describe complex metrics
with a single configuration. The new name can be applied with the [Rename]

button.

An event reward configuration consists of three parts. A CTL expression
describing the set of source states, a CTL expression describing the set of target
states and an arithmetic expression that will be evaluated on the matching

4.2. MODEL AND REWARD SETTINGS 41

Figure 4.11: Event rewards tab.

events. An event is processed if and only if its source state is in the set of source
states and its target state is in the set of target states described by the CTL
expressions. The three expressions can be edited by clicking the [Edit] button
and using the forms shown in Figures 4.8 and 4.9.

4.2.6 Composite Rewards

On the sixth tab (shown in Figure 4.11) we can define composite rewards. A
composite reward is simply an arithmetic expression that can contain expected
values of other rewards as variables. This is useful for performing some post-
processing on already calculated reward values.

The defined composite rewards are listed on the left side of the form. We can
add or remove configurations with the [+] or [-] buttons, respectively. Once
a configuration is selected we can set its name and the arithmetic expression.
The new name can be applied with the [Rename] button. In the expression we
can use:

1. The common arithmetic operators (+, −,ˆ, ∗, / and // for integer division)

2. Some predefined functions (exp(), lg(), lb(), ln(), log(,), sin(), cos())

3. The defined sensitivity variables

4. The defined state or event reward configurations

The available variables and functions can be inserted from the combobox
below using the [Insert] button or typed directly into the expression editor
textbox. The provided expression can be checked for errors without applying
it using the [Check] button. The expression can be applied using the [Set]

button.
A reward configuration can be evaluated in two ways resulting in different

values. Because of this we need to distinguish these values in the expression using

42 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

Figure 4.12: Invalid transition rate warning.

the inst() and acc() functions to reference the instantaneous and accumulated
values of rewards, respectively.

4.2.7 Reference consistency

Almost every arithmetic expression can refer to some king of variable, e.g. a
sensitivity variable, a reward configuration, a place name or a transition name
(referred to as variables from now on). These are all values that can be modified
through the user interface of the tool, thus every expression that references
them must be updated. For sensitivity variables and reward configurations this
update is performed automatically.

• If a sensitivity variable is renamed then every reference to it is renamed.

• If a new sensitivity variable is added to the model then this variable will be
added to every existing sensitivity variable configuration with its default
value.

• If a sensitivity variable is deleted then every reference to this variable
will be set to zero. If this results in an invalid transition rate then a
warning window similar to Figure 4.12 will be shown. It’s recommended
to manually check every expression referring the deleted variable.

• If a reward configuration is renamed then every reference to it is renamed.

• If a reward configuration is deleted then every reference to this config-
uration will be set to zero. It’s recommended to manually check every
expression referring the deleted configuration.

Modifications to place and transition properties (e.g. deleting or
renaming) are currently not applied to the expressions automatically!

4.3 Formalizing the performance measures

In this section we will construct the variables and reward configurations neces-
sary to answer the questions presented in Section 4.1.

TODO:Describing the needed variables and reward expressions.

4.4. REWARD EVALUATION 43

Figure 4.13: Analysis configuration form.

4.4 Reward evaluation

After the parameters and rewards of the model are defined we can run the
stochastic analysis. This can be done through the Add-in / NET ANALYSIS

menu item and clicking the [Stochastic Analysis] button in the shown form.

4.4.1 Analysis Configuration

After clicking the [Stochastic Analysis] button the form in Figure 4.13 is
shown. In this window we can configure the algorithms used during the stochas-
tic analysis. The previously saved configuration are listed on the left side of the
form. We can add or delete configurations using the [+] or [-], respectively. The
details of the selected configuration are shown on the right side of the form. The
changes of a configuration can be saved using the [Save] button. The selected
configuration can be run using the [Next/Run] button.

Overview

The analysis workflow consists of four main steps. Every step but the last can
be configured to achieve the most suitable workflow, thus the best performance
for the stochastic analysis.

1. State space exploration: The reachable state space of the model is
explored.

2. Generator matrix composing: The matrix describing the stochastic
model is composed using the reachable state space.

44 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

3. Numerical solution: The state of the system at a required time is cal-
culated from the composed generator matrix.

4. Reward evaluation: The required reward configurations are evaluated
based on the numerical solution of the system.

Configuration details

In the next list we give a detailed description of the available configuration
points and their possible values. We also highlight the effects of some settings
to the analysis where its important.

TODO:Additional notes to the numerical algorithms

Terminate workflow after Determines the last step of the analysis after which
the workflow will terminate. Affects the available settings on the form.

• State space exploration: The workflow will explore the state space of
the system then terminate.

• Generator composing: The workflow will also compose the generator
matrix from the state space then terminate.

• Stochastic analysis: The workflow will also calculate the system state
from the generator matrix then terminate.

• Run whole workflow: The workflow will also evaluate the reward con-
figurations based on the system state.

State space exploration Determines the algorithm used during the state space
exploration of the system.

• Explicit: A simple graph traversal algorithm will be used. Not efficient
for bigger state spaces.

• Symbolic: The saturation algorithm will be used. Recommended for
huge state spaces.

Generator operation configuration Determines the way matrix algorithms
will be executed during the generator matrix composing step.

• Sequential: The matrix algorithms will be executed sequentially.

• Parallel: The matrix algorithms may be executed in parallel depend-
ing on the size of the matrix.

Generator matrix storage Determines the storage structure for the genera-
tor matrix.

• Dense: The generator matrix will be stored as a dense matrix. Only
recommended for small matrices.

• Sparse: The generator matrix will be stored as a sparse matrix. Rec-
ommended for bigger matrices.

• Block Kronecker Decomposition: The generator matrix will be stored
in a decomposed form. Recommended for really huge matrices. Can
change the convergence of some algorithms.

4.4. REWARD EVALUATION 45

Components of model Determines the decomposition method of the model
in case of symbolic state space exploration or decomposed generator ma-
trix storage.

• One coarse transition as a component: Every top level coarse tran-
sition will serve as a component plus the top level places as the last
component.

• K places as a component: The first K places will make up the first
component, the second K places will make up the second component,
and so on.

Analysis operation configuration Determines the way matrix algorithms
will be executed during the numerical solution step.

• Sequential: The matrix algorithms will be executed sequentially.

• Parallel: The matrix algorithms may be executed in parallel depend-
ing on the size of the matrix.

Analysis type Determines the system state that will be calculated during the
numerical solution step.

• Steady State: The steady state of the system will be calculated (i.e.
at the time t =∞).

• Transient: The transient state of the system will be calculated at the
given time t.

Algorithm type Determines the numerical solver used during the numerical
solution step of the analysis.

• Bi-CGSTAB: Iterative Krylov-subspace method for solving linear
system of equations. Usually has a fast convergence but also has
a high memory requirement. An error tolerance or a maximum num-
ber of iterations can be set as the stopping criteria. Can be used for
steady state analysis and as an inner algorithm.

• Gauss-Seidel: Iterative method for solving linear system of equations.
Usually has a slower convergence but also has a smaller memory
requirement. An error tolerance or a maximum number of iterations
can be set as the stopping criteria. Can be used for steady state
analysis and as an inner algorithm.

• Jacobi: Iterative method for solving linear system of equations. Usu-
ally has a slower convergence but also has a smaller memory require-
ment. An error tolerance or a maximum number of iterations can be
set as the stopping criteria. Can be used for steady state analysis and
as an inner algorithm.

• Power iteration: Iterative method for solving linear system of equa-
tions. Usually has a slower convergence but also has a smaller memory
requirement. An error tolerance or a maximum number of iterations
can be set as the stopping criteria. Can be used for steady state
analysis and as an inner algorithm.

46 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

• LU decomposition: Direct method for solving linear system of equa-
tions. Calculates the solution with machine precision. Error-prone
due to numerical instability. Recommended only for small matrices.
Can be used for steady state analysis and as an inner algorithm.

• Group Gauss-Seidel: Block matrix based version of the Gauss-Seidel
algorithm. An error tolerance or a maximum number of iterations can
be set as the stopping criteria. Can be used for steady state analysis.
Needs an inner algorithm to calculate the solution.

• Group Jacobi: Block matrix based version of the Jacobi algorithm.
An error tolerance or a maximum number of iterations can be set as
the stopping criteria. Can be used for steady state analysis. Needs
an inner algorithm to calculate the solution.

• Uniformization: Uses an approximation to calculate the transient
state of the system at a given t time. Its performance is affected by
the magnitude of transition rates. An error tolerance plus a maximum
number of iterations can be set as the stopping criteria. Preferred
method for transient analysis.

• TR-BDF2: Integrator algorithm used for calculating the transient
state of the system at a given t time. Its performance is independent
of the model parameters but has a high execution time. An error
tolerance plus a maximum number of iterations can be set as the
stopping criteria. Needs an inner algorithm to calculate the solution.

If anything but the Run whole workflow option is selected as the end of the
analysis workflow, or there isn’t any reward configuration defined for the model
then clicking the [Run] button will start the analysis.

4.4.2 Selecting the rewards

If the Run whole workflow option is selected as the end of the analysis and
there are available reward configurations for the model then clicking the [Next]
button will display the window shown in Figure 4.14. The available reward
configurations are displayed in the left side of the window. The selected reward
configurations (that will be calculated during the analysis) are displayed in the
middle of the window. A reward can be selected or unselected using the [→]

or [←] buttons, respectively. The available rewards and their corresponding
options vary based on the selected analysis type.

The window in Figure 4.14 shows the available settings in case of steady state
analysis. When a reward is selected its expected instantaneous value (for the
state of the system at t =∞ time) will be computed automatically. Furthermore
the tool can calculate the sensitivity (i.e. the derivative) of this value for the
selected sensitivity variables. In case of steady state analysis the composite
rewards that reference accumulated reward values are not visible since they
can’t be calculated.

In case of transient analysis the options for the selected rewards are different,
as shown in Figure 4.15. Beside the expected instantaneous value at time t it
is also possible to calculate the expected accumulated value of the reward until
time t. For transient analysis the sensitivity calculation for rewards are currently
not supported.

4.4. REWARD EVALUATION 47

Figure 4.14: Reward selection form for steady state analysis.

Figure 4.15: Reward selection form for transient analysis.

48 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

Figure 4.16: The running analysis.

4.4.3 Running the analysis

After selecting the rewards to calculate clicking the [OK] button will start the
analysis. The progress and logs of the algorithms used during the analysis are
displayed to the user as shown in Figure 4.16. Most of the algorithms support
interruption thus the analysis can be stopped using the [X] button next to
the progressbar. After the analysis the results of the selected rewards and their
sensitivities for the selected variables are displayed near the end of the log as
shown in Figure 4.17.

4.5 Mean Time to First Failure calculation

TODO:Describing the MTFF configs

4.5. MEAN TIME TO FIRST FAILURE CALCULATION 49

Figure 4.17: The finished analysis.

50 CHAPTER 4. STOCHASTIC ANALYSIS MODULE

Chapter 5

CEGAR-based Reachability
Analysis

This chapter gives an overview on the usage and capabilities of the CEGAR-
based algorithms. These algorithms aim to solve the following two problems:

• reachability, i.e., to decide if a target marking is reachable from the initial
marking,

• submarking coverability, i.e., to decide if a marking satisfying a set of linear
predicates is reachable from the initial marking.

Section 5.1 is an excerpt of [4], giving a short overview of the CEGAR ap-
proach. More detailed information can be found in [5, 3, 6]. Section 5.2 presents
the usage of the tool based on [3].

5.1 Overview of the algorithms

5.1.1 Abstraction

Abstraction is a general mathematical approach for solving hard problems. The
abstract model has a less detailed state space representation by hiding the irrele-
vant details. However, due to the abstraction, some action of the abstract model
may not be realisable in the original model. In this case, the abstraction has
to be refined. This approach is called the “counterexample-guided abstraction
refinement” (CEGAR).

5.1.2 CEGAR approach on Petri nets

The CEGAR approach was first described for the reachability analysis of Petri
nets by Wimmel and Wolf [11]. Figure 5.1 shows an overview of the algorithm
and each step is detailed in this section.

Initial abstraction. The input of the algorithm is a reachability problem
whether a marking m′ is reachable from the initial marking m0 in the Petri net
PN . The reachability problem is first transformed into the initial abstraction,

51

52 CHAPTER 5. CEGAR-BASED REACHABILITY ANALYSIS

Create initial
abstraction

Solve the
abstract model

Examine the
solution

Refine the
abstraction

Stop

Reachability
problem

State
equation

No solution

Solution

Realisable

Not realisableConstraints

Figure 5.1: Petri net CEGAR algorithm

namely the state equation of the form m0 +Cx = m′, where C is the incidence
matrix of PN .

Solving the abstract model. Solving the abstract model (i.e., the state
equation) is an integer linear programming problem. The ILP solver yields a
minimal solution with respect to a cost function. In the original algorithm [11]
the sum of the firing count of transitions is minimised in order to obtain tra-
jectories with the shortest length. In our approach, the cost can be set to an
arbitrary linear function.

The feasibility of the state equation is a necessary, but not sufficient con-
dition for reachability, therefore if no solution exists, the target marking is not
reachable. Otherwise, the obtained solution must be checked whether it is real-
isable in the original model (i.e., in the Petri net PN).

Examining the solution. The solution of the state equation is a vector
x ∈ N|T |, where x(t) denotes the number of times a transition t ∈ T has to
fire in order to reach m′ from m0. However, x does not include any information
about the order of the transition firings and whether they are enabled. Thus,
the algorithm must explore the state space of the Petri net with the limitation
that each transition t can fire at most x(t) times. If the target marking m′

can be reached with this limit (i.e., x is realisable), it is a sufficient proof for
reachability. Otherwise, x is a counterexample and the abstraction has to be
refined.

Refining the abstraction.

If a solution x is not realisable, the ILP solver has to be forced to generate a
different solution. This can be done by adding additional constraints (i.e., linear
inequalities over transitions) to the state equation. Each solution x of the state
equation m + Cx = m′, can be written as the sum of a base vector and the
linear combination of T-invariants [11]. The following two types of constraints
were defined in [11].

• Jump constraints have the form |ti| < n, where n ∈ N, ti ∈ T and |ti| rep-
resents the firing count of the transition ti. Jump constraints can be used
to obtain different base vectors, exploiting their pairwise incomparability.

• Increment constraints have the form
∑k

i=1 ni|ti| ≥ n, where ni ∈ Z, n ∈ N,
and ti ∈ T . Increment constraints can be used to reach non-base solutions.
This means that a new solution x+y is obtained, where y is a T-invariant.

5.2. USAGE 53

After adding the new constraint, the state equation may become infeasible,
or a new solution is obtained. Figure 5.2 presents the solution space. The bottom
dots represent base solutions, while the cones represent the linear space formed
by the T-invariants. The upper dots correspond to non-base solutions. Jumps
are denoted by dashed arrows and increments by continuous arrows.

At each non-realisable solution multiple jump and/or increment constraints
can be applied. The three algorithms in PetriDotNet traverse the solution space
using depth-first search (DFS), breadth-first search (BFS) and a hybrid strategy
[6] until a realisable solution is found, or the state equation becomes infeasible
and there are no more solutions to backtrack to.

Figure 5.2: Solution space of the state equation

Extensions. In our previous work [5] we proved by a counterexample that
the original algorithm [11] is incorrect and we suggested a solution to overcome
the problem. We also presented several examples where the algorithm could not
decide reachability [5, 6]. We extended the set of decidable problems, but the
algorithm still lacks completeness [6]. Furthermore, we extended the algorithm
to be able to handle inhibitor arcs and submarking coverability problems, and
we also introduced new optimization methods in order to improve efficiency [5].

5.2 Usage

All three algorithms have the same GUI and capabilities, only the underly-
ing search strategies are different [6]. The algorithms can be started from the
“CEGAR-Based Reachability” section of Add-in / NET ANALYSIS.

5.2.1 Overview of the GUI

The main window of the plug-in can be seen in Figure 5.3. The window is divided
into the following three sections:

• information about the net,

• parameters of the reachability problem,

• result of the analysis.

54 CHAPTER 5. CEGAR-BASED REACHABILITY ANALYSIS

Figure 5.3: Main window of the CEGAR plug-in.

5.2.2 Information about the net

The top section displays information about the currently loaded Petri net. If
the net is changed in the editor, it must be reloaded manually with the [Reload

active net from editor] button. The number of places, transitions and edges
is also displayed. If the [Places] or [Transitions] label is clicked, the plug-
in displays the ID and name of each place or transition in a pop-up dialogue
(Figure 5.4).

Figure 5.4: Place names with IDs.

5.2. USAGE 55

Figure 5.5: Marking editor dialogue.

5.2.3 Parameters of the reachability problem

The type of the problem (reachability or submarking coverability) can be set at
the top of the section “Reachability problem parameters” with the radio buttons.
Each parameter (initial marking, target marking or predicates, conditions on
transitions1, optimized function) can be edited on a separate tab.

There are several options to enter the initial and target markings:

• They can be entered in the text boxes as a vector of integers separated
with spaces. The ith element of the vector corresponds to the place with
ID i.

• Using the [Options] button they can be edited in a separate window
(Figure 5.5) where the ID, name and token count of each place is displayed.

• The actual token distribution of the net can be loaded from or into the
PetriDotNet framework with the [Load from PDN] and [Show in PDN]

buttons.

If the type of the problem is submarking coverability, the tab for predicates
is visible (Figure 5.6) instead of the tab for the target marking. A new predicate
can be added with the [Add predicate] button. The dialogue seen in Figure 5.7
helps entering a predicate. The coefficient of each place can by set by selecting
the name of the place in the combo box and entering the coefficient in the
text box below. The type of the predicate (“≥”,“=”,“≤”) can be set with the
combo box in the top right corner. The right-hand side value can be entered in
the text box below the type. The selected predicates can be removed with the
[Remove] button. The list can be cleared by the [Remove all] button under
[Options]. The option [Load tokens from PDN] under [Options] does the

1The conditions on transitions are added directly to the ILP problem as a row.

56 CHAPTER 5. CEGAR-BASED REACHABILITY ANALYSIS

Figure 5.6: Predicates tab.

Figure 5.7: Predicate editor.

following: for each place pi of the Petri net with m(pi) > 0 a predicate of the
form m′(pi) = m(pi) is created, i.e., places with no tokens are ignored.

The conditions on transitions can be added similarly to predicates. The only
difference is that these conditions correspond to transitions instead of places.

The optimized function of the ILP solver can be edited as a vector or with
a helper dialogue similar to the marking editor (Figure 5.5).

All parameters can be written into an .xml file with the [Save] button and
loaded from an .xml file with the [Load from file] button.

5.2.4 Configuration of the algorithm

The optimizations and the logging level of the algorithm can be configured
by clicking the [Configuration] button. The following options are available
(Figure 5.8):

• Level of logging: Sets the detailedness of logging. At level 0, only the solu-
tion is displayed, while at level 4, each detail is logged into the “Output”
tab of the “Result” section.

• Generate state space: Sets whether the state space should be generated in
the file “statespace.dot” in GraphViz format.2

• Use stubborn sets: Enables the stubborn set [8] optimization, which re-
duces the number of potential solutions by investigating dependencies and
conflicts between transitions.

2http://www.graphviz.org

http://www.graphviz.org

5.2. USAGE 57

Figure 5.8: Configuration dialogue.

• Store partial solutions: Enables the partial solution storing [11] optimiza-
tion, avoiding a potential solution to be processed multiple times.

• Use subtree omission: Enables the subtree omission [5] optimization, which
reduces the number of potential solutions by ignoring the different order
of transitions.

• Filter partial solutions by T-invariants: Enables the T-invariant filtering
[5] optimization, which can avoid non-termination by detecting infinite
loops in the abstraction refinement.

• Try to involve distant T-invariants: Enables the new extension [6] that
tries to involve distant invariants when a potential solution is skipped by
the filtering optimization.

• Check state equation before finding increment constraints: Enables filter-
ing based on an extra check of the state equation [5].

• Filter dead transitions: Enables filtering transitions that can never fire at
the beginning of the algorithm.3

The reachability analysis can be started with the [Reachable?] button. It
runs on a background thread and it can also be interrupted with the [Stop]

button.

3Developed by Pál András Papp.

58 CHAPTER 5. CEGAR-BASED REACHABILITY ANALYSIS

Figure 5.9: Result of a problem, where the target is reachable.

5.2.5 Examination of the result of the algorithm

The algorithm prints information depending on the level of logging in the “Out-
put” tab of the “Result” section. When the reachability analysis finished, de-
tailed information can be seen in the “Result” tab. If a realisable solution is
found, the plug-in displays the following items (Figure 5.9):

• the initial marking,

• the marking reached by the solution,

• the solution vector,

• and the firing sequence realising the solution.

The firing sequence can be simulated automatically or manually with the
playback controls in the “Simulate sequence” group. The result can also be
exported into a .csv file with the [Export CSV] button. Clicking the button, a
place selector dialogue (Figure 5.10) appears. Each step of the firing sequence
is written in the .csv file with the actual marking of the selected places.

If no solution was found, the following cases are possible:

1. If some solutions were skipped by the T-invariant filtering optimization,
the result is “Not decidable”.

2. If over-estimation occurred, the result is also “Not decidable”.

3. Otherwise, the result is “Not reachable”.

5.2. USAGE 59

Figure 5.10: Place selector dialogue.

60 CHAPTER 5. CEGAR-BASED REACHABILITY ANALYSIS

Chapter 6

Quick Introduction to
Plug-in Development

The functionality of PetriDotNet is extensible with the help of plug-ins. Plug-ins
can perform simulation tasks, provide analysis features (e.g. model checking) or
export/import capabilities. Each plug-in can access the Petri net data models,
use the graphical user interface, add new menu items, and perform PetriDotNet
commands. The development of plug-ins is really simple, in order to help the
users to focus on functionality instead of technology.

Each plug-in is a .NET class library (.dll) in which at least one class im-
plements the IPDNPlugIn interface. The class should have some annotations
attached to it:

• AddinAuthor that specifies the author of the plug-in,

• ToolVersion that specifies the minimum PetriDotNet version needed to
execute the plug-in,

• IncludeInPublicRelease that specified that the plug-in should be visible
in the public releases. Without this annotation the plug-in is loaded only
in diagnostic releases and in Debug mode.

The plug-in should hold a reference to the PetriNetBase.dll that specifies
the base Petri net data model and to the PetriDotNet.exe that defines the
plug-in interface.

The compiled plug-in .dlls should be placed into the add-in folder of Petri-
DotNet. When PetriDotNet starts it loads all plug-ins from this folder.

IPDNPlugin Interface. The IPDNPlugIn interface defines the methods that
should be implemented by each plug-in. To help the developers, the defined inter-
face is really simple. It defines one single method: Initialize(PDNAppDescriptor
appDesc) that is called exactly once after PetriDotNet started.

Initialization of a Plug-in. The plug-in should initialize itself in the Initialize
method. The typical tasks in this method are the following:

• Store the given appDesc. This descriptor will provide the mean to interact
with the PetriDotNet framework.

61

62CHAPTER 6. QUICK INTRODUCTION TO PLUG-IN DEVELOPMENT

• Register the menu items. This can be done by invoking the appDesc.

AddPluginMenuItem method. This method has two parameters: the first
string parameter defines the label of the menu item to be placed in
the Add-in menu (e.g. "DummyAddin"), optionally together with some
submenus (e.g. "DummyGroup1\\DummyGroup2\\DummyAddin"). The sec-
ond parameter is an event handler delegate of type EventHandler that
will be invoked when the menu item is selected by the user. The plug-in
may register several menu items.

Later, when the user selected the plug-in and the given event handler method
is invoked, the previously stored application descriptor (appDesc) allows to in-
teract with the framework.

• The appDesc.CurrentPetriNet property returns the currently active Petri
net.

• Through the InvokeCommand method a command (e.g. open, save) can be
invoked.

Example 6.1 See Listing 6.1 for an example plug-in skeleton written in C#.

Listing 6.1: Example PetriDotNet plug-in skeleton

using PetriNetBase;
using PetriTool;
using System.Windows.Forms;

[AddinAuthor(”John Doe”), ToolVersion(”1.5”),
IncludeInPublicRelease]

public class DummyAddin : IPDNPlugin
{

private PDNAppDescriptor appDesc = null;

public void Initialize (PDNAppDescriptor appDesc)
{

this.appDesc = appDesc;
appDesc.AddPluginMenuItem(

”DummyGroup\\DummyAddin”, Foo);
}

private void Foo(object sender, EventArgs e)
{

PetriNet pn = appDesc.CurrentPetriNet;
// ...

}
}

Bibliography

[1] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. Ten years of sat-
uration: A Petri net perspective. In Kurt Jensen, Susanna Donatelli,
and Jetty Kleijn, editors, Transactions on Petri Nets and Other Mod-
els of Concurrency V, volume 6900, pages 51–95. Springer Berlin Heidel-
berg, 2012. ISBN 978-3-642-29071-8. doi: 10.1007/978-3-642-29072-5 3.
URL http://dx.doi.org/10.1007/978-3-642-29072-5_3. doi: 10.1007/
978-3-642-29072-5 3.

[2] Dániel Darvas, András Vörös, and Tamás Bartha. Improving saturation-
based bounded model checking. Acta Cybernetica, 2014. ISSN 0324-721X.
Accepted, in press.

[3] Ákos Hajdu. Extensions to the CEGAR approach on Petri
nets. Bachelor’s thesis, Budapest University of Technology and Eco-
nomics, 2013. URL https://diplomaterv.vik.bme.hu/en/Theses/

Petrihalok-CEGAR-alapu-vizsgalatanak.

[4] Ákos Hajdu, Róbert Német, Szilvia Varró-Gyapay, and András Vörös. Petri
net based trajectory optimization. In ASCONIKK 2014: Extended Ab-
stracts. Future Internet Services, pages 11–19. University of Pannonia, 2014.

[5] Ákos Hajdu, András Vörös, Tamás Bartha, and Zoltán Mártonka. Ex-
tensions to the CEGAR approach on Petri nets. Acta Cybernetica, 21(3):
401–417, 2014.

[6] Ákos Hajdu, András Vörös, and Tamás Bartha. New search strategies for
the Petri net CEGAR approach. In Raymond Devillers and Antti Valmari,
editors, Application and Theory of Petri Nets and Concurrency, volume
9115 of Lecture Notes in Computer Science, pages 309–328. Springer, 2015.

[7] Attila Klenik and Kristóf Marussy. Configurable stochastic analysis frame-
work for asynchronous systems, 2015. URL https://tdk.bme.hu/VIK/

DownloadPaper/Aszinkron-rendszerek-konfigurarhato. 1st prize.

[8] Karsteb Schmidt. Stubborn sets for standard properties. In Application and
Theory of Petri Nets, volume 1639 of Lecture Notes in Computer Science,
pages 46–65. Springer, 1999.

[9] András Vörös, Dániel Darvas, and Tamás Bartha. Bounded saturation-
based CTL model checking. Proceedings of the Estonian Academy of Sci-
ences, 62(1):59–70, 2013. ISSN 1736-6046. doi: 10.3176/proc.2013.1.07.

63

http://dx.doi.org/10.1007/978-3-642-29072-5_3
https://diplomaterv.vik.bme.hu/en/Theses/Petrihalok-CEGAR-alapu-vizsgalatanak
https://diplomaterv.vik.bme.hu/en/Theses/Petrihalok-CEGAR-alapu-vizsgalatanak
https://tdk.bme.hu/VIK/DownloadPaper/Aszinkron-rendszerek-konfigurarhato
https://tdk.bme.hu/VIK/DownloadPaper/Aszinkron-rendszerek-konfigurarhato

64 BIBLIOGRAPHY

[10] András Vörös, Dániel Darvas, Attila Jámbor, and Tamás Bartha. Advanced
saturation-based model checking of well-formed coloured Petri nets. Pe-
riodica Polytechnica, Electrical Engineering and Computer Science, 58(1):
3–13, 2014. ISSN 2064-5279. doi: 10.3311/PPee.2080.

[11] Harro Wimmel and Karsten Wolf. Applying CEGAR to the Petri net state
equation. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 6605 of Lecture Notes in Computer Science, pages 224–
238. Springer, 2011.

	Introduction
	System Requirements

	Basic Operation
	Starting the Tool
	Load, Save
	Creating and Editing Petri Nets
	Editing Hierarchical Petri Nets
	Coloured Petri Nets
	Editing Coloured Petri Nets
	Handling Colour Sets
	Handling Coloured Tokens
	Edge Expressions, Guards and Variables
	Limitations

	Petri Net Simulation

	CTL Model Checking
	Unbounded CTL Model Checking
	Bounded CTL Model Checking

	Stochastic Analysis Module
	Performance measures
	Model and reward settings
	Sensitivity Variables
	Sensitivity Variable Configurations
	Transition Rates
	State Rewards
	Event Rewards
	Composite Rewards
	Reference consistency

	Formalizing the performance measures
	Reward evaluation
	Analysis Configuration
	Selecting the rewards
	Running the analysis

	Mean Time to First Failure calculation

	CEGAR-based Reachability Analysis
	Overview of the algorithms
	Abstraction
	CEGAR approach on Petri nets

	Usage
	Overview of the GUI
	Information about the net
	Parameters of the reachability problem
	Configuration of the algorithm
	Examination of the result of the algorithm

	Quick Introduction to Plug-in Development

