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Összefoglaló A kritikus rendszerek – biztonságkritikus, elosztott és felhőalkalma-
zások – helyességének biztosításához szükséges a funkcionális és nemfunkcionális
követelmények matematikai igényességű ellenőrzése. Számos, szolgáltatásbiztonsággal
és teljesítményvizsgálattal kapcsolatos tipikus kérdés általában sztochasztikus analízis
segítségével válaszolható meg.

A kritikus rendszerek elosztott és aszinkron tulajdonságai az állapottér robbanás
jelenségéhez vezetnek. Emiatt méretük és komplexitásuk gyakran megakadályozza a
sikeres sztochasztikus analízist, melynek számításigénye nagyban függ a lehetséges
viselkedések számától. A modellek komponenseinek jellegzetes időbeli viselkedése a
számításigény további jelentős növekedését okozhatja.

A szolgáltatásbiztonsági és teljesítményjellemzők kiszámítása markovi modellek
állandósult állapotbeli és tranziens megoldását igényli. Számos eljárás ismert ezen
problémák kezelésére, melyek eltérő reprezentációkat és numerikus algoritmusokat
alkalmaznak ; ám a modellek változatos tulajdonságai miatt nem választható ki olyan
eljárás, mely minden esetben hatékony lenne.

A markovi analízishez szükséges a modell lehetséges viselkedéseinek, azaz álla-
potterének felderítése, illetve tárolása, mely szimbolikus módszerekkel hatékonyan
végezhető el. Ezzel szemben a sztochasztikus algoritmusokban használt vektor- és
indexműveletek szimbolikus megvalósítása nehézkes. Munkánk célja egy olyan, integ-
rált keretrendszer fejlesztése, mely lehetővé teszi a komplex sztochasztikus rendszerek
kezelését a szimbolikus módszerek, hatékony mátrix reprezentációk és numerikus
algoritmusok előnyeinek ötvözésével.

Egy teljesen szimbolikus algoritmust javasolunk a sztochasztikus viselkedéseket leíró
mátrix-dekompozíciók előállítására a szimbolikus formában adott állapottérből kiindul-
va. Ez az eljárás lehetővé teszi a temporális logikai kifejezéseken alapuló szimbolikus
technikák használatát.

A keretrendszerben megvalósítottuk a konfigurálható sztochasztikus analízist : meg-
közelítésünk lehetővé teszi a különböző mátrix reprezentációk és numerikus algoritmu-
sok kombinált használatát. Az implementált algoritmusokkal állandósult állapotbeli
költség- és érzékenység analízis, tranziens költséganalízis és első hiba várható be-
következési idő analízis végezhető el sztochasztikus Petri-háló (SPN) alapú markovi
költségmodelleken. Az elkészített eszközt integráltuk a PetriDotNet modellező
szoftverrel. Módszerünk gyakorlati alkalmazhatóságát szintetikus és ipari modelleken
végzett mérésekkel igazoljuk.
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Abstract Ensuring the correctness of critical systems – such as safety-critical, dis-
tributed and cloud applications – requires the rigorous analysis of the functional and
extra-functional properties of the system. A large class of typical quantitative questions
regarding dependability and performability are usually addressed by stochastic analysis.

Recent critical systems are often distributed/asynchronous, leading to the well-
known phenomenon of state space explosion. The size and complexity of such systems
often prevents the success of the analysis due to the high sensitivity to the number of
possible behaviors. In addition, temporal characteristics of the components can easily
lead to huge computational overhead.

Calculation of dependability and performability measures can be reduced to steady-
state and transient solutions of Markovian models. Various approaches are known
in the literature for these problems differing in the representation of the stochastic
behavior of the models or in the applied numerical algorithms. The efficiency of these
approaches are influenced by various characteristics of the models, therefore no single
best approach is known.

The prerequisite of Markovian analysis is the exploration of the state space, i.e. the
possible behaviors of the system. Symbolic approaches provide an efficient state space
exploration and storage technique, however their application to support the vector
operations and index manipulations extensively used by stochastic algorithms is cum-
bersome. The goal of our work is to introduce a framework that facilitates the analysis
of complex, stochastic systems by combining the advantages of symbolic algorithms,
compact matrix representations and various numerical algorithms.

We propose a fully symbolic method to explore and describe the stochastic behaviors.
A new algorithm is introduced to transform the symbolic state space representation
into a decomposed linear algebraic representation. This approach allows leveraging
existing symbolic techniques, such as the specification of properties with Computational
Tree Logic (CTL) expressions.

The framework provides configurable stochastic analysis: an approach is introduced
to combine the different matrix representations with numerical solution algorithms.
Various algorithms are implemented for steady-state reward and sensitivity analysis,
transient reward analysis and mean-time-to-first-failure analysis of stochastic models in
the Stochastic Petri Net (SPN) based Markov reward model formalism. The analysis tool
is integrated into the PetriDotNet modeling application. Benchmarks and industrial
case studies are used to evaluate the applicability of our approach.
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Chapter 1

Introduction

The growing need for ensuring the correctness of critical systems – such as safety-critical,
distributed and cloud applications – requires the rigorous analysis of the functional and
extra-functional properties. A large class of typical quantitative questions regarding
dependability and performability are usually addressed by stochastic analysis.

Recent critical systems are often distributed/asynchronous, leading to the well-
known phenomenon of state space explosion. The size and complexity of such systems
often prevents the success of the analysis due to the high sensitivity to the number of
possible behaviors. In addition, temporal characteristics of the components can easily
lead to huge computational overhead or prevent algorithms from convergence.

Calculation of dependability and performability measures can be reduced to steady-
state and transient solutions of Markovian models. Various approaches are known
in the literature for these problems differing in the representation of the stochastic
behavior of the models or in the applied numerical algorithms. The efficiency of these
approaches are influenced by various characteristics of the models, therefore no single
best approach is known.

In this paper our goal is to propose a solution for the various problems occuring in
stochastic analysis of complex systems.

The first step in Markovian analysis is the exploration of the state space, i.e. the
possible behaviors of the system. Various algorithms exist for state space exploration.
We addressed the state space traversal problem with the development of both explicit
state algorithms and symbolic approaches. Explicit state traversal is fast in general and
handles even systems with complex transition functions, while symbolic state space
traversal can handle even huge state spaces. While symbolic approaches provide an
efficient state space exploration and storage technique, their application to support the
vector operations and index manipulations extensively used by stochastic algorithms is
cumbersome. In this paper we propose a fully symbolic algorithm to bridge the gap
between symbolic state space representation and the data structures intensively used
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by our stochastic analysis algorithms. The new algorithm is introduced to transform the
symbolic state space representation into a decomposed linear algebraic representation.
This approach allows leveraging existing symbolic techniques, such as the specification
of properties with Computational Tree Logic (CTL) expressions.

We introduce the concept of configurable stochastic analysis. We developed a
framework to support the combination of

• various state space exploration techniques with

• decomposition algorithms and representation, techniques for the stochastic be-
haviour of the systems

• various numerical algorithms to solve the steady-state and transient analysis
problem,

• computation of high level measures such as various reward, sensitivity and mean
time to failure values.

Various problems were solved during our work: an approach is introduced to
combine the different matrix representations with numerical solution algorithms. A
diverse set of algorithms are implemented for steady-state reward and sensitivity
analysis, transient reward analysis and mean-time-to-first-failure analysis of stochastic
models in the Stochastic Petri Net (SPN) Markov reward model formalism. Several
optimizations and improvements were applied to provide efficient algorithms. Most of
the developed algorithms are parallelized to exploit the modern multicore architectures.
Benchmarks and industrial case studies are used to evaluate the applicability of our
approach.

The analysis framework is integrated into the PetriDotNet modeling applica-
tion. More than 78000 unit tests are generated with a combinatorial interface testing
approach to ensure the correctness of the data structure. To validate the stochastic
analysis pipeline and the implemented algorithms through software redundancy, 588
mathematically consistent configurations of the pipeline are executed and evaluated
for several models.

The remainder of this work is structured as follows: Chapter 2 reviews some pre-
liminaries of the stochastic analysis of stochastic Petri nets. Chapter 3 presents the
configurable stochastic analysis pipeline. Chapter 4 describes the available state space
exploration and algorithms and decompositions of stochastic behaviors, including the hi-
erarchical decomposition algorithm for symbolic state spaces in Section 4.2.3. Chapter 5
presents numerical steady-state and transient analysis algorithms and their implemen-
tations in our framework, with special attention to the homogenous linear equation
systems arising from steady-state analysis. After describing the testing and validation
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methodologies applied to our framework in Chapter 6 as well as the benchmark results,
we conclude our paper in Chapter 7.
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Chapter 2

Background

In this section we overview the basic formalisms and scope of our work. At first, Petri
net based formalisms are introduced, which is the modelling language our framework
uses to express stochastic models. Then the basic stochastic modelling background is
discussed and Kronecker algebra is also introduced to give a base for the later sections.

2.1 Petri nets

Petri nets are a widely used graphical and mathematical modeling tool for systems
which are concurrent, asynchronous, distributed, parallel or nondeterministic.

Definition 2.1 A Petri net is a 5-tuple PN = (P, T, F, W, M0), where
• P = {p0, p1, . . . , pn−1} is a finite set of places;
• T = {t0, t1, . . . , tm−1} is a finite set of transitions;
• F ⊆ (P × T )∪ (P × T ) is a set of arcs, also called the flow relation;
• W : F → N+ is an arc weight function;
• M0 : P → N is the initial marking;
• P ∩ T = ; and P ∪ T 6= ; [67].

Arcs from P to T are called input arcs. The input places of a transition t are denoted
by • t = {p : (p, t) ∈ F}. In contrast, arcs of the form (t, p) are called output arcs and
the output places of t are denoted by t• = {p : (t, p) ∈ F}.

A marking M : P → N assigns a number of tokens to each place. The transition t is
enabled in the marking M (written as M [t〉 ) when M(p)≥W (p, t) for all p ∈ • t.

Petri nets are graphically represented as edge weighted directed bipartite graphs.
Places are drawn as circles, while transitions are drawn as bars or rectangles. Edge
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••

••

2
2pH2

pO2
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•

2
2pH2

pO2

pH2Ot

Figure 2.1 A Petri net model of the reaction of hydrogen and oxygen.

weights of 1 are ususally omitted from presentation. Dots on places correspond to
tokens in the current marking.

If M [t〉 holds the transition t can be fired to get a new marking M ′ (written as
M [t〉M ′) by decreasing the token counts for each place p ∈ • t by W (p, t) and increasing
the token counts for each place p ∈ t• by W (t, p). Note that in general, • t and t• need
not be disjoint. Thus, the firing rule can be written as

M ′(p) = M(p)−W (p, t) +W (t, p), (2.1)

where we take W (x , y) = 0 if (x , y) /∈ F for brevity.
A marking M ′ is reachable from the marking M (written as M   M ′) if there exists

a sequence of markings and transitions for some finite k such that

M = M1 [t i1〉M2 [t i2〉M3 [t i3〉 · · · [t ik−1
〉Mk−1 [t ik〉Mk = M ′.

A marking M is in the reachable state space of the net if M0  M . The set of all markings
reachable from M0 is denoted by

RS = {M : M0  M}.

Definition 2.2 The Petri net PN is k-bounded if M(p)≤ k for all M ∈ RS and p ∈ P.
PN is bounded if it is k-bounded for some (finite) k.

The reachable state space RS is finite if and only if the Petri net is bounded.

Example 2.1 The Petri net in Figure 2.1 models the chemical reaction

2 H2 +O2→ 2 H2O.

In the initial marking (left) there are two hydrogen and two oxygen molecules,
represented by tokens on the places pH2

and pO2
, therefore the transition t is enabled.

Firing t yields the marking on the right where the two tokens on pH2O are the products
of the reaction. Now t is no longer enabled.
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pS1
td1
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•
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•
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tr2
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Figure 2.2 The SharedResource Petri net model.

Running example 2.2 In Figure 2.2 we introduce the SharedResource model which
will serve as a running example throughout this report.

The model consists of a single shared resource S and two consumers. Each
consumer can be in one of the following states: Ci (calculating locally), Wi (waiting
for resource) and Si (using shared resource). The transitions ri (request resource),
ai (acquire resource) and di (done) correspond to behaviors of the consumers. The
net is 1-bounded, therefore it has finite RS.

The Petri net model allows the verification of safety properties, e.g. we can show
that there is mutual exclusion – M(S1) +M(S2)≤ 1 for all reachable markings – or
that deadlock cannot occur.

2.1.1 Petri nets extended with inhibitor arcs

Inhibitor arcs are widely used extensions of Petri nets that can disable transitions even
when the firing rule defined in Section 2.1 is satisfied. This modification gives Petri nets
expressive power equivalent to Turing machines [24].

Definition 2.3 A Petri net with inhibitor arcs is a 3-tuple PNI = (PN, I , WI), where
• PN = (P, T, F, W, M0) is a Petri net;
• I ⊆ P × T is the set of inhibitor arcs;
• WI : I → N+ is the inhibitor arc weight function.

Let ◦ t = {p : (p, t) ∈ I} denote the set of inhibitor places of the transition t. The
enablement rule for Petri nets with inhibitor arcs can be formalized as

M [t〉 ⇐⇒ M(p)≥W (p, t) for all p ∈ • t and M(p)<WI(p, t) for all p ∈ ◦ t.
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The firing rule (2.1) remains unchanged in Petri nets with inhibitor arcs..

2.2 Continuous-time Markov chains

Continuous-time Markov chains are mathematical tools for describing the behavior of
systems in countinous time where the stochastic behavior of the system only depends
on its current state.

Definition 2.4 A Continuous-time Markov Chain (CTMC) X (t) ∈ S, t ≥ 0 over the
finite state space S = {0,1, . . . , n− 1} is a continuous-time random process with the
Markovian or memoryless property:

P(X (tk) = xk | X (tk−1) = xk−1, X (tk−2) = xk−2, . . . , X (t0) = x0)

= P(X (tk) = xk | X (tk−1) = xk−1),

where t0 ≤ t1 ≤ · · · ≤ tk and X (tk) is a random variable denoting the current state
of the CTMC at time tk. A CTMC is said to be time-homogenous if it also satisfies

P(X (tk) = xk | X (tk−1) = xk−1) = P(X (tk − tk−1) = xk | X (0) = xk−1),

i.e. it is invariant to time shifting.

In this report we will restrict our attention to time-homogenous CTMCs over finite
state spaces. The state probabilities of these stochastic processes at time t form a
finite-dimensional vector π(t) ∈ Rn,

π(t)[x] = P(X (t) = x)

that satisfies the differential equation

dπ(t)
dt

= π(t)Q (2.2)

for some square matrix Q. The matrix Q is called the infinitesimal generator matrix of
the CTMC and can be interpreted as follows:

• The diagonal elements q[x , x] < 0 describe the holding times of the CTMC. If
X (t) = x , the holding time hx = inf{h> 0 : X (t) = x , X (t + h) 6= x} spent in state
x is exponentially distributed with rate λx = −q[x , x]. If q[x , x] = 0, then no
transitions are possible from state x and it is said to be absorbing.

• The off-diagonal elements q[x , y] ≥ 0 describe the state transitions. In state x
the CTMC will jump to state y at the next state transition with probability
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0 1 2

λ1 λ2

µ2µ1

µ3

0 1 2
 !0 −λ1 λ1 0

Q = 1 µ1 −λ2 −µ1 λ2
2 µ3 µ2 −µ2 −µ3

Figure 2.3 Example CTMC with 3 states and its generator matrix.

−q[x , y]/q[x , x]. Equivalently, there is expontentially distributed countdown in
the state x for each y : q[x , y] > 0 with transition rate λx y = q[x , y]. The first
countdown to finish will trigger a state change to the corresponding state y . Thus,
the CTMC is a transition system with exponentially distributed timed transitions.

• Elements in each row of Q sum to 0, hence it satisfies Q1T = 0T.

For more algebraic properties of infinitesimal generator matrices, we refer to Plem-
mons and Berman [71] and Stewart [87].

A state y is said to be reachable from the state x (x   y) if there exists a sequence
of states

x = z1, z2, z3, . . . , zk−1, zk = y

such that q[zi , zi+1]> 0 for all i = 1,2, . . . , k−1. If y is reachable from x for all x , y ∈ S
y, the Markov chain is said to be irreducible.

The steady-state probability distribution π= limt→∞π(t) exists and is independent
from the initial distribution π(0) = π0 if and only if the finite CTMC is irreducible. The
steady-state distribution satisfies the linear equation

dπ
dt
= πQ = 0, π1T = 1. (2.3)

Example 2.3 Figure 2.3 shows a CTMC with 3 states. The transitions from state 0
to 1 and from 1 to 2 are associated with exponentially distributed countdowns with
rates λ1 and λ2 respectively, while transitions in the reverse direction have rates µ1

and µ2. The transition form state 2 to 0 is also possible with rate µ3.
The rows (corresponding to source states) and columns (destination states)

of the infinitesimal generator matrix Q are labeled with the state numbers. The
diagonal element q[1,1] is−λ2−µ1, hence the holding time in state 1 is exponentially
distributed with rate λ2+µ1. The transition from state 1 to 0 is taken with probability
−q[1,0]/q[1,1] = µ1/(λ2 +µ1), while the transition to 2 is taken with probability
λ2/(λ2 +µ1).
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The CTMC is irreducible, because every state is reachable from every other state.
Therefore, there is a unique steady-state distribution π independent from the initial
distribution π0.

2.2.1 Markov reward models

Continuous-time Markov chains may be employed in the estimation of performance
measures of models by defining rewards that associate reward rates with the states of
a CTMC. The reward rate random variable R(t) can describe performance measures
defined at a single point of time, such as resource utilization or probability of failure,
while the accumulated reward random variable Y (t) may correspond to performance
measures associated with intervals of time, such as total downtime.

Definition 2.5 A Continuous-time Markov Reward Process over a finite state space
S = {0, 1, . . . , n− 1} is a pair (X (t), r), where X (t) is a CTMC over S and r ∈ Rn is a
reward rate vector.

The element r[x] of the reward vector is a momentary reward rate in state x ,
therefore the reward rate random variable can be written as R(t) = r[X (t)]. The
accumulated reward until time t is defined by

Y (t) =

∫ t

0

R(τ)dτ.

The computation of the distribution function of Y(t) is a computationally intensive
task (a summary is available at [74, Table 1]), while its mean, EY (t), can be computed
efficiently as discussed below.

Given the initial probability distribution vector π(0) = π0 the expected value of the
reward rate at time t can be calculated as

ER(t) =
n−1
∑

i=0

π(t)[i]r[i] = π(t) rT, (2.4)

which requires the solution of the initial value problem [46, 78]

dπ(t)
dt

= π(t)Q, π(0) = π0 (2.5)

to form the inner product ER(t) = π(t) rT.
To obtain the expected steady-state reward rate (if it exists) the linear equation (2.3)

should be solved instead of eq. (2.5) in order to acquire the steady-state probability
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vector π. The computation of the reward value proceeds by eq. (2.4) in the same way
as in transient analysis.

The expected value of the accumulated reward is

EY (t) = E
�∫ t

0

R(τ)dτ

�

=

∫ t

0

E[R(τ)]dτ

=

∫ t

0

n−1
∑

i=0

π(τ)[i]r[i]dτ=
n−1
∑

i=0

∫ t

0

π(τ)[i]dτ r[i]

=

∫ t

0

π(t)dτ rT = L(t) rT,

where L(t) =
∫ t

0 π(t)dτ is the accumulated probability vector, which is the solution of
the initial value problem [78]

dL(t)
dt

= π(t),
dπ(t)

dt
= π(t)Q, L(0) = 0, π(0) = π0. (2.6)

Example 2.4 Let c0, c1 and c2 denote operating costs per unit time associated with
the states of the CTMC in Figure 2.3. Consider the Markov reward process (X (t), r)
with reward rate vector

r=
�

c0 c1 c2

�

.

The random variable R(t) describes the momentary operating cost, while Y (t) is the
total operating expenditure until time t. The steady-state expectation of R is the
average maintenance cost per unit time of the long-running system.

2.2.2 Sensitivity

Sensitivity analysis is widely used to assess the robustnes of information systems.
Consider a reward process (X (t), r) where both the infinitesimal generator matrix Q(θ)
and the reward rate vector r(θ)may depend on some parameters θ ∈ Rm. The sensitivity
analysis of the rewards R(t) may reveal performance or reliability bottlenecks of the
modeled system and help designers in achieving desired performance measures and
robustnes values.

Definition 2.6 The sensitivity of the expected reward rate ER(t) to the parame-
ter θ[i] is the partial derivative

∂ ER(t)
∂ θ[i]

.
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Considering parameters with high absolute sensitivity the model reacts to the
changes of those parameters more prominently, therefore they can be promising direc-
tions of system optimization.

To calculate the sensivity of ER(t), the partial derivative of both sides of eq. (2.4)
is taken, yielding

∂ ER(t)
∂ θ[i]

=
∂π(t)
∂ θ[i]

rT +π(t)
�

∂ r
∂ θ[i]

�T

= si(t) r
T +π(t)

�

∂ r
∂ θ[i]

�T

, (2.7)

where si is the sensitivity of π to the parameter θ[i].
In transient analysis, the sensitivity vector si is the solution of the initial value

problem

dsi(t)
dt

= si(t)Q+π(t)Vi ,
dπ(t)

dt
= πi(t)Q, si(0) = 0, π(0) = π0,

where Vi = ∂Q(θ)/∂ θ[i] is the partial derivative of the generator matrix [76]. A similar
initial value problem can be derived for the sensitivity of L(t) and Y (t).

To obtain the sensitivity si of the steady-state probability vector π, the system of
linear equations

siQ = −πVi , si1
T = 0 (2.8)

is solved [10].
Another type of sensitivity analysis considers unstructured small perturbations of

the infinitesimal generator matrix Q instead of dependecies on parameters [42, 52].
This latter, unstructured analysis may be used to study the numerical stability and
conditioning of the solutions of the Markov chain.

2.2.3 Time to first failure

Computing the first time of a system failure (provided it was fully operational when it
was started) has many applications in reliability engineering.

Let D ( S be a set of failure states of the CTMC X (t) and U = S \ D be a set of
operating states. We will assume without loss of generality that U = {0, 1, . . . , nU − 1}
and D = {nU , nU + 1, . . . , n− 1}.

The matrix

QU D =

�

QUU qT
U D

0 0

�

is the infinitesimal generator of a CTMC XU D(t) in which all the failures states D were
merged into a single state nU and all outgoing transitions from D were removed. The
matrix QUU is the nU × nU upper left submatrix of Q, while the vector qU D ∈ RnU is
defined as

qU D[x] =
∑

y∈D

q[x , y].
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If the initial distribution π0 is 0 for all failure states (i.e. π0[x] = 0 for all x ∈ D),
the Time to First Failure

TFF = inf{t ≥ 0 : X (t) ∈ D}= inf{t ≥ 0 : XU D(t) = nU}

is phase-type distributed with parameters (πU ,QUU) [69], where πU is the vector con-
taining the first nU elements of π0. In particular, the Mean Time to First Failure is
computed as follows:

MTFF = E[TFF] = −πUQ−1
UU1T. (2.9)

The probability of a D′-mode failure (D′ ∈ D) is

P(X (TFF+0) = y) = −πUQ−1
UUqT

U D′ , (2.10)

where qU D′ ∈ RnU , qU D′[x] =
∑

y∈D′ q[x , y] is the vector of transition rates from opera-
tional states to failure states D′.

2.3 Stochastic Petri nets

While reward processes based on continuous-time Markov chains allow the study
of dependability or reliability, the explicit specification of stochastic processes and
rewards is often cumbersome. More expressive formalisms include queueing networks,
stochastic process algebras such as PEPA [36, 44], Stochastic Automata Networks [39]
and Stochastic Petri Nets (SPN).

Stochastic Petri Nets extend Petri nets by assigning exponentially distributed random
delays to transitions [58]. After the delay associated with an enabled transition is
elapsed the transition fires atomically and transitions delays are reset.

Definition 2.7 A Stochastic Petri Net is a pair SPN = (PN,Λ), where PN is a Petri
net (P, T, F, W, M0) and Λ : T → R+ is a transition rate function.

Likewise, a stochastic Petri net with inhibitor arcs is a pair SPNI = (PNI ,Λ),
where PNI is a Petri net with inhibitor arcs.

A finite CTMC can be associated with a bounded stochastic Petri net (with inhibitor
arcs) as follows:

1. The reachable state space of the Petri net is explored. We associate consecutive
natural numbers with the states such that the state space is

RS = {M0, M1, M2, . . . , Mn−1},

where M0 is the initial marking. From now on, we will use markings Mx ∈ RS and
natural numbers x ∈ {0, 1, . . . , n− 1} to refer to states (in CTMC terminology)
and markings (in SPN terminology) of the model interchangably.
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pW1
ta1

pS1
td1

•

pC1
tr1

•

pW2
ta2

pS2
td2

•

pC2
tr2

pS

1.0 0.5 1
θ[0] = 1.6

1.0 1.1
1
θ[1] = 0.8

Figure 2.4 Example stochastic Petri net for the SharedResource model.

2. We define a CTMC X (t) over the finite state space

S = {0,1, 2, . . . , n− 1}.

The initial distribution vector will be set to

π(0) = π0 =
�

1 0 0 · · · 0
�

in the analysis step (π0[x] = δ0,x).

3. The generator matrix Q ∈ Rn×n encodes the possible state transitions of the Petri
net and the associated transition rate Λ( · ) as

qO[x , y] =
∑

t∈T
Mx [t〉My

Λ(t) if x 6= y, (2.11)

qO[x , x] = 0,

Q =QO − diag{QO1T},

where the summation is done over all transition from the marking Mx to My ,
while QO and QD = −diag{QO1T} are the off-diagonal and diagonal parts of Q,
respectively.

Running example 2.5 Figure 2.4 shows the SPN model for SharedResouce, which
is the Petri net from Figure 2.2 on page 6 extended with exponential transition rates.

The transitions a1, d1, a2 and d2 have rates 1.0, 0.5, 1.0 and 1.1, respectively.
The vector θ= (0.625, 1.25) ∈ R2 of model parameters is introduced such that the
transitions r1 and r2 have rates 1/θ[0] and 1/θ[1].



2.3. Stochastic Petri nets 14

RS =































































P: S C1 W1 S1 C2 W2 S2

M0 1 1 0 0 1 0 0 initial
M1 1 0 1 0 1 0 0 client 1 waiting
M2 1 1 0 0 0 1 0 client 2 waiting
M3 1 0 1 0 0 1 0 1 waiting, 2 waiting
M4 0 0 0 1 1 0 0 client 1 shared working
M5 0 0 0 1 0 1 0 1 shared working, 2 waiting
M6 0 1 0 0 0 0 1 client 2 shared working
M7 0 0 1 0 0 0 1 1 waiting, 2 shared working































































Table 2.1 Reachable state space of the SharedResource model.

M0 M1 M4

M2 M3 M5

M6 M7

1
θ[0] 1

0.5

1
θ[1]

1
θ[1]

1
θ[1]

1
θ[0] 1

0.5

1 1
1
θ[0]

1.1 1.1

Figure 2.5 The CTMC associated with the SharedResource SPN model.

The reachable state space (Table 2.1) contains 8 markings which are mapped to
the integers S = {0, 1, . . . , 7}. The state graph along with the transition rates of the
CTMC is shown in Figure 2.5. The generator matrix is (also depicting state indices):

Q =

0 1 2 3 4 5 6 7
















































0 ∗ 1
θ[0]

1
θ[1] 0 0 0 0 0

1 0 ∗ 0 1
θ[1] 1 0 0 0

2 0 0 ∗ 1
θ[0] 0 0 1 0

3 0 0 0 ∗ 0 1 0 1
4 0.5 0 0 0 ∗ 1

θ[1] 0 0
5 0 0 0.5 0 0 ∗ 0 0
6 1.1 0 0 0 0 0 ∗ 1

θ[0]
7 0 1.1 0 0 0 0 0 ∗

,
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where in each row the diagonal element is the negative of the sum of the other
elemens so that Q1T = 0T. The CTMC is irreducible, therefore it has a well-defined
steady-state distribution.

Extensions of stochastic Petri nets include transitions with general or phase-type
delay distributions [57, 59], Generalized Stochastic Petri Nets (GSPN) with immediate
transitions [60, 88] and Deterministic Stochastic Petri Nets (DSPN) with deterministic
firing delays [80]. Among these, only phase-type distributed delays and GSPNs can
be handled with purely Markovian analysis. Stochastic Well-formed Nets (SWN) are a
class of colored Petri nets especially amenable to stochastic analysis [23]. Stochastic
Activity Networks (SAN) also allow colored places, moreover, they introduce input and
output gates for more flexible modeling [51].

2.3.1 Stochastic reward nets

The stochastic reward net formalism is an extension of stochastic Petri nets that allows
the definition of performance measures on the net level for use in the stochastic analysis
workflow.

Definition 2.8 A Stochastic Reward Net is a triple SRN = (SPN, rr, ir), where SPN is
a stochastic Petri net, rr : NP → R is a rate reward function and ir : T ×NP → R is
an impulse reward function. A stochastic Reward net with inhibitor arcs is a triple
SRNI = (SPNI , rr, ir), where SPNI is a stochastic Petri net with inhibitor arcs.

The rate reward rr(M) is the reward gained per unit time in marking M , while
ir(t, M) is the reward gained when the transition t fires in marking M .

If ir(t, M)≡ 0, the SRN is equivalent to the Markov reward process (X (t), r), where
X (t) is the CTMC associated with the stochastic Petri net and

r ∈ Rn, r[x] = rr(Mx).

If there are impulse rewards, exact calculation of the expected reward rate ER(t)
and expected accumulated reward EY (t) can be performed on reward process (X , r),

r[x] = rr(Mx) +
∑

t∈T,Mx [t〉

Λ(t) ir(t, Mx),

where the summation is taken over all enabled transitions [29]. In general, the distri-
bution of the accumulated reward Y (t) cannot be derived by this method [75].
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Running example 2.6 The SRN model

rr1(M) = M(pS1
) +M(pS2

), ir1(t, M)≡ 0 (2.12)

describes the utilization of the shared resouce in the SharedResouce SPN (Figure 2.4
on page 13). R1(t) = 1 if the resource is allocated, hence ER1(t) is the probability
that the resource is in use at time t, while Y (t) is the total usage time until t.

Another reward structure

rr2(M)≡ 0, ir2(t, M) =

¨

1 if t ∈ {tr1
, tr2
},

0 otherwise
(2.13)

counts the completed calculations, which are modeled by tokens leaving the places
C1 and C2. The exprected steady-state reward rate limt→∞ER(t) equals the number
of calculations per unit time in a long-running system, while Y (t) is the number of
calculations performed until time t.

The reward vectors associated with these SRNs are

0 1 2 3 4 5 6 7
� �

r1 = 0 0 0 0 1 1 1 1 ,
� �

r2 =
1
θ[0] +

1
θ[1]

1
θ[1]

1
θ[0] 0 1

θ[1] 0 1
θ[0] 0 .

2.3.2 Superposed stochastic Petri nets

In this section we define the base formalism of the decomposition algorithm introduced
in Chapter 4.

Definition 2.9 A Superposed Stochastic Petri Net (SSPN) is a pair SSPN = (SPN,P),
where P = {P(0), P(1), . . . , P(J−1)} is the partitioning of the set of places and P =
P(0) ∪ P(1) ∪ · · · ∪ P(J−1) [35]. Superposed stochastic Petri nets with inhibitor arcs
SSPNI = (SPNI ,P) are defined analogously.

The jth local net LN( j) = ((P( j), T ( j) = T ( j)L ∪ T ( j)S , F ( j), W ( j), M ( j)0 ),Λ
( j)) can be con-

structed as follows:

• P( j) is the corresponding set from the partitioning of the original net.

• T ( j) contains the local transition T ( j)L and synchronization transitions T ( j)S .



2.3. Stochastic Petri nets 17

P(2)
P(1)

P(0)

pW1
ta1

pS1
td1

•

pC1
tr1

•

pW2
ta2

pS2
td2

•

pC2
tr2

pS

Figure 2.6 A partitioning of the SharedResource Petri net.

A transition is local to LN( j) if it only affects places in P( j), that is,

T ( j)L = {t ∈ T : • t ∪ t• ⊆ P( j)}. (2.14)

No transition may be local to more than one local net.

A transition synchronizes with LN( j) if it affects some places in P( j) but it is not
local to LN( j),

T ( j)S = {t ∈ T : (• t ∪ t•)∩ P( j) 6= ;} \ T ( j)L . (2.15)

• The relation F ( j) and the functions W ( j), M ( j)0 , Λ( j) are the appropriate restrictions
of the original structures, F ( j) = F ∩ ((P( j) × T ( j))∪ (T ( j) × J ( j))), W ( j) =W |F ( j) ,
M ( j)0 = M0|P( j) , Λ( j) = M0|T ( j) .

If there are inhibitor arcs in SSPNI , inhibitor arcs must be considered when a
local net LN( j)I is constructed. The set • t ∪ t• is replaced with • t ∪ t• ∪ ◦ t in eqs. (2.14)
and (2.15) so that the enabling of local transitions only depends on the marking of places
in P( j) and only places in P( j) may be affected upon firing. In addition, the inhibitor
arc relation and weight function are restricted as I ( j) = I ∩ (P( j) ∩ T ( j)), W ( j)

I =WI |I ( j) .
The set of all synchronization transitions is denoted as TS =

⋃J−1
j=0 T ( j)S . The support

of the transition t ∈ T is the set of components it is adjacent to, supp t = { j : t ∈ T ( j)}.

Running example 2.7 Figure 2.6 shows a possible partitioning of the Shared-
Resource SPN into a SSPN. The components P(0) and P(1) model the two consumers,
while P(2) contains the unallocated resource S.

The transitions r1 and r2 are local to LN(0) and LN(1), respectively, while a1, d1,
a2 and d2 synchronize LN(2) and the local net associated with their consumers.
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RS(0) =























P: C1 W1 S1

M (0)
0 1 0 0

M (0)
1 0 1 0

M (0)
2 0 0 1























,

RS(1) =























P: C2 W2 S2

M (1)
0 1 0 0

M (1)
1 0 1 0

M (1)
2 0 0 1























, RS(2) =















P: S

M (2)
0 1

M (2)
1 0















Table 2.2 Local reachable markings of the SharedResouce SSPN from Figure 2.6.

The local reachable state space RS( j) of LN( j) is the the set of markings beloning to
the state space RS of the original net restricted to the places P( j) (duplicates removed),

RS( j) = {M ( j) : M ∈ RS, M ( j) = M |P( j)}.

This is a subset of the reachable state space of LN( j), in particular, RS( j) is always finite
if RS is finite, even if LN( j) is not bounded. Analysis techniques for generating local
state spaces include partial P-invariants [19] and explicit projection of global reachable
markings [14].

The potential state space PS of an SSPN is the Cartesian product of the local reachable
state spaces of its components

PS = RS(0) × RS(1) × · · · × RS(J−1),

which is a (possibly not proper) superset of the global reachable state space RS.
We will associate the natural numbers S( j) = {0, 1, . . . , n j−1}with the local reachable

markings RS( j) = {M0, M1, . . . , Mn j−1} to aid the construction of Markov chains and use
them interchangably. The notation

M = x= (x (0), x (1), . . . , x (J−1)) (2.16)

refers to the global state x composed from the local markings x ( j), i.e. the marking

M(p) = M ( j)
x ( j)
(p), if p ∈ P( j),

which is the union of the local markings M (0)
x (0)

, M (1)
x (1)

, . . . , M (J−1)
x (J−1) .
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Running example 2.8 The local reachable markings of the SharedResource SSPN
are enumerated in Table 2.2.

The transitions d1 and d2 are always enabled in LN(2) because all their input
places are located in other components, thus LN(2) is an unbounded Petri net. Despite
this, RS(2) is finite, because it only contains the local markings which are reachable
in the original net.

The potential state space PS contains 3 · 3 · 2= 18 potential markings, although
only 8 are reachable (Table 2.1 on page 14). For example, the marking (2,2, 0) is
not reachable, as it would violate mutual exclusion.

2.4 Kronecker algebra

Kronecker algebra defines the building blocks of the decomposition algorithm being
introduced in Chapter 4.

Definition 2.10 The Kronecker product of matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 is
the matrix C = A⊗ B ∈ Rn1n2×m1m3 , where

c[i1n1 + i2, j1m1 + j2] = a[i1, j1]b[i2, j2].

Some properties of the Kroncker product are

1. Associativity:
A⊗ (B ⊗ C) = (A⊗ B)⊗ C ,

which makes Kronecker products of the form A(0)⊗A(1)⊗ · · ·⊗A(J−1) well-defined.

2. Distributivity over matrix addition:

(A+ B)⊗ (C + D) = A⊗ C + B ⊗ C + A⊗ D+ B ⊗ D,

3. Compatibility with ordinary matrix multiplication:

(AB)⊗ (C D) = (A⊗ C)(B ⊗ D),

in particular,

A⊗ B = (A⊗ I2)(I1 ⊗ B)

for identity matrices I1 and I2 with appropriate dimensions.
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We will occasionally employ multi-index notation to refer to elements of Kronecker
product matrices. For example, we will write

b[x,y] = b[(x (0), x (1), . . . , x (J−1)), (y(0), y(1), . . . , y(J−1))] =

a(0)[x (0), y(0)]a(1)[x (1), y(1)] · · · a(J−1)[x (J−1), y(J−1)],

where x = (x (0), x (1), . . . , x (J−1)), y = (y(0), y(1), . . . , y(J−1)) and B is the J-way Kro-
necker product A(0) ⊗ A(1) ⊗ · · · ⊗ A(J−1).

Definition 2.11 The Kronecker sum of matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 is the
matrix C = A⊕ B ∈ Rn1n2×m1m3 , where

C = A⊗ I2 + I1 ⊗ B,

where I1 ∈ Rn1×m1 and I2 ∈ Rn2×m2 are identity matrices.

Example 2.9 Consider the matrices

A=

�

1 2
3 4

�

, B =

�

0 1
2 0

�

.

Their Kronecker product is

A⊗ B =









1 · 0 1 · 1 2 · 0 2 · 1
1 · 2 1 · 0 2 · 2 2 · 0
3 · 0 3 · 1 4 · 0 4 · 1
3 · 2 3 · 0 4 · 2 4 · 0









=









0 1 0 2
2 0 4 0
0 3 0 4
6 0 8 0









,

while their Kronecker sum is

A⊕ B =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









+









0 1 0 0
2 0 0 0
0 0 0 1
0 0 2 0









=









1 1 2 0
2 1 0 2
3 0 4 1
0 3 2 4









.
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Chapter 3

Overview of the approach

3.1 General workflow

The tasks performed by stochastic analysis tools that operate on higher level formalisms
can be often structured as follows (Figure 3.1):

1. State space exploration. The reachable state space of the higher level model,
for example stochastic automata network or stochastic Petri net is explored to
enumerate the possible behaviors of the model S. If the model is hierarchically
partitioned, this step includes the exploration of the local state spaces of the
component as well as the possible global combinations of states.

If the set of reachable states is infinite, only special algorithms, e.g. matrix geo-
metric methods [50] may be employed later in the workflow. In this work, we
restrict our attention to finite cases.

2. Descriptor generation. The infinitesimal generator matrix Q of the Markov chain
X (t) defined over S is built. If the analyzed formalism is a Markov chain, Q
is readily given. Otherwise, this matrix contains the transition rates between
reachable states, which are obtained by evaluating rate expressions given in the
model.

3. Numerical solution. Numerical algorithms are ran on the matrix Q for steady-state
solutions π, transient solutions π(t), L(t) or MTFF measures.

State space
exploration

Descriptor
generation

Numerical
solution

Reward
calculation

Figure 3.1 The general stochastic analysis workflow.
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4. Reward calculations. The studied performance measures are calculated from the
output of the previous step. This includes calculation of steady-state and transient
rewards and sensitivities of the rewards. Additional algebraic manipulations (for
example, the calculation of the ratio of an instantenous and accumulated reward)
may be provided to the modeler for convenience.

In stochastic model checking, where the desired system behaviors are expressed
in stochastic temporal logics [2, 9], these analytic steps are called as subrouties to
evaluate propositions. In the sythesis and optimization of stochastic models [22], the
workflow is executed as part of the fitness functions.

3.1.1 Challenges

The implementation of the stochastic analysis workflow poses several challenges.
Handling of large models is difficult due to the phenomenon of “state space explo-

sion”. As the size of the model grows, including the number of components, the number
of reachable spaces can grow exponentially.

Methods such as the saturation algorithm [27] were developed to efficiently explore
and represent large state spaces. However, in stochastic analysis, the generator matrix
Q and several vectors of real numbers with lengths equal to the state space size must be
stored in addition to the state space. This neccessitates the use of further decomposition
techniques for data storage.

The convergence of the numerical methods depends on the structure of the model
and the applied matrix decomposition. In addition, the memory requirements of the
algorithms may constrain the methods that can be employed. As various numerical
algorithms for stochastic analysis tasks are known with different characteristics, it is
important to allow the modeler to select the algorithm suitable for the properties of the
model, as well as the decomposition method and hardware environment.

The vector operations and vector-matrix products that are preformed by the numer-
ical algorithms can also be performed in multiple ways. For example, multiplications
with matrices can be implemented either sequentially or in parallel. Large matrices
benefit from parallelization, while for small matrices managing multiple tasks yields
overhead. Distributed or GPU impelemtations are also possible, albeit they are missing
from the current version of our framework.

3.2 Our workflow

Our implementation of the general stochastic analysis workflow is illustrated in Fig-
ure 3.2.
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Stochastic
Petri Net

State space
exploration

Generator
construction

Data
structure

SSPN
partition

Numerical
algorithms

Reward
calculation

Reward
config.

Sensitivity
parameters

Configurable operations

Figure 3.2 Configurable stochastic analysis workflow.

Table 3.1 Linear equation solvers supported by our framework.

memory parallel uses inner block
see usage impl. solver matrix

LU decomposition p. 49 very high – – –

Power method p. 52 moderate Ø – Ø
Jacobi over-relaxation p. 53 moderate Ø – Ø
Gauss–Seidel over-relaxation p. 53 very low – – Ø
BiCGSTAB p. 57 high Ø – Ø
Group Jacobi p. 55 moderate Ø Ø required

Group Gauss–Seidel p. 55 low – Ø required

The workflow is fully configurable, which means that the modeler may combine
the available algorithms for the analysis steps arbitrarily. This is achieved by a layered
architecture as shown in Figure 3.3.

• Themodel state spacemay be explored either by an explicit state space traversal, or
by symbolic saturation [27]. As symbolic methods are usually much faster and use
significantly less memory than explicit enumeration, they are the recommended
approach for stochastic analysis. However the explicit algorithms are not sensitive
to the structure of the model, they provide a robust solution as long as the state
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State space exploration

State space storage

Matrix representation

Steady-state solution algorithms Transient solution algorithms

Engineering measure calculation

Explicit Symbolic

Explicit MDD / EDD

Dense
matrix

Sparse
matrix

Block
Kronecker

LU decom-
position

Power
method Jacobi

Gauss–
Seidel

Group
Jacobi

Group G–S

BiCGSTAB

Unifor-
mization

TR-BDF2

Accumulated
reward

Reward rate Sensitivity MTFF

Figure 3.3 Architecture of the configurable stochastic analysis framework.
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Table 3.2 Transient solvers supported by our framework.

instantenous accumulated uses inner block
see distribution distribution solver matrix

Uniformization p. 58 Ø Ø – Ø
TR-BDF2 p. 59 Ø not impl. Ø not impl.

space fits into memory. In addition they are provided for benchmarking and
software redundancy reasons too.

The algorithms operating on a superposed SPN receive the model and a decom-
position as an input. Partitions needed for the decomposition may be provided by
the user as part of the model or generated on the fly.

• The generator matrix may be stored in sparse matrix representation or decom-
posed into block Kronecker form [19]. The matrix can be build from both explicitly
or symbolically stored state spaces.

To facilitate block Kronecker matrix generation, we propose a purely symbolic
algorithm. The developed solution avoids any overheads of explicit state space
operations.

• The resulting matrices, in a possibly decomposed form, are part of a special-
ized data structure. Extremely large matrices may be stored with the developed
decomposition algorithms (e.g. linear combinations, Kronecker products, con-
tatenations into block structures). The data structure defines generic vector and
matrix operations, as well as more specific manipulations performed by stochastic
analysis algorithms.

State space exploration and generator matrix decomposition methods are pre-
sented in Chapter 4, including our theoretical and algorithmic contribution for
block Kronecker decomposition.

• The execution of the operations on the data structures can be set at runtime. This
allows the use of different implementations at the different stages of the workflow,
or when different algorithms are employed to calculate multiple performance
measures. Whenever possible, both sequential and parallel implementations of
the most common operations are available for the supported datatypes.

• Several numerical algorithms are provided for steady-state and transient analysis
of Markov chains. The user can select the algorithm most suitable for the model
under study. The algorithm library supports the combination of the algorithms
and data structures at different levels of computations. This allows us to fine
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tune the numerical solution and solve every component with the most suitable
algorithm.

Important considerations in solver selection are convergence properties and
memory requirements. Matrix decompositions can reduce the storage space
needed by the matrix Q by orders of magnitudes. We store all elements of
probability vectors explicitly. Therefore, one should pay close attention to the
number of temporary vectors used in the algorithm in order to avoid excessive
memory consumption.

Numerical algorithms supported by our framework are discussed in Chapter 5.
Linear equations solvers for steady-state CTMC analysis are shown in Table 3.1,
while linear solver are shown in Table 3.2.

3.2.1 Formalisms

Our stochastic analysis framework supports models in the Stochastic Petri Net with
inhibitor arcs formalism (see Definition 2.7 on page 12). Structured models are han-
dled as Superposed Stochastic Petri Nets (see Definition 2.9 on page 16). However,
any modeling formalism can be processed by integrating the appropriate state space
exploration algorithms with the workflow.

Transition rates in the SPNs can be arbitrary algebraic expressions containing
references to sensitivity variables. These variables correspond to the parameter vector θ
of the Markov chain sensitivity analysis. However, the rate expression may not depend
on the marking of the net.

Reward structures are defined as Stochastic Reward Nets (see Definition 2.8 on
page 15). An SRN reward structure may be specified by composing any reward expres-
sions of the forms

1. (p, w), where p ∈ P is a place and w is a reward weight expression. This reward
expression is equivalent to a rate reward rr(M) = M(p) ·w, i.e. the value of w is
multiplied by the numer of tokens on p.

2. (t, w), where t ∈ T is a transition and w is a reward weight expression. This is
equivalent to an impulse reward ir(t, M) = w gained upon the firing of t.

3. ϕ → w, where ϕ is a Computational Tree Logic (CTL) expression and w is a
reward weight expression. This is equivalent to the rate reward rr(M) = w if ϕ
holds in M , 0 otherwise.

A reward weight expression is an algebraic expression that may refer to places
and transition rates in the net. Refrences to places are replaced by the number of
tokens upon evaluation. For example, the reward expression (p, w) may be written as
true→ p ·w or p > 0→ p ·w using CTL.
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Reward expressions with CTL are only allowed when symbolic state spaces repre-
sentation is used, as CTL evaluation1 is performed symbolically [32].

Running example 3.1 Consider the reward structures defined over the Shared-
Resource Petri net from Running example 2.6 on page 16.

The utilization of the shared resource can be described by the reward expression

resourceUtilization= {(pS1
, 1), (pS2

, 1)},

which is equivalent to the SRN reward structure

rr1(M) = M(pS1
) +M(pS2

), ir1(t, M)≡ 0. (2.12 revisited)

This can be also written as

resourceUtilization= {pS1
> 0∨ pS2

> 0→ 1}

using CTL, because the places S1 and S2 are 1-bounded in the SharedResource model.
Completed calculations are described by

completedCalculations= {(ts1
, 1), (tr2

, 1)},

which is equivalent to the reward structure

rr2(M)≡ 0, ir2(t, M) =

¨

1 if t ∈ {tr1
, tr2
},

0 otherwise.
(2.13 revisited)

3.2.2 Analysis

The framework introducted in this paper supports the configurable stochastic analysis
of the following problems:

• expected steady-state reward rates ER for any reward structure defined by reward
expressions,

• expected transient reward rates ER(t) and accumulated rewards EY (t),
• complex rewards, which are algebraic expressions of mean reward rates and

accumulated rewards (e.g 1+ER(t)/EY (t)),
• sensitivity of mean steady-state reward rates and complex rewards involving

steady-state rates,

1The symbolic state space exploration and CTL evaluation component is currently provided by the
PetriDotNet [38] tool.
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• mean-time to failure MTFF and associated failure mode probabilities.

Configurable stochastic analysis provides the combination of multiple solver and repre-
sentation algorithms for the efficient computation of the introduced properties.

3.2.3 Reward and sensitivity computation

Transition and reward rates are stored as algebraic expression trees in the input SPN
models. Symbolic operations, such as partial differentiation may be performed exactly
on the trees using algebraic laws, as the evaluation of the expressions can be delayed.

In reward and MTFF calculations, rate expressions are evaluated by replacing
sensitivity parameters with their values before the matrix Q is composed. Thus, the
elements of a matrix are not expression trees, but floating point numbers and matrix
generation has to be performed only when sensitivity parameters are changed.

Reward weight expressions may refer to the token counts on places, therefore they
must be evaluated for every marking individually. If a CTL reward expression ϕ→ w is
used, evaluation is skipped in markings where ϕ is false.

Steady-state sensitivity calculation, shown in Figure 3.4, is the most complicated
post-processing in the workflow. Partial derivatives of the transition rate expressions
and reward weight expressions are taken to calculate ∂ ER/∂ θ[i] using eqs. (2.7)
and (2.8).
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Figure 3.4 Reward and sensitivity calculation from expression tree inputs.
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Chapter 4

E�cient generation and storage of
continuous-time Markov chains

4.1 Explicit methods

4.1.1 Explicit state space and matrix construction

Explicit state space enumeration for Petri nets repeatedly applies the firing rule eq. (2.1)
on page 5 starting from the initial marking M0 until no new marking can be generated.
At the end of the enumeration of the finite state space, all reachable markings M0  M
are discovered. We implemented detection of already encountered markings by hashing,
while new markings are generated by breath-first search.

Given the finite state space of size n= |RS| in an explicit form along with a bijection
between the markings an the natural numbers {0,1, . . . , n− 1}, the generator matrix Q
can be directly created by Algorithm 4.1. The algorithm stores the transition rate Λ(t)
in Q for all pairs of reachable markings Mx [t〉My and transitions t ∈ T .

The generator matrix requires O(n2) memory if a two-dimensional dense array
format is used. Because firing a transition can only take the Petri net from a given
marking Mx to a single target marking My in the SPN formalism, each column of Q
may contain up to |T | nonzero elements. Hence Q requires O(|T |n) memory if a sparse
format is chosen.

Unfortunately, both of these storage methods may be prohibitively costly for large
models due to state space explosion. In addition, explicit enumeration of large RS may
take an extreme amout of time.
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Algorithm 4.1 Generator matrix construction from explicit state space.
Input: explicit state space RS, transitions T , transition rate function Λ
Output: generator matrix Q

1 allocate QO ∈ R|RS|×|RS|,d ∈ R|RS|

2 foreach y ∈ RS, t ∈ R do
3 if there is a state x ∈ RS such that Mx [t〉My then
4 qD[x , y]← qD[x , y] +Λ(t)

5 d←−QO1T

6 return QO + diag{d}

4.1.2 Block Kronecker generator matrices

Kronecker generator matrices

To alleviate the high memory requirements of Q, the Kronecker decomposition for a
superposed SPN with J components expresses the infinitesimal generator matrix of the
associated CTMC in the form

Q =QO +QD, QO =
J−1
⊕

j=0

Q( j)L +
∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q( j)t , QD = −diag{QO1T}, (4.1)

where QO and QD are the off-diagonal and diagonal parts of Q. The matrix

Q( j)L =
∑

t∈T ( j)L

Λ(t)Q( j)L

is the local transition matrix of the component j, while the matrix

Q( j)t ∈ R
n j×n j , q( j)t [x

( j), y( j)] =

¨

1 if x ( j) [t〉 y( j),

0 otherwise

describes the effects of the transition t on LN( j). Q( j)t has a nonzero element for every
local state transition caused by t. If j /∈ supp t, Q( j)t is an n j × n j identity matrix.

It can be seen that

qO[x,y] =
J−1
∑

j=0

∑

t∈T ( j)L

Λ(t)q( j)t [x
( j), y( j)] +

∑

t∈TS

Λ(t)
J−1
∏

j=0

q( j)t [x
( j), y( j)]

=
J−1
∑

j=0

∑

t∈T ( j)L

x ( j)[t〉y( j)

Λ(t) +
∑

∈TS ,x[t〉y

Λ(t) =
∑

t∈T,x[t〉y

Λ(t), (4.2)
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which is the same as eq. (2.11) on page 13. Indeed, eq. (4.1) is a representation of the
infinitesimal generator matrix.

The matrices Q( j)L and Q( j)t and the vector −QO1T together are usually much smaller
than the full generator matrix Q even when stored in a sparse matrix form. Hence
Kronecker decomposition may save a significant amount of storage at the expense of
some computation time.

Unfortunately, the Kronecker generator Q is a n0n1 · · ·nJ−1 × n0n1 · · ·nJ−1 matrix,
i.e. in encodes the state transitions in the potential state space PS instead of the
reachable state space RS.

Potential Kronecker methods [17] perform computations with the |PS|×|PS|Q matrix
and vectors of length |PS|. In addition to increasing storage requirements, this may
lead to problems in some numerical solution algorithms, because the CTMC over PS is
not neccessarily irreducible even if it is irreducible over RS.

In contrast, actual Kronecker methods [8, 17, 54] work with vectors of length
|RS|. However, additional conversions must be performed between the actual dense
indexing of the vectors and the potential sparse indexing of the Q matrix, which leads
to implementation complexities and computational overhead.

A third approach, which we discuss in the next subsection, imposes a hierarchical
structure on RS [6, 14, 19].

Macro state construction

The hierarchical structure of the reachable state space expresses RS as

RS =
⋃

x̃∈ÝRS

J−1
∏

j=0

RS( j)
x̃ ( j)

, RS( j) =
⋃

x̃ ( j)∈ÝRS
( j)

RS( j)
x̃ ( j)

,

whereÝRS = {0̃, 1̃1, . . . ,àñ− 1} a set of global macro states,ÝRS
( j)
= {0̃( j), 1̃( j), . . . ,âñ j − 1

( j)
}

is the set of local macro states of LN( j), and RS( j)x = {0
( j)
x , 1( j)x , . . . , (n j,x−1)( j)x } are the local

micro states in the local macro state x̃ ( j). The product symbol denotes the composition
of local markings, as in eq. (2.16) on page 18.

The local micro states form a partition RS( j) =
⋃

x∈fRS
( j) RS( j)x of the state space of

the jth SSPN component.
Construction of macro states is performed as follows [14]:

1. The equivalence relation ∼( j) is defined over RS( j) as

x ( j)∼( j) y( j) ⇐⇒ {ẑ( j) : x ∈ RS, z( j) = x ( j)}= {ẑ( j) : x ∈ RS, z( j) = y( j)},
(4.3)

where ẑ( j) = (z(0), . . . , z( j−1), z( j+1), . . . , z(J−1)), i.e. two local states are equivalent
if they are reachable in the same combinations of local markings of the other
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components. Therefore, the relation

x∼ y ⇐⇒ x ( j)∼( j) y( j) for all j = 0,1, . . . , J − 1,

defined over PS, has the property that whether x ∼ y, either both x and y are
reachable (global) markings, or neither are.

2. Reachable local macro states are the partitions of RS( j) generated by ∼( j). A

bijectionÝRS
( j)
↔ RS( j)/∼( j) is formed between the integers 0, 1, . . . , ñ( j) − 1 and

the local state partitions for each component LN( j).

3. The set of potential macro states is

fPS =
J−1
∏

j=0

ÝRS
( j)
⊇ÝRS

the Cartesian product of the local macro states. If macro state x̃ ∈ fPS contains
a reachable state, all associated (micro) states are reachable, because fPS is the
partition RS/∼ of RS generated by the relation ∼. Thus, ÝRS is constructed by
enumerating the reachable macro states in fPS. A bijection is formed between the
reachable subset of fPS and the integers 0̃, 1̃, . . . ,àñ− 1.

The pseudocode for this process is shown in Algorithm 4.2. The decomposition is
extremely memory demanding due to the allocation of the bit vector b of length |PS|.

In [14], sorting the columns of B lexicographically was recommended to calculate
the equality partition of the columns of B. In our implementation, we insert the rows
of B into a bitwise trie and detect duplicates instead, so that no mapping between the
original order and sorted ordering of columns needs to be maintained.

Running example 4.1 The macro states of the RunningExample SSPN model (Fig-
ure 2.6 on page 17) are obtained from its component state space (Table 2.2 on
page 18) as follows:

1. The bit vector b is filled according to the reachable states RS,

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
� �

b= 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 ,

where the mixed indices in small type refer to the states of the local nets LN(0),
LN(1) and LN(2).
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Algorithm 4.2 Hiearchical decomposition of the reachable state space into
macro states by Buchholz [14].

Input: Reachable state space RS, reachable local state spaces RS( j)

Output: Macro state space fRS, local macro state spacesÝRS
( j)

1 allocate bit vector b ∈ {0,1}n0n1···nJ−1 initialized with zeroes
2 foreach x ∈ RS do
3 // Fill b with ones corresponding to reachable states
4 b[nJ−1nJ−2 · · ·n1 x (0) + nJ−1nJ−2 · · ·n2 x (1) + · · ·+ nJ−1 x (J−2) + x (J−1)]← 1

5 for j← 0 to J − 1 do
6 Reshape b into matrix B with n j columns
7 Partition the columns of B by componentwise equality
8 foreach subset S of the equality partition of the columns of B do

9 Create a new local macro state ỹ( j) inÝRS
( j)

10 Assign all local micro states z ∈ S to ỹ( j)

11 Drop all columns of B corresponding to S but a single representant of ỹ( j)

12 foreach x̃ ∈ RS(0) × RS(1) × · · · × RS(J−1) do
13 if b[x̃] = 1 then Add x̃ toÝRS as a global macro state

14 returnÝRS,
�

ÝRS
( j)	J−1

j=0

2. We reshape b into a matrix B so that each column corresponds to a local state
of the component LN(0),

0 1 2




























B =

0 0 1 1 0
0 1 0 0 1
1 0 1 1 0
1 1 0 0 1
2 0 0 0 0
2 1 1 1 0

in order to conclude that

ÝRS
(0)
0 = {0(0)0 = M (0)0 , 1(0)0 = M (0)1 }, ÝRS

(0)
1 = {0(0)1 = M (0)2 }.

3. After removing all local states of LN(0) except representants of ÝRS
(0)
, b is
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reshaped again
0 1 2












B =

0̃ 0 1 1 0
0̃ 1 0 0 1
1̃ 0 0 0 0
1̃ 1 1 1 0

to find that

ÝRS
(1)
0 = {0(1)0 = M (1)0 , 1(1)0 = M (1)1 }, ÝRS

(0)
1 = {0(1)1 = M (1)2 }.

4. Finally, we reshape
0 1












B =

0̃ 0̃ 1 0
0̃ 1̃ 0 1
1̃ 0̃ 0 1
1̃ 1̃ 0 0

and conclude

ÝRS
(2)
0 = {0(2)0 = M (2)0 }, ÝRS

(2)
1 = {0(2)1 = M (2)1 }.

5. Unfolding the matrix B

0̃ 0̃ 0̃ 0̃ 1̃ 1̃ 1̃ 1̃
0̃ 0̃ 1̃ 1̃ 0̃ 0̃ 1̃ 1̃
0̃ 1̃ 0̃ 1̃ 0̃ 1̃ 0̃ 1̃
� �

b= 1 0 0 1 0 1 0 0

shows that the reachable global macro states are

ÝRS = {0̃= (0̃(0), 0̃(1), 0̃(2)), 1̃= (0̃(0), 1̃(1), 1̃(2)), 2̃= (1̃(0), 0̃(1), 1̃(2))},

where 0̃ corresponds to the free state of the resource, while in 1̃ and 2̃, the
clients LN(1) and LN(0) are using the resource, respectively.

Block kronecker matrix composition

The hierarchical or block Kronecker form of Q expresses the infinitesimal generator of
the CTMC over the reachable state space by the means of macro state decomposition.

The matrices Q( j)t [ x̃
( j), x̃ ( j)] and Q( j)L [ x̃

( j), x̃ ( j)] ∈ Rn j,x×nn,y describe the effects of a
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single transition t ∈ T and the aggregated effects of local transitions on LN( j) as its
state changes from the local macro state x̃ ( j) to ỹ( j), respectively. Formally,

q( j)t [ x̃
( j), ỹ( j)][a( j)x , b( j)y ] =

¨

1 if a( j)x [t〉 b( j)y ,

0 otherwise,
(4.4)

Q( j)L [ x̃
( j), ỹ( j)] =

∑

t∈T ( j)L

Λ(t)Q( j)t [ x̃
( j), ỹ( j)]. (4.5)

In the case j /∈ supp t, we define Q( j)t [ x̃
( j), ỹ( j)] as an identity matrix if x̃ ( j) = ỹ( j) and a

zero matrix otherwise.
Let us call macro state pairs (x̃, ỹ) single local macro state transitions (slmst.) at h if

x̃ and ỹ differ only in a single index h ( x̃ (h) 6= ỹ( j)).
The off-diagonal part QO of Q is written as a block matrix with ñ× ñ blocks. A single

block is expressed as

QO[x̃, ỹ] =











































































J−1
⊕

j=0

Q( j)L [ x̃
( j), x̃ ( j)]

+
∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q( j)t [ x̃
( j), x̃ ( j)]

if x̃= ỹ,

IN1×N1
⊗Q(h)L [ x̃

(h), x̃ (h)]⊗ IN12×N2

+
∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q( j)t [ x̃
( j), x̃ ( j)]

if (x̃, ỹ) slmst. at h,

∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q( j)t [ x̃
( j), x̃ ( j)] otherwise,

(4.6)

where I1 =
∏h−1

f=0 nh,x (h) , I2 =
∏J−1

f=h+1 nh,x (h) . If x = y, the matrix block describes
transitions which leave the global macro state unchanged, therefore any local transition
may fire. If (x̃, ỹ) is slmst. at h, only local transitions on the component h may cause the
global state transition, since no other local transition may affect LN(h). In every other
case, only synchronizing transitions may occur.

This expansion of block matrices is equivalent to eq. (4.1) on page 31 except the
considerations to the hierarchical structure of the state space.

The full Q matrix is written as

Q =QO +QD, QD = −diag{QO1T}

as usual.
Algorithm 4.3 shows the construction of the local transition matrices according to

eqs. (4.4) and (4.5).
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Algorithm 4.3 Transition matrix construction for block Kronecker matrices

Input: State spacesÝRS
( j)
RS( j)x , transitions T , transition rates Λ

Output: Transition matrices Q( j)t ,Q( j)L
1 for j← 0 to J − 1 do

2 foreach ( x̃ ( j), ỹ( j)) ∈ÝRS
( j)
×ÝRS

( j)
do

3 if j ∈ supp t then
4 allocate Q( j)t [ x̃

( j), ỹ( j)] ∈ Rn j,x×nn,y

5 Fill in Q( j)t [ x̃
( j), ỹ( j)] according to eq. (4.4) on page 36

6 else if x̃ ( j) = ỹ( j) then Q( j)t [ x̃
( j), ỹ( j)]← In j,x×n j,y

7 else Q( j)t [ x̃
( j), ỹ( j)]← 0n j,x×n j,y

8 allocate Q( j)L [ x̃
( j), ỹ( j)] ∈ Rn j,x×nn,y

9 foreach t ∈ T ( j)L do
10 Q( j)L [ x̃

( j), ỹ( j)]←Q( j)L [ x̃
( j), ỹ( j)] +Λ(t)Q( j)t [ x̃

( j), ỹ( j)]

The construction of the block matrix Q is shown in Algorithm 4.4 on page 45. We
optimized the formulation from eq. (4.2) in several ways:

• If a Kronecker product contains a 0 matrix term, it is itself zero, therefore, such
products are discarded in line 23.

• For identity matrices IN×N ⊗ In×n = INn×Nn holds. This is exploited in line 21 to
reduce the number of terms in the Kronecker producs.

• Instead of constructing QO and QD separately, the diagonal elements are added
to the blocks of Q along its diagonal in line 26.

4.2 Symbolic methods

4.2.1 Multivalued decision diagrams

Multivalued decision diagrams (MDDs) [27] provide a compact, graph-based represen-
tation for functions of the form NJ → {0,1}.

Definition 4.1 A quasi-reduced orderedmultivalued decision diagram (MDD) encod-
ing the function f (x (0), x (1), . . . , x (J−1)) ∈ {0, 1} (where the domain of each variable
x ( j) is D( j) = {0, 1, . . . , n j − 1}) is a tuple MDD = (V, r, 0, 1, level, children), where
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• V =
⋃J

i=0 Vi is a finite set of nodes, where V0 = {0,1} are the terminal nodes,
the rest of the nodes VN = V \ V0 are nonterminal nodes;

• level : V → {0,1, . . . , J} assigns nonnegative level numbers to each node (Vi =
{v ∈ V : level(v) = i});

• v ∈ VJ is the root node;
• 0, 1 ∈ V0 are the zero and one terminal nodes;
• children :

�⋃J
i=1 Vi × D(i−1)

�

→ V is a function defining edges between
nodes labeled by the items of the domains, such that either children(v, x) = 0 or
level(children(v, x)) = level(v)− 1 for all v ∈ V , x ∈ D(level(v)−1),

• if n, m ∈ Vj , j > 0 then the subgraphs formed by the nodes reachable from n
and m are either non-isomorphic, or n= m.

We remark that due to the presence of the terminal level V0 the indexing of the
levels and the domains is shifted, i.e. the level Vi corresponds to the domain D(i−1).

According to the semantics of MDDs, f (x) = 1 if the node 1 is reachable from r
through the edges labeled with x (0), x (1), . . . , x (J−1),

f (x (0), x (1), . . . , x (J−1)) = 1 ⇐⇒

children(children(. . . children(r, x (J−1)) . . . , x (1)), x (0)) = 1.

Definition 4.2 A quasi-reduced ordered edge-valued multivalued decision diagram
(EDD) [79] encoding the function g(x (0), x (1), . . . , x (J−1)) ∈ N is a tuple EDD =
(V, r, 0, 1, level, children, label), where

• MDD = (V, r, 0, 1, level, children) is a quasi-reduced ordered MDD,
• label :

�⋃J
i=1 Vi × D(i−1)

�

→ N is an edge label function.

According to the semantics of EDDs, the function g is evaluated as

g(x) =

¨

undefined if f (x) = 0,
∑J−1

j=0 label(n
( j), x ( j)) if f (x) = 1,

where f is the function associated with the underlying MDD and n( j) are the nodes
along the path to 1, i.e.

n(J−1) = r, n( j) = children(n( j+1), x ( j+1)).

4.2.2 Symbolic state spaces

Symbolic techniques involving MDDs can efficiently store large reachable state spaces
of superposed Petri nets. Reachable states x ∈ RS are associated with state codings



4.2. Symbolic methods 39

V3 : 0 1

V2 : 0 1 2 0 1 2

V1 : 0 1 2 0 1 2

V0 : 0 1

0
4

0 2 0 12

0
1 0

Figure 4.1 EDD state space mapping for the SharedResource SSPN.

x= (x (0), x (1), . . . , x (J−1)). The function f : PS→ {0, 1} can be stored as an MDD where
f (x) = 1 if and only if x ∈ RS. The domains of the MDD are the local state spaces
D( j) = RS( j).

Similarly, EDDs can efficiently store the mapping between symbolic state encodings
x and reachable state indices x ∈ RS = {0,1, . . . , n− 1} as the function g(x) = x . This
mapping is used to refer to elements of state probability vectors π and the sparse
generator matrix Q when these objects are created and accessed.

Running example 4.2 Figure 4.1 shows the state space of the SharedResourcemodel
encoded as an EDD. The edge labels express the lexicographic mapping of symbolic
state codes x to state indices x. Edges to the terminal zero node 0 were omitted for
the sake of clarity.

Some iteration strategies for MDD state space exploration are breath-first search
and saturation [27]. We use the implementation of saturation from the PetriDotNet
framework [32, 38].

Algorithms 4.5 and 4.6 on page 46 illustrate the construction of a generator matrix
based on the state space encoded as EDDs. The procedure FillIn descends the EDD
following a path for the target and the source state simulatenously. The edge labels,
represeting state indices, are summed on both paths. If a transition x [t〉 y is found,
the matrix element qO[x , y] corresponding to the summed indices in increated by the
transition rate Λ(t). Algorithm 4.6 repeats FillIn for all transitions.
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4.2.3 Symbolic hierarchical state space decomposition

The memory requirements and runtime of Algorithm 4.2 on page 34 may be significantly
improved by the use of symbolic state space storage instead of a bit vector.

To symbolically partition the local states RS( j) into macro statesÝRS
( j)
, we will use

the following notations of above and below substates from Ciardo et al. [26]:

Definition 4.3 The set of above substates coded by the node n is

A(n) ⊆ {(x ( j+1), x ( j+2), . . . , x (J−1)) ∈ RS( j+1) × RS( j+2) × · · · × RS(J−1)},

such that

x ∈A(n) ⇐⇒ children(children(. . . children(r, x (J−1)) . . . , x ( j+2)), x ( j+1)) = n

and j = level(n)− 1, i.e. A(n) is the set of all paths in the MDD leading from r to n.

Definition 4.4 The set of below substates coded by the node n is

B(n) ⊆ {(x (0), x (1), . . . , x ( j)) ∈ RS(0) × RS(1) × · · · × RS( j)},

such that

x ∈B(n) ⇐⇒ children(children(. . . children(n, x ( j)) . . . , x (1)), x (0)) = 1

and j = level(n)− 1, i.e. B(n) is the set of all paths in the MDD leading from n to 1.

The relation ∼( j) over RS( j) can be expressed with A(n) and B(n) is a way that can
be handled easily with symbolic techniques.

Observation 4.5 The set of states which contain some local state x ( j) is

{ẑ( j) : z ∈ RS, z( j) = x ( j)}=

{(b,a) : n ∈ Vj+1, children(n, x ( j)) 6= n,b ∈B(children(n, x ( j))),a ∈A(n)}.

Proof. Any reachable state z ∈ RS that has z( j) = x ( j) is represented by a path in
the MDD that passes through a pair of nodes n ∈ Vj+1 and children(n, x ( j)) 6= 0.
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V3 : 0 1

V2 : 0 1 2 0 1 2

V1 : 0 1 2 0 1 2

V0 : 0 1

0
4

0 2 0 12

0
1 0

Figure 4.2 The set of all paths having x (1) = 2(1) in the SharedResource EDD.

Therefore, some path a ∈ A(n) must be followed from r to reach n, then some path
b ∈B(children(n, x ( j))) must be followed from children(n, x ( j)) to 1.

This means all paths from r to 1 containing x ( j) are of the form (b, x ( j),a) and the
converse also holds.

Running example 4.3 Figure 4.2 shows all path in the SharedResource MDD with
x (1) = 2(1).

The single path in the setA(n) is dashed, while paths in the setB(children(n, 2(1)))
are drawn as dotted edges.

Observation 4.6 If n and m are distinct nonterminal nodes of a quasi-reduced
ordered MDD, A(n)∪A(m) = ; and B(n) 6=B(m).

Proof. We prove the statements indirectly. Let a ∈A(n)∪A(m). If we follow the path
a for r, we arrive at n, because a ∈ A(n). However, we also arrive at m, because
a ∈ Above(m). This is a contradition, since n 6= m, A(n) and A(m must be disjoint.

Now suppose that there are n, m ∈ VN such that B(n) =B(m). Because the paths
B(n) describe the subgraph reachable from n completely, this means the subgraphs
reachable from n and m are isomorphic. This is impossible, because then the MDD
cannot be reduced, thus B(n) and B(m) must be distinct.
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Observation 4.7 The relation x ( j)∼( j) y( j) can be expressed as

x ( j)∼( j) y( j) ⇐⇒

{(n, children(n, x ( j))) : n ∈ Vj+1}= {(n, children(n, y( j))) : n ∈ Vj+1}.

Proof. Let

X = {ẑ( j) : z ∈ RS, z( j) = x ( j)}, Y = {ẑ( j) : z ∈ RS, z( j) = y( j)}.

According to eq. (4.3) on page 32, x ( j)∼( j) y( j) if and only if X = Y .
Define

X (n) = {b : (b,a) ∈ X ,b ∈A(n)}, Y (n) = {b : (b,a) ∈ Y,b ∈A(n)}.

X = Y holds precisely when X (n) = Y (n) for all n ∈ Vj+1. We may notice that {X (n)×
A(n)}n∈Vj+1

and {Y (n)×A(n)}n∈Vj+1
are partitions of X and Y , respectively, because the

A-sets are disjoint for each node.
According to Observation 4.5,

X (n) =B(children(n, x ( j))), Y (n) =B(children(n, y( j))).

Thus, X (n) = Y (n) if and only if children(n, x ( j)) = children(n, y( j)), because the B-sets
are distinct for each node.

Observation 4.7 can be interpreted as the statement that x ( j)∼( j) y( j) if and only if
the MDD edges corresponding to x ( j) are always parallel, i.e. from the node n they all
go to the same node m(n) for all n ∈ Vj+1.

The macro states can be constructed from the paralell edges in the MDD by partition
refinement. This process is performed by Algorithm 4.7 on page 47.

The key step in partition refinement is in line 15, where the candiate macro state
S is split into S1 and S2. Edges in S1 are all parallel and go from n to m, while S2 is
further split. The process is repeated for each node n and level Vj+1 until only parallel
macro state candidates remain.

This procedure is based on an idea of Buchholz and Kemper [18], however, we
employed partition refinement instead of hashing and and proved correctness of the
algorithm formally.

A block Kronecker matrix may be constructed from the decomposed state space by
Algorithm 4.4.
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A=







1 0 0 2.5
3 1 0 0
4 0 0 1
5 0 0 0







A= {{(1,0), (3,1), (4,2), (5,3)},
{(1,1)},
{},
{(2.5,0), (1, 2)}}

Figure 4.3 Compressed Column Storage of a matrix.
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Figure 4.4 Data structure for block Kronecker matrices.

4.3 Matrix storage

Existing linear algebra and matrix libraries, such as [11, 37, 48, 61, 83], usually have
unsatisfactory support for operations required in stochastic analysis algorithms with
decomposed matrices, for example, multiplications with Kronecker and block Kronecker
matrices. Therefore, we have decided to develop a linear algebra framework in C#.NET
specifically for stochastic algorithms as a basis of our stochastic analysis framework.

Sparse matrices are stored in Compressed Column Storage (CCS) format, i.e. an
array or values and row indices are stored for each column of the matrix, as illustrated
in Figure 4.3. This facilitates multiplication from left with row vectors. To reduce
pressure on the garbage collector (GC), matrices are vectors are stored in manually
allocated and managed memory.

While other sparse matrix formats, such as sliced LAPACK are more amenable to
parallel and SIMD processing Kreutzer et al. [55], CCS was selected due to implemen-
tation simplicity and the small number of nonzero entries in each column of the matrix,
which reduces the potential benefits of SIMD implementations.

Decomposed Kronecker and block Kronecker matrices are stored as algebraic expres-
sion trees as shown in Figure 4.4. Matrix multiplication and manipulation algorithms
for expression trees are detailed in Section 5.4 on page 61.
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The expression tree approach allows the use of arbitrary matrix decompositions that
can be expressed with block matrices, linear combinations and Kronecker products. The
implementation of additional opeartional primitives is also straightforward. The data
structure forms a flexible basis for the development of stochastic analysis algorithms
with decomposed matrix representations.
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Algorithm 4.4 Block Kronecker matrix construction.

Input: State spacesÝRS,ÝRS
( j)
RS( j)x , transitions T , transition rates Λ,

matrices Q( j)t ,Q( j)L
Output: Infinitesimal generator Q

1 allocate block matrix Q with ñ× ñ blocks
2 foreach (x̃, ỹ) ∈ÝRS×ÝRS do
3 Initialize Q[x̃, ỹ] as a linear combination of matrices
4 if x̃= ỹ then
5 for j← 0 to J − 1 do
6 if Q( j)L [ x̃

( j), ỹ( j)] 6= 0 then
7 I1← I∏ j−1

f=0 n f ,x( f )×
∏ j−1

h=0 n f ,x( f )
, I2← I∏J−1

g= j+1 n f ,x( f )×
∏J−1

f= j+1 n f ,x( f )

8 Q[x̃, x̃]←Q[x̃, x̃] + I1 ⊗Q( j)L [ x̃
( j), x̃ ( j)]⊗ I2

9 else if (x̃, ỹ) is a slmst. at h then
10 I1← I∏h−1

f=0 n f ,x( f )×
∏h−1

h=0 n f ,x( f )
, I2← I∏J−1

f= f +1 n f ,x( f )×
∏J−1

f=h+1 n f ,x( f )

11 Q[x̃, x̃]←Q[x̃, x̃] + I1 ⊗Q(h)L [ x̃
(h), x̃ (h)]⊗ I2

12 foreach t ∈ TS do
13 Initialize B as an empty Kronecker product
14 zeroProduct← false
15 for j← 0 to J − 1 do
16 if Q( j)[x,y] = 0 then
17 zeroProduct← true
18 break
19 else if Q( j)[x,y] is an identity matrix then
20 if the last term of B is an indentity matrix IN ,N then
21 Enlarge the last term of B to INn j,x×Nn j,y

22 else B← B ⊗Q( j)[x,y]

23 if ¬zeroProduct then Q[x,y]←Q[x,y] +Λ(t)B

24 allocate block vector d with ñ blocks
25 d←−Q1T

26 foreach x̃ ∈ÝRS do Q[ x̃ , x̃]←Q[ x̃ , x̃] + diag{d[ x̃]}
27 return Q
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Algorithm 4.5 FillIn procedure for matrix construction from EDD state space.
Input: node for target state t, node for source state s, target state offset y,

source state offset y, transition t, transition rate λ, matrix QO
1 if level(t) = 0 then
2 if t = 1∧ s = 1 then qO[x , y]← qO[x , y] +λ
3 else
4 j← level(t)− 1
5 foreach y( j) ∈ RS( j) do
6 if children(t, y( j)) = 0 then return
7 Find x ( j) such that x ( j) [t〉 y( j)

8 if children(s, x ( j)) = 0 then return
9 FillIn(children(t, y( j)), children(s, x ( j)),

10 y + label(t, y( j)), x + label(t, x ( j)), t,λ,QO)

Algorithm 4.6 Sparse matric construction from EDD state space.
Input: state space MDD root r, state space size n, transitions T , transition rate

function Λ
Output: generator matrix Q ∈ Rn×n

1 allocate QO ∈ Rn×n

2 foreach t ∈ T do
3 FillIn(r, r, 0, 0, t,Λ(t),QO)

4 d←−QO1T

5 return QO + diag{d}
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Algorithm 4.7 Local macro state construction by partition refinement.
Input: Symbolic state space MDD

Output: Local macro statesÝRS
( j)
, RS( j)x

1 for j← 0 to J − 1 do
2 Initialize the empty queue Q
3 Done← {RS( j)}
4 foreach n ∈ Vj+1 do
5 foreach S ∈ Done do
6 Enqueue(Q, S)

7 Done← ;
8 while ¬Empty(Q) do
9 S← Dequeue(Q)

10 S1← ;
11 S2← ;
12 Let x0 be any element of S
13 m← children(n, x0)
14 foreach x ∈ S \ {x0} do
15 if m= children(n, x) then S1← S1 ∪ {x} else S2← S2 ∪ {x}

16 if S2 6= ; then
17 Enqueue(Q, S2)

18 Done← Done∪ {S1}

19 ñ j ← |Done|

20 ÝRS
( j)
← {0̃( j), 1̃( j), . . . ,âñ j − 1

( j)
}

21 Each set S ∈ Done is a local macro stateÝRS
( j)
x
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Chapter 5

Algorithms for stochastic analysis

Steady state, transient, accumulated and sensitivity analysis problems pose several
numerical challanges, especially when the state space of the CTMC and the vectors
and matrices involved in the computation are extemely large.

In steady-state and sensitivty analysis, linear equations of the form xA= b are solved,
such as eqs. (2.3) and (2.8) on page 8 and on page 11. The steady-state probability
vector is the solution of the linear system

dπ
dt
= πQ = 0, π1T = 1, (2.3 revisited)

where the infinitesimal generator Q is a rank-deficient matrix. Therefore, steady-
state solution methods must handle various generator matrix decompositions and
homogenous linear equation with rank deficient matrices. Convergence and compuation
times of linear equations solvers depend on the numerical properties of the Q matrices,
thus different solvers may be preferred for different models.

In transient analysis, initial value problems with first-order linear differetial equa-
tions such as eqs. (2.2) and (2.6) on page 7 and on page 10 are considered. The
decomposed generator matrix Q must be also handled efficiently. Another difficulty is
caused by the stiffness of differential equations arising from some models, which may
significantly increase computation times.

To facilitate configurable stochastic analysis, we developed several linear equation
solvers and transient analysis methods. Where it is reasonable, the implementation is
independent of the form of the generator matrix Q. We achieved genericity by defining
an interface between the algorithms and the data structures with operations including

• multiplication of a matrix with a vector from left or right,
• scalar product of vectors with other vectors and columns of matrices,
• specialized operations like accessing the diagonal or off-diagonal parts of a matrix

and replacing columns of matrices.
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The implementation of these low-level operations is also decoupled from the data
structure. This strategy enables further configurability by replacing the operations at
runtime, for example, switching between sequential and parallel execution for different
parts of the analysis workflow.

While high level configurability allows the modeler to select analysis algorithms
appropriate for the model and performance measures under study, low leven config-
urability of the operations enables additional customization of algorithm execution for
the structure of the model as well as the hardware in use. Benchmark results for the
workflow are discussed in Section 6.4 on page 72.

In this chapter, we describe the algorithms implemented in our stochastic analysis
framework. The pseudocode of the algorithms is annotated with the low level operations
performed on the configurable data structure by the high level algorithms.

5.1 Linear equation solvers

5.1.1 Explicit solution by LU decomposition

LU decomposition is a direct method for solving linear equations with forward and
backward substitution, i.e. it does not require iteration to reach a given precision.

The decomposition computes the lower triangular matrix L and upper triangular
matrix U such that

A= LU .

To solve the equation
xA= xLU = b

forward substitution is applied first to find z in

zU = b,

then x is computed by back substitution from

xL = b.

We used Crout’s LU decomposition [73, Section 2.3.1], presented in Algorithm 5.1),
which ensures

u[i, i] = 1 for all i = 0,1, . . . , n− 1,

i.e. the diagonal of the U matrix is uniformly 1. The matrix is filled in during the
decomposition even if it was initially sparse, therefore it should first be copied to a
dense array storage for efficiency reasons. This considerably limits the size of Markov
chains that can be analysed by direct solution due to memory requirements. Our
data structure allows access to upper and lower diagonal parts to matrices and linear
combinations, therefore no additional storage is needed other than A itself.
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Algorithm 5.1 Crout’s LU decomposition without pivoting.
Input: the matrix A∈ Rn×n operated on in-place
Output: L, U ∈ Rn×n such that A= LU , u[i, i] = 1 for all i = 0,1, . . . , n− 1

1 for i← 0 to n− 1 do
2 for j← 0 to i do a[i, j]← a[i, j]−

∑ j−1
k=0 a[i, k]a[k, j]

3 for j← i + 1 to n− 1 do a[i, j]←
�

a[i, j]−
∑i−1

k=0 a[i, k]a[i, j]
��

a[i, i]

4 Let AL, AD and AU refer to the strictly lower triangular, diagonal and strictly
upper triangular parts of A, respectively.

5 L← AL + AD
6 U ← AU + I
7 return L, U

Algorithm 5.2 Forward and back substitution.
Input: U , L ∈ Rn×n, right vector b ∈ Rn

Output: solution of xLU = b
1 allocate x,z ∈ Rn

2 if b= 0 then z← 0 // Skip forward substitution for homogenous equations

3 else for j← 0 to n− 1 do z[ j]← b[ j] ·
∑ j−1

i=0 u[i, j]
4 if l[n− 1, n− 1]≈ 0 then
5 if z[n− 1]≈ 0 then x[n− 1]← 0 // Set the free parameter to 1
6 else error “inconsistent linear equation system”

7 else x[n− 1]← z[n− 1]/l[n− 1, n− 1]
8 for j← n− 2 downto 0 do
9 if l[ j, j]≈ 0 then error “more than one free parameter”

10 x[ j]←
�

z[i]−
∑n−1

i= j+1 x[i]l[i, j]
��

l[ j, j]

11 return x

The forward and back substitution process is shown in Algorithm 5.2. If multiple
equations are solver with the same matrix, its LU decomposition may be cached.

Matrices of less than full rank

If the matrix Q is of rank n− 1, the element l[n− 1, n− 1] in Crout’s LU decomposition
will be 0. In this case, x[n−1] is a free parameter and will be set to 1 to yield a nonzero
solution vector when z[n− 1] = 0. If z[n− 1] 6= 0, the equation xL = z does not have a
solution and the error condition in line 6 is triggered. A matrix of rank less than n− 1
triggers the error condition in line 9.

In practice, the algorithm can be used to solve homogenous equations in Markovian
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Algorithm 5.3 Basic iterative scheme for solving linear equations.
Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0
Output: approximate solution of xA= b and its residual norm

1 allocate x′ ∈ Rn // Previous iterate for convergence test
2 repeat
3 x′← x // Save the previous vector
4 x← f (x′)
5 until ‖x′ − x‖ ≤ τ
6 return x and ‖xQ− b‖

analysis, because the infinitesimal generator matrix Q of an irreducible CTMC is always
of rank n− 1. The solution vector x is not a probability vector in general, so it must be
normalized as π= x/x1T to get a stationary probability distribution vector.

5.1.2 Iterative methods

Iterative methods express the solution of the linear equation xA= b as a recurrence

xk = f (xk−1),

where x0 is an initial guess vector. The iteration converges to a solution vector when
limk→∞ xk = x exists and x equals the true solution vector x∗. The iteration is illustrated
in Algorithm 5.3.

The process is assumed to have converged if subsequent iterates are sufficiently
close, i.e. the stopping criterion at the kth iteration is

‖xk − xk−1‖ ≤ τ (5.1)

for some prescribed tolerance τ. In our implementation, we selected the L1-norm

‖xk − xk−1‖=
∑

i

�

�xk[i]− xk−1[i]
�

�

as the vector norm used for detecting convergence.
Premature termination may be avoided if iterates spaced m > 1 iterations apart

are used for convergence test (‖xk − xk−m‖ ≤ τ), but only at the expense of additional
memory required for storing m previous iterates. In order to handle large Markov
chains with reasonable memory consumption, we only used the convergence test with
a single previous iterate.

Correctness of the solution can be checked by observing the norm of the residual
xkA− b, since the error vector xk − x∗ is generally not available. Because the additional
matrix multiplication may make the latter check costly, it is performed only after
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Algorithm 5.4 Power iteration.

1 α−1← 1/maxi|a[i, i]|
2 repeat
3 x′← xA // Vector-matrix product
4 x′← x′ + (−1) · x // In-place scaled vector addition
5 ε← α−1‖x′‖ // Vector norm calculation
6 x← x+α−1x′ // In-place scaled vector addition
7 until ε≤ τ

detecting convergence by eq. (5.1) on page 51. Unfortunately, the residual norm may
not be representative of the error norm if the problem is ill-conditioned.

For a detailed discussion stopping criterions and iterate normalization in steady-state
CTMC analysis, we refer to [86, Section 10.3.5].

Power iteration

Power iteration [86, Section 10.3.1] is the one of the simplest iterative methods for
Markovian analysis. Its iteration function has the form

xk = f (xk−1) = xk−1 +
1
α
(xk−1A− b).

The iteration converges if the diagonal elements a[i, i] of A are strictly negative,
the off-diagonal elements a[i, j] are nonnegative and α ≥ maxi|a[i, i]|. The matrix
A satisfies these properties if it is an inifinitesimal generator matrix of an irreducible
CTMC. The fastest convergence is achieved when α=mini|a[i, i]|.

Power iteration can be realized by replacing lines 2–5 in Algorithm 5.3 on page 51
with the loop in Algorithm 5.4.

This realization uses memory efficiently, because it only requires the allocation of a
single vector x′ in addition to the initial guess x.

Observation 5.1 If b= 0 and A is an inifitesimal generator matrix, then

xk1T =
�

xk−1 +
1
α
(xk−1A− b)

�

1T

= xk−11T +
1
α

xk−1A1T − b1T

= xk−11T +
1
α

xk−10T − 01T = xk−11T.

This means the sum of the elements of the result vector x and the initial guess vector
x0 are equal, because the iteration leaves the sum unchanged.
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To solve an equation of the form

xQ = 0, x1T = 1 (5.2)

where Q is an infinitesimal generator matrix, the initial guess x0 is selected such that
x01T = 1. If the CTMC described by Q is irreducible, we may select

x0[i]≡
1
n
, (5.3)

where n is the dimensionality of x. After the initial guess is selected, the equation x1T

may be ignored to solve xQ = 0 with the power method. This process yields the solution
of the original problem (5.2).

Jacobi and Gauss–Seidel iteration

Jordan and Gauss–Seidel iterative methods [86, Section 10.3.2–3] repeatedly solve a
system of simultaneous equations of a specific form.

In Jordan iteration, the system

b[0] = xk[0]a[0, 0] + xk−1[1]a[1,0] + · · · + xk−1[n− 1]a[n− 1,0],
b[1] = xk−1[0]a[0, 1] + xk[1]a[1,1] + · · · + xk−1[n− 1]a[n− 1,1],

...
b[n− 1] = xk−1[0]a[0, n− 1] + xk−1[1]a[1, n− 1] + · · · + xk[n− 1]a[n− 1, n− 1],















is solved for xk at each iteration, i.e. there is a single unknown in each row and the rest
of the variables are taken from the previous iterate. In vector form, the iteration can be
expressed as

xk = A−1
D (b− AOxk−1),

where AD and AO are the diagonal (all off-diagonal elements are zero) and off-diagonal
(all diagonal elements are zero) parts of A= AD + AO.

In Gauss–Seidel iteration, the linear system

b[0] = xk[0]a[0, 0] + xk−1[1]a[1,0] + · · · + xk−1[n− 1]a[n− 1,0],
b[1] = xk[0]a[0, 1] + xk[1]a[1,1] + · · · + xk−1[n− 1]a[n− 1,1],

...
b[n− 1] = xk[0]a[0, n− 1] + xk[1]a[1, n− 1] + · · · + xk[n− 1]a[n− 1, n− 1],















is considered, i.e. the ith equation contains the first i elements of xk as unknowns. The
equations are solved for successive elements of xk from top to bottom.

Jacobi over-relaxation, a generalized form of Jacobi iteraion, is realized in Algo-
rithm 5.5. The value 1 of the over-relaxation paramter ω corresponds to ordinary
Jacobi iteration. Values ω> 1 may accelerate convergence, while 0<ω< 1 may help
diverging Jacobi iteration converge.
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Algorithm 5.5 Jacobi over-relaxation.
Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0,

over-relaxation parameter ω> 0
Output: approximate solution of xA= b

1 allocate x′ ∈ Rn

2 Let AO refer to the off-diagonal part of A.
3 repeat
4 x′← xAO // Matrix-vector product
5 x′← x′ + (−1) · b // In-place scaled vector addition
6 ε← 0
7 for i← 0 to n− 1 do
8 y ← (1−ω)x[i]−ωx ′[i]/a[i, i]
9 ε← ε+ |y − x[i]|

10 x[i]← y

11 until ε≤ τ
12 return x

Jacobi over-relaxation has many parallelization opportunities. The matrix multipli-
cation in line 4 and the vector addition in line 5 can be parallelized, as well as the for
loop in line 7. Our implementation takes advantage of the configurable linear algebra
operations framework to execute lines 4 and 5 with possible paralellization considering
the structures of both the vectors x,x′ and the matrix A. However, the inner loop is left
sequential to reduce implementation complexity, as it represents only a small fraction
of execution time compared to the matrix-vector product.

Algorithm 5.6 shows an implementation of successive over-relaxation for Gauss–
Seidel iteration, where the notation aO[·, i] refers to the ith column of AO.

Gauss–Seidel iteration cannot easily be parallelized, because calculation of succes-
sive elements x[0], x[1], . . . depend on all of the prior elements. However, in contrast
with Jacobi iteration, nomemory is required in addition to the vectors x, b and thematrix
X , which makes the algorithm suitable for very large vectors and memory-constrained
situations. In addition, convergence is often significantly faster.

The sum of elements x1T does not stay constant during Jacobi or Gauss–Seidel
iteration. Thus, when solving equations of the form xQ = 0,x1T = 1, normalization
cannot be entierly handled by the initial guess. We instead transform the equation into
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Algorithm 5.6 Gauss–Seidel successive over-relaxatation.
Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0,

over-relaxation parameter ω> 0
Output: approximate solution of xA= b

1 allocate x′ ∈ Rn

2 Let AO refer to the off-diagonal part of A.
3 repeat
4 ε← 0
5 for i← 0 to n− 1 do
6 scalarProduct← x · aO[·, i] // Scalar product with column of matrix
7 y ←ω(b[i]− scalarProduct)/a[i, i] + (1−ω) · x[i]
8 ε← ε+ |y − x[i]|
9 x[i]← y

10 until ε≤ τ
11 return x

the form

x















q[0,0] q[0, 1] · · · q[0, n− 2] 1
q[1,0] q[1, 1] · · · q[1, n− 2] 1

...
...

. . .
...

...
q[n− 2,0] q[n− 2, 1] · · · q[n− 2, n− 2] 1
q[n− 1,0] q[n− 1, 1] · · · q[n− 2, n− 1] 1















=















0
0
...
0
1















, (5.4)

where we take advantage of the fact that the infinitesimal generator matrix is not of
full rank, therefore one of the columns is redundant and can be replaced with the
condition x1T = 1. While this transformation may affect the convergence behavior of
the algorithm, it allows uniform handling of homogenous and non-homogenous linear
equations.

Group iterative methods

Group or block iterative methods Stewart [86, Section 10.4] assume the block structure
for the vectors x, b and the matrix A

x[i] ∈ Rni ,b[ j] ∈ Rn j , A[i, j] ∈ Rni×n j for all i, j ∈ {0, 1, . . . , N − 1},

Infinitesimal generator matrices in the block Kronecker decomposition along with
appropriately partitioned vectors match this structure (see eq. (4.6) on page 36). Each
block of x corresponds to a group a variables that are simultaneously solved for.
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Algorithm 5.7 Group Jacobi over-relaxation.
Input: block matrix A, block right vector b, block initial guess n, tolerance τ > 0,

over-relaxation parameter ω> 0
Output: approximate solution of xA= b and its residual norm

1 allocate x′ and c with the same block structure as x and b
2 Let AOB represent the off-diagonal part of the block matrix A with the blocks
along the diagonal set to zero.

3 repeat
4 x′← x,c← b
5 c← c+ (−1) · x′AOB // Scaled accumulation of vector-matrix product
6 parallel for i← 0 to N − 1 do // Loop over all blocks
7 Solve x[i]A[i, i] = c[i] for x[i]

8 ε← 0
9 for k← 0 to n− 1 do // Loop over all elements

10 y ←ωx[k] + (1−ω)x ′[k]
11 ε← ε+ |y − x ′[k]|
12 x[k]← y

13 until ε≤ τ

Group Jacobi iteration solves the linear system

b[0] = xk[0]A[0, 0] + xk−1[1]A[1, 0] + · · · + xk−1[n− 1]A[n− 1, 0],
b[1] = xk−1[0]A[0, 1] + xk[1]A[1, 1] + · · · + xk−1[n− 1]A[n− 1, 1],

...
b[n− 1] = xk−1[0]A[0, n− 1] + xk−1[1]A[1, n− 1] + · · · + xk[n− 1]A[n− 1, n− 1],















while group Gauss–Seidel considers

b[0] = xk[0]A[0,0] + xk−1[1]A[1,0] + · · · + xk−1[n− 1]A[n− 1,0],
b[1] = xk[0]A[0,1] + xk[1]A[1,1] + · · · + xk−1[n− 1]A[n− 1,1],

...
b[n− 1] = xk[0]A[0, n− 1] + xk[1]A[1, n− 1] + · · · + xk[n− 1]A[n− 1, n− 1].















Implementations of group Jacobi over-relaxation and group Gauss–Seidel successive
over-relaxation are shown in Algorithms 5.7 and 5.8 on this page and. The inner linear
equations of the form x[i]A[i, i] = c may be solved by any algorithm, for example, LU
decomposition, iterative methods, or even block-iterative methods if A has a two-level
block structure. The choice of the inner algorithm may significantly affect performance
and care must be taken to avoid diverging inner solutions in an iterative solver is used.
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Algorithm 5.8 Group Gauss–Seidel successive over-relaxation.
Input: block matrix A, block right vector b, block initial guess n, tolerance τ > 0,

over-relaxation parameter ω> 0
Output: approximate solution of xA= b and its residual norm

1 allocate x′ and c large enough to store a single block of x and b.
2 repeat
3 ε← 0
4 for i← 0 to N − 1 do // Loop over all blocks
5 x′← x[i],c← b[i]
6 for j← 0 to N − 1 do
7 if i 6= j then // Scaled accumulation of vector-matrix product
8 c← c+ (−1) · x[ j]A[i, j]

9 Solve x[i]A[i, i] = c for x[i]
10 for k← 0 to ni − 1 do
11 y ←ωx[i][k] + (1−ω)x ′[k]
12 ε← ε+ |y − x ′[k]|
13 x[i][k]← y

14 until ε≤ τ

In Jacobi over-relaxation, paralellization of both the matrix multiplication and the
inner loop is possible. However, two vectors of the same size as x are required for
temporary storage.

Gauss–Seidel successive over-relaxation cannot be parallelized easily, but it requires
only two temporary vectors of size equal to the largest block of x, much less than
Jacobi over-relaxation. Moreover, it often requires fewer steps to converge, making it
preferable over Jacobi iteration.

Because the inner solver may be selected by the user and thus its convergence
behaviour varies widely, we do not perform the transformation for homogenous equa-
tions (5.4). Instead, the normalization π= x/x1T is performed only after finding any
nonzero solution of xQ = 0.

For a detailed analysis of the convergence behaviour of group iterative methods, we
refer to Greenbaum [47, Chapter 14] and

BiConjugate Gradient Stabilized (BiCGSTAB)

BiConjugate Gradient Stabilized (BiCGSTAB) [82, Section 7.4.2; 90] is an iterative
algorithm belonging to the class of Krylov subspace methods, which includes other
algorithms such as the Generalized Minimum Residual (GMRES) [81], Conjugate
Gradient Squared (CGS) [84] and IDR(s) [85].



5.2. Transient analysis 58

We selected BiCGSTAB as the Krylov subspace solver in our framework because
of its good convergence behaviour and low memory requirements. BiCGSTAB only
requires the storage of 7 vectors, which makes it suitable even for large state spaces
with large states vectors, unlike e.g. GMRES, which allocates an additional vector every
iteration.

Algorithm 5.9 on page 63 shows the pseudocode for BiCGSTAB. Our implementa-
tion is based on the Matlab code1 by Barrett et al. [5].

Solving preconditioned equations in the form xAM−1 = bM−1 could improve conver-
gence, but was omitted from our current implementation. As the choice is appropriate
preconditioner matrices M is not trivial [56], implementation and sudy of precondition-
ers for Markov chains, especially with block Kronecker decomposition, is in the scope
of our future work.

Because six vectors are allocated in addition to x and b, the amount of available
memory may be a significant bottleneck.

Similar to Observation 5.1 on page 52, it can be seen that the sum x1T stays constant
throughout BiCGSTAB iteration. Thus, we can find probability vectors satisfying
homogenous equations by the initialization in eq. (5.3) on page 53.

5.2 Transient analysis

5.2.1 Uniformization

The uniformization or randomization method solves the initial value problem

dπ(t)
dt

= π(t)Q, π(t) = π0 (2.2 revisited)

by computing

π(t) =
∞
∑

k=0

π0Pke−αt (αt)k

k!
, (5.5)

where P = α−1Q+ I , α≥maxi|a[i, i]| and e−αt (αt)k
k! is the value of the Poisson probabilty

function with rate αt at k.
Integrating both sides of eq. (5.5) to compute L(t) yields [78]

∫ t

0

π(u)du= L(t) =
∞
∑

k=0

π0Pk

∫ t

0

e−αu (αu)k

k!
du

=
∞
∑

k=0

π0Pk 1
α

∞
∑

l=k+1

e−αt (αt)l

l!

1http://www.netlib.org/templates/matlab//bicgstab.m

http://www.netlib.org/templates/matlab//bicgstab.m
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=
1
α

∞
∑

k=0

π0Pk

�

1−
k
∑

l=0

e−αt (αt)l

l!

�

. (5.6)

Both eqs. (5.5) and (5.6) on page 58 and on the current page can be realized as

x=
1
W

 

kleft−1
∑

k=0

wleftπ0Pk +
kright
∑

k=kleft

w[k− kleft]π0Pk

!

, (5.7)

where x is either π(t) or L(t), kleft and kright are trimming constants selected based on
the required precision, w is a vector of (possibly accumulated) Poisson weights and
W is a scaling factor. The weight before the left cutoff wleft is 1 if the accumulated
probability vector L(t) is calculated, 0 otherwise.

Eq. (5.7) is implemented by Algorithm 5.10 on page 64. The algorithm performs
steady-state detection in line 9 to avoid unneccessary work once the iteration vector p
reaches the steady-state distribution π(∞), i.e. p≈ pP. If the initial distribution π0 is
not further needed or can be generated efficiently (as it is the case with a single initial
state), the result vector x may share the same storing, resulting in a memory overhead
of only two vectors p and q.

The weights and trimming constants may be calculated by the famous algorithm
of Fox and Glynn [41]. However, their algorithm is extremely complicated due to the
limitations of single-precision floating-point arithmetic [53]. We implemented Burak’s
significantly simpler algorithm [20] in double precision instead (Algorithm 5.11 on
page 65), which avoids underflow by a scaling factor W � 1.

5.2.2 TR-BDF2

A weakness of the uniformization algorithm is the poor tolerance of stiff Markov chains.
The CTMC is called stiff if the |λmin| � |λmax|, where λmin and λmax are the nonzero
eigenvalues of the infinitesimal generator matrix Q of minimum and maximum absolute
value [77]. In other words, stiff Markov chains have behaviors on drastically different
timescales, for example, clients are served frequently while failures happen infrequently.

Stiffness leads to very large small rates α in line 2 of Algorithm 5.10 on page 64,
thus a large right cutoff kright is required for computing the transient solution with
sufficient accuracy. Moreover, the slow stabilization results in taking many iterations
before steady-state detection in line 9.

Some methods that can handle stiff CTMCs efficiently are stochastic complemen-
tation [62], which decouples the slow and fast behaviors of the system, and adap-
tive uniformization [66], which varies the uniformization rate α. Alternatively, an
L-stable differential equation solver may be used to solve eq. (2.2) on page 7, such as
TR-BDF2 [4, 77].
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TR-BDF2 is an implicit integrator with alternating trapezoid rule (TR) steps

πk+γ(2I + γhkQ) = 2πk + γhkπkQ

and second order backward difference steps

πk+1[(2− γ)I − (1− γ)hkQ] =
1
γ
πk+γ −

(1− γ)2

γ
πk,

which advance the time together by a step of size hk. The constant 0 < γ < 1 sets
the breakpoint between the two steps. We set it to γ = 2−

p
2 ≈ 0.59 following the

recommendation of Bank et al. [4].
As a guess for the initial step size h0, we chose the uniformization rate of Q. The

kth step size hk > 0, including the 0th one, is selected such that the local error estimate

LTEk+1 =









2
−3γ4 + 4γ− 2

24− 12γ
hk

�

−
1
γ
πk +

1
γ(1− γ)

πk+γ −
1

1− γ
πk+1

�









(5.8)

is bounded by the local error tolerance

LTEk+1 ≤

�

τ−
∑k

i=0 LTEi

t −
∑k

i=0 ki

�

hk+1.

This Local Error per Unit Step (LEPUS) error control “produces excellent results for
many problems”, but is usually costly [77]. Moreover, the accumulated error at the end
of integration may be larger than the prescribed tolerance τ, since eq. (5.8) is only an
approximation of the true error.

An implementation of TR-BDF2 based on the pseudocode of A. L. Reibman and
Trivedi [77] is shown in Algorithm 5.12 on page 66.

In lines 12 and 16 any linear equation solver from Section 5.1 on page 49 may be
used except power iteration, since the matrices, in general, do not have strictly negative
diagonals. Due to the way the matrices, which are linear combinations of I and Q, are
passed to the inner solvers, our TR-BDF2 integrator is currently limited to Q matrices
which are not in block form.

The vectors π0,πk and πk+γ,dk+1 may share storage, respectively, therefore only 4
state-space sized vectors are required in addition to the initial distribution π0.

The most computationally intensive part is the solution of two linear equation
per every attempted step, which may make TR-BDF2 extremely slow. However, its
performance does not depend on the stiffness of the Markov chain, which may make it
better suited to stiff CTMCs than uniformization [77].
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5.3 Mean time to first failure

In MTFF calculation (Section 2.2.3 on page 11), quantities of the forms

MTFF = −πUQ−1
UU

︸ ︷︷ ︸

γ

1T, P(X (TFF+0) = y) = −πUQ−1
UU

︸ ︷︷ ︸

γ

qT
U D′ (2.9, 2.10 revisited)

are computed, where U , D, D′ are the set of operations states, failure states and a
specific failure mode D′ ( D, respectively.

The vector γ ∈ R|U | is the solution of the linear equation

γQUU = πU (5.9)

and may be obtained by any linear equation solver.
The sets U , D = D1 ∪ D2 ∪ · · · are constructed by the evaluation of CTL expressions.

If the failure mode Di is described by ϕi, then the sets D and U are described by CTL
formulas ϕD = ¬AX true∨ϕ1 ∨ϕ2 ∨ · · · and ϕU = ¬ϕD, where the deadlock condition
¬AX true is added to make (5.9) irreducible.

After the set U is generated symbolically, the matrix QUU may be decomposed in
the same way as the whole state space S. Thus, the vector-matrix operations required
for solving (5.9) can be executed as in steady-state analysis.

5.4 E�cient vector-matrix products

Iterative linear equation and transient distribution solvers require several vector-matrix
products per iteration. Therefore, efficient vector-matrix multiplication algorithms are
required for the various matrix storage methods (i.e. dense, sparse and block Kronecker
matrices) to support configurable stochastic analysis.

Our data structure supports run-time reconfiguration of operations, for example,
to switch between parallel and sequential matrix multiplication implementations for
different parts of an algorithm, depending on the characteristics of the model and the
hardware which runs the analysis.

Implemented matrix multiplication for the data structure (see Figure 4.4 on page 43)
routines are

• Multiplication of vectors with dense and sparse matrices. Sparse matrix multipli-
cation may be parallelized by splitting the columns of the matrix into chunck and
submitting each chunk to the executor thread pool.

Operations with vectors and sparse matrices are implemented in an unsafe2

context. The elements of the data structures are not under the influence of the

2https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx

https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx
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Garbage Collector runtime, but stored in natively allocated memory. This allows
the handling of large matrices without adversely impacting the performance of
other parts of the program, albeit the cost of allocations in increased.

• Multiplication with block matrices by delegation to the constituent blocks of the
matrix (Algorithm 5.13 on page 67). The input and output vectors are converted
to block vectors before multiplication. If parallel execution is required, each block
of the output vector can be computed in a different task, since it is independent
from the others.

• Multiplication by a linear combination of matrices is delegated to the constituent
matrices (Algorithm 5.14 on page 67). An in-place scaled addition of vector-
matrix product to a vector operation is required for this delegation. To facilitate
this, each vector-matrix multiplication algorithm is implemented also as an in-
place addition and in-place scaled addition of vector-matrix product, and the
appropriate implementation is selected based on the function call aruments.

• Multiplications b · diag{a} by diagonal matrices are executed as elementwise
product b�a. The special case of multiplication by an identity matrix is equivalent
to a vector copy.

• Multiplications by Kronecker products is performed by the Shuffle algorithm [7,
17] as shown in Algorithm 5.15 on page 67.

The algorithm requires access to slices of a vector, denoted as x[i0:s:l], which
refers to the elements x[i], x[i+s], x[i+2s], . . . , x[i+(l−1)s]. Thus, slices were in-
tegrated into the operations framework as first-class elements, and multiplication
algorithms are implemented with support for vector slice indexing.

Shuffle rewrites the Kronecker products as

k−1
⊗

h=0

A(h) =
k−1
∏

h=0

I∏h−1
f=0 n f ×

∏h−1
f=0 n f

⊗ A(h) ⊗ I∏k−1
f=h+1 m f ×

∏k−1
f=h+1 m f

,

where Ia×a denotes an a× a identity matrix. Multiplications by terms of the form
IN×N ⊗ A(h) ⊗ IM×M are carried out in the loop at line 8 of Algorithm 5.15.

The temporary vectors x,x′ are large enough store the results of the successive
matrix multiplications. They are cached for every worker thread to avoid repeated
allocations.

Other algorithms for vector-Kronecker product multiplication are the Slice [40]
and Split [31] algorithms, which are more amenable to parallel execution than
Shuffle. Their implementation is in the scope of our future work.



5.4. E�cient vector-matrix products 63

Algorithm 5.9 BiCGSTAB iteration without preconditioning.
Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0
Output: approximate solution of xA= b

1 allocate r, r0,v,p, s, t ∈ Rn

2 r← b
3 r← r+ (−1) · xA // Scaled accumulation of vector-matrix product
4 if ‖r‖ ≤ τ then
5 message “initial guess is correct, skipping iteration”
6 return x

7 r0← r,v← 0,p← 0,ρ′← 1,α← 1,ω← 1
8 while true do
9 ρ← r0 · r // Scalar product

10 if ρ ≈ 0 then error “breakdown: r⊥ r0”
11 β ← ρ/ρ′ ·α/ω
12 p← r+ β · p // Scaled vector addition
13 p← p+ (−βω) · v // In-place scaled vector addition
14 α← ρ/(r0 · v) // Scalar product
15 r← s+ (−α) · s // Scaled vector addition
16 if ‖s‖< τ then
17 x← x+α · p // In-place scaled vector addition
18 message “early return with vanishing s”
19 return x

20 t← sA // Vector-matrix multiplication
21 tLengthSquared← t · t // Scalar product
22 if tLengthSquared≈ 0 then error “breakdown: t≈ 0”
23 ω← (t · s)/tLengthSquared // Scalar product
24 if ω≈ 0 then error “breakdown: ω≈ 0”
25 ε← 0
26 for i← 0 to n− 1 do
27 change← αp[i] +ωs[i]
28 ε← ε+ |change|
29 x[i]← x[i] + change

30 if ε≤ τ then return x
31 s← t+ (−ω) · r // Scaled vector addition
32 ρ′← ρ
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Algorithm 5.10 Uniformization.
Input: infinitesimal generator Q ∈ Rn×n, initial probability vector π0 ∈ Rn,

truncation parameters kleft, kright ∈ N, weights wleft ∈ R, w ∈ Rkright−kleft ,
scaling constant W ∈ R, tolerance τ > 0

Output: instantenous or accumulated probability vector x ∈ Rn

1 allocate x,p,q ∈ Rn

2 α−1← 1/maxi|a[i, i]|
3 p← π0
4 if wleft = 0 then x← 0 else x← wleft · p // Vector scaling
5 for k← 1 to kright do
6 q← pQ // Vector-matrix product
7 q← α−1 · q // In-place vector scaling
8 q← q+ q // In-place vector addition
9 if ‖q− p‖ ≤ τ then

10 x← x+
�

∑kright
l=k w[l − kleft]

�

· q // In-place scaled vector addition

11 break

12 if k < kleft ∧wleft 6= 0 then x← x+wleft · q // In-place scaled vector addition
13 else if k ≥ kleft then x← x+w[k− kleft] · q // In-place scaled vector addition
14 Swap the references to p and q

15 x←W−1 · x // In-place vector scaling
16 return x
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Algorithm 5.11 Burak’s algorithm for calculating the Poisson weights.

Input: Poisson rate λ= αt, tolerance τ > 10−50

Output: truncation parameters kleft, kright ∈ N, weights w ∈ Rkright−kleft , scaling
constant W ∈ R

1 Mw← 30, Ma← 44, Ms← 21
2 m← bλc, tSize← bMw

p
λ+Mac, tStart←max{m+Ms − btSize/2c, 0}

3 allocate tWeights ∈ RtSize

4 tWeights[m− tStart]← 2176

5 for j← m− tStart downto 1 do
6 tWeights[ j − 1] = ( j + tStart) tWeights[ j]/λ

7 for j← m− tStart+ 1 to tSize do
8 tWeights[ j + 1] = λ tWeights[ j]/( j + tStart)

9 W ← 0
10 for j← 0 to m− tStart− 1 do
11 W ←W + tWeights[ j]

12 sum1← 0 // Avoid adding small numbers to larger numbers
13 for j← tSize− 1 downto m− tStart do
14 sum1← sum1+ tWeights[ j]

15 W ←W + sum1, threshold←Wτ/2, cdf← 0, i← 0
16 while cdf< threshold do
17 cdf← cdf+ tWeights[i]
18 i← i + 1

19 kleft← tStart+ i, cdf← 0, i← tSize− 1
20 while cdf< threshold do
21 cdf← cdf+ tWeights[i]
22 i← i − 1

23 kright← tStart+ i
24 allocate w ∈ Rkright−kleft

25 for j← kleft to kright do
26 w[ j − kleft]← tWeights[ j − tStart]

27 return kleft, kright,w, W
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Algorithm 5.12 TR-BDF2 for transient analysis.
Input: infinitesimal generator Q ∈ Rn×n, initial distribution π0, mission time

t > 0, tolerance τ > 0
Output: transient distribution π(t)

1 allocate πk,πk+γ,πk+1,dk,dk+1,y ∈ Rn

2 maxIncrease← 10, leastDecrease← 0.9

3 timeLeft← t, h← 1/maxi|a[i, i]|,γ← 2−
p

2, C ←
�

�

�

−3γ4+4γ−2
24−12γ

�

�

�, errorSum← 0

4 πk← π0
5 dk← πkQ // Vector-matrix product
6 while timeLeft> 0 do
7 stepFailed← false, h←min{h, timeLeft}
8 while true do
9 /* TR step */

10 y← 2 ·πk // Vector scaling
11 y← y+ γh · dk // In-place vector addition
12 Solve πk+γ(2I +−γhQ) = y for πk+γ with initial guess πk
13 /* BDF2 step */

14 y←− (1−γ)
2

γ ·πk // Vector scaling

15 y← 1
γ ·πk+γ // In-place scaled vector addition

16 Solve πk+1((2− γ)I + (γ− 1)hQ) = y for πk+1 with initial guess πk+γ
17 /* Error control and step size estimation */
18 y←−1

γdk // Vector scaling

19 y← y+ 1
γ(1−γ)πk+γQ // In-place scaled addition of vector-matrix product

20 dk+1← πk+1Q // Vector-matrix product

21 y← y+
�

− 1
1−γ

�

dk+1 // In-place scaled vector addition

22 LTE← 2Ch‖y‖, localTol← (τ− errorSum)/timeLeft · h
23 if LTE < localTol then // Successful step
24 timeLeft← timeLeft− h, errorSum← errorSum+ LTE
25 // Do not try to increase h after a failed step
26 if ¬stepFailed then h← h ·min{maxIncrease, 3

p

localTol/LTE}
27 break

28 stepFailed← true, h← h ·min{leastDecrease, 3
p

localTol/LTE}

29 Swap the references to πk,πk+1 and dk,dk+1

30 return πk
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Algorithm 5.13 Parallel block vector-matrix product.
Input: block vector b ∈ Rn0+n1+···+nk−1 ,
block matrix A∈ R(n0+n1+···+nk−1)×(m0+m1+···+ml−1)

Output: c= bA∈ Rm0+m1+···+ml−1

1 allocate c ∈ Rm0+m1+···+ml−1

2 parallel for j← 0 to l − 1 do
3 c[ j]← 0
4 for i← 0 to k− 1 do
5 c[ j]← c[ j] + b[i]A[i, j] // Scaled addition of vector-matrix product

Algorithm 5.14 Product of a vector with a linear combination matrix.
Input: b ∈ Rn, A= ν0A0 + ν1A1 + · · ·+ νk−1Ak−1, where Ah ∈ Rn×m

Output: c= bA∈ Rm

1 allocate c ∈ Rm if no target buffer is provided
2 c← 0
3 for h← 0 to k− 1 do
4 c← νh · bAh // In-place scaled addition of vector-matrix product

5 return c

Algorithm 5.15 The Shuffle algorithm for vector-matrix multiplication.

Input: b ∈ Rn0n1···nk−1 , A= A(0) ⊗ A(1) ⊗ · · · ⊗ A(k−1), where A(h) ∈ Rnh×mh

Output: c= bA∈ Rm0m1···mk−1

1 n← n0n1 · · ·nk−1, m← m0m1 · · ·mk−1

2 tempLength←maxh=−1,0,1,...,k−1
∏h

f=0 m f
∏k−1

f=h+1 n f

3 allocate x,x′ with at least tempLength elements

4 x[0:1:n]← b, ileft← 1, iright←
∏k−1

h=1 nh
5 for h← 0 to k− 1 do
6 if A(h) is not an identity matrix then
7 ibase← 0, jbase← 0
8 for il← 0 to ileft − 1 do
9 for ir← 0 to iright − 1 do

10 x′[ jbase:mh:iright]← x[ibase:nh:iright]A(h)

11 ibase← ibase + nhiright, jbase← jbase +mhiright

12 Swap the references to x and x′

13 ileft← ileft ·mh
14 if h 6= k− 1 then iright← iright/nh+1

15 return c= x[0:1:m]
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Chapter 6

Evaluation

6.1 Testing

When developing an algorithm library for formal analysis of safety critical systems it is
vital to verify the correctness of the implementation. Since the complexity of the code
base makes formal verification difficult we confined ourselves to rigorously testing the
functionalities provided by the library.

6.1.1 Combinatorial testing

As described in Chapter 5 algorithms use the common vector and matrix interfaces to
perform various operations. This makes the used storage techniques transparent which
in turn makes the code base more concise, reusable and less prone to errors.

The most important requirement against the datastructure operations is mathemat-
ical correctness regardless of the storage technique used. Considering the number of
implementations for a given interface and the previous requirement we used a simple
unit testing design pattern (also known as interface testing pattern) as the core building
block for the datastructure testing [68].

The basic idea behind this pattern is to write unit tests for interface operations
without any knowledge about the concrete implementation. Hiding implemetation
details can be achieved in a number of ways. Some unit testing frameworks (like NUnit,
[72]) support the usage of generic test classes and running them for multiple concrete
types.

Since most of the time multiple instances of different types of interface implemen-
tations are needed in a single unit test we choose a more flexible approach for hiding
implementation details. This approach is based on class inheritance and abstract fac-
tory methods. Whenever we need an instance for a given interface we delegate the
instantiation to an abstract factory method in the test class.
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A drawback of this approach is that the test class itself becomes abstract so we can’t
run the tests inside it directly. However we can easily inherit from the base test class and
implement the abstract factory methods in any way we’d like. But the most important
advantage of this approach manifests itself when we apply the virtual modifier to one
or more unit tests in the base class. This way we can completely override tests in the
derived classes if needed based on the types of the interface implementations. So the
first step in testing the datastructure library was to implement these abstract unit tests
that operate on an interface level.

Abstract tests

In order to make sure we cover the most possible usage scenarios of the datastructure
we followed some common testing techniques. As a first step we used equivalence
partitioning to identify the valid and invalid ranges of the parameters of the operations.
Next we implemented the parameter value checks in interface code contract classes using
Microsoft’s Code Contract library [63]. This enabled us to implement the parameter
check logic in one place for an operation making the code more maintainable. Moreover
every class implementing a datastructure interface and it’s operations will automatically
contain these logics if code contracts are enabled. Code contracts can be disabled if
needed resulting in a perfomance boost for the datastructure library since the parameter
checks are skipped.

Writing unit tests for valid parameter values was straighforward since it’s possible
to cover multiple valid parameter ranges with a single unit test. However testing for
invalid parameter values requires some care. We must ensure that there is only one
invalid parameter per unit test so one error doesn’t obscure the other. This significantly
increases the number of unit tests and the possibility that we forget to test an invalid
parameter range. Therefore we aimed to gather every possible invalid parameter range
automatically.

For this purpose we used Microsoft’s IntelliTest tool [64] (formerly known as Pex,
[89]) which assists in automating white-box and unit-testing. IntelliTest automatically
generates unit tests using constraint satisfaction problem solving based on the source
code of the method under test. Using IntelliTest on our interface code contract classes
provided us with many invalid parameter values which we could use in our abstract
unit tests.

Concrete tests

Once the abstract unit tests were implemented the next step was to create the derived
classes for every storage combination and implement the abstract factory methods. Since
the number of possible combinations were too many to implement manually we used
Microsoft’s Text Template Transformation Toolkit (T4, [65]) to generate the derived
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classes. The created template files provide ways to modify the behavior of abstract
tests (through simple regular expression based configuration files) and to decrease the
number of generated test by using pairwise testing instead of full combinatorial testing
of implementation combinations. To generate the combinations for pairwise testing we
used the ACTS tool [12].

As a result of this testing process more than 78 000 unit tests were generated using
full combinatorial testing (more than 18 000 with pairwise testing) which together with
the behavior configuration files serve as a quasi-formal specification for the expected
behavior of future and modified implementations (e.g. perfomance optimization).
Breaking changes in implementation should either be rejected or the test suite and
configuration files should be revised as specification change. Every unit test was executed
sucessfully for both sequential and parallel operation implementations.

6.1.2 Software redundancy based testing

Apart from testing the datastructure operation implementations it is vital to test the
correctness of higher level algorithms used in the analysis workflow, e.g. the linear
equation solver algorithms. Testing every implemented algorithm one by one with unit
tests would be tremendous work and it can’t be easily automated (or maintained in
case of manual testing). Moreover every algorithm is used as part of a bigger workflow
which raises the question of compatibility of algorithms during an analysis.

As described in Section 3.2 for almost every step of the workflow numerous algo-
rithms are available.

Observation 6.1 The result of a performance analysis (e.g. reward calculation)
is mathematically independent of the used analysis workflow. It only depends on
the possible behaviors of the system and the definition of the required performance
measure. Two results calculated by using two different analysis methods can only
differ from eachother due to the numercial precision properties of the used algorithms.

Combining our fully configurable workflow with Observation 6.1 presents a new
approach for testing the algorithm implementations in a maintainable and almost auto-
matic manner. We can take advantage of the concept of software redundancy commonly
used in safety critical applications. The main idea behind software redundancy is to
perform a calculation multiple times with usually fundamentally different algorithms
(often developed by independent teams) thus minimizing the possibility of common
mode failures. After the calculations a voting component examines whether every
algorithm calculated the same result. If that’s not the case then one or more of the
algorithms are incorrect.
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The building block for this testing phase consists of running our analysis workflow
for a given configuration and saving the calculated results (reward and sensitivity
values). We generated 588 mathematically consistent configurations in total, executed
them for our running example (Figure 2.4), multiple benchmark models and case
studies. Finally we examined the maximum absolute difference of the calculated results
as an error indicator for each performance measure in each model as presented in the
next sections.

Beside verifying the correctness of the developed algorithms, our main goal with
software redundance based testing is to gather a knowledge base about the effectiveness
of different analysis approaches for models with varying properties. The gathered
observations are summarized in Section 6.4.

6.2 Measurements

In this section we introduce the models used throughout the testing and benchmarking
phase then we present preliminary results about the performance of solver algorithms
using the implemented block Kronecker decomposition matrix form.

6.2.1 Shared resource

One of the bechmark models was the modified version of stochastic SharedResource
(SR) system (presented in Figure 2.4). We added three more nodes to the system and
modified some of its parameters along two dimensions. On one hand we increased
the number of reachable states by adding more resources and local processes to the
model. On the other hand we changed the rates of transitions in the model resulting in
changes in it’s stochastic behaviour. We created symmetric, slightly asymmetric and
significantly asymmetric versions of the model. In the third case there are orders of
magnitude of difference between the transitions rates of the model.

6.2.2 Kanban

We used the SPN version of the kanban (KB) system [25] as the other benchmark
model. The model was scaled by modifying the available resources at each stage of the
model resulting in an increase in the size of the state space.

6.2.3 Cloud performability

One of themodels we used for analyis represents a cloud architecture [43] with physichal
and virtual machines serving incoming jobs using warm and cold spare resources in
case of increasing load. We modified some aspects of the model in [43] since our library
currently doesn’t support the GPSN formalism.
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6.3 Baselines

In the next paragraphs we present some of the state of the art modeling and analysis
tools and their features without being exhaustive. These will serve as a baseline for
evaluating the performance of the best algorithm combinations of our library against
the algorithms available in presented analysis tools.

6.3.1 GreatSPN

GreatSPN (also refered to as GSPN) [1] is a freely available tool for the modeling,
verification and performance evaluation of distributed stochastic systems. The tool
support numerous extenstions of stochastic Petri nets and provides a wide range of
analysis options the various types of Petri nets. To our best knowledge GSPN is available
only for a few Unix based systems with single core 32-bit CPUs which poses a restriction
on the amount of resources it can use during an analysis.

6.3.2 Möbius

Möbiues is a commercial tool with with many supported formalisms and analysis types
[30]. Furthermore they use runtime codegeneration to greatly improve the tool’s
performance. They provide a white-box analysis library making it possible for third
party developer to integrate their own tools with Möbius.

6.4 Results

Observation 6.2 Based on the preliminary measurements and combinatorial testing
we can note some interesting observations:

1. As expected the storage requirement of the block Kronecker form is almost an
order of magnitude lower than that of the sparse form.

2. For models with moderate state space sizes (approximately a few millions) the
sparse form outperforms the block Kronecker form.

3. However for models with considerably bigger state space sizes (almost a hun-
dred million) the block Kronecker form outperforms the sparse form not just
in memory usage but in analysis time as well. This is probably because of the
inefficient cache usage of the sparse structure.

4. For models consisting of similar transition rates the BiCGSTAB algorithm is
the most effective solution method for both sparse and block Kronecker matrix
representations.
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Model States Generator Algorithm Memory Time

SR-Sym-7 10775 710 Sparse Uniformization 3 120 MiB 279 s
BiCGSTAB 3 450 MiB 236 s

BK Uniformization 650 MiB 222 s
BiCGSTAB 815 MiB 162 s

SR-Asym-7 10775 710 Sparse Uniformization 3 116 MiB 316 s
BiCGSTAB 3 450 MiB 236 s

BK BiCGSTAB 812 MiB 373 s
SR-Degen-7 10775 710 Sparse BiCGSTAB Breakdown

BK Group GS / Jacobi No convergence
SR-Sym-9 81466 099 Sparse BiCGSTAB 25564 MiB 2542 s
SR-Asym-9 81466 099 Sparse BiCGSTAB Oscillation

BK Group GS / Jacobi 2388 MiB 9402 s
Cloud-3-2 20047 500 Sparse BiCGSTAB Out of memory

BK BiCGSTAB Breakdown
Group GS / Jacobi 684 MiB 3379 s

KanBan-5 2546 432 Sparse Uniformization 833 MiB 54 s
BiCGSTAB 911 MiB 92 s

BK Uniformization 360 MiB 70 s
BiCGSTAB 392 MiB 124 s

KanBan-7 41644 800 Sparse Uniformization 12471 MiB 909 s
BK Uniformization 6253 MiB 1135 s

Table 6.1 Preliminary benchmark results.

5. Slower, but more memory efficient solvers (Gauss-Seidel iteration, Jacobi itera-
tion) often diverged using sparse matrix form while converged using the block
Kronecker form. This is due to the possibility of different state ordering in the
block Kronecker form.

6. For irregular models (i.e. containing very different transition rates) it’s possible
that the BiCGSTAB algorithm won’t converge while other algorithms can handle
the model.

Every data used for testing and measurement is publicly available at https://github.
com/kris7t/stochastic-analysis.

https://github.com/kris7t/stochastic-analysis
https://github.com/kris7t/stochastic-analysis
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Chapter 7

Conclusion and future work

We have developed and presented our configurable stochastic analysis framework for the
dependability, reliability and performability analysis of complex asynchronous systems.
Our presented approach is able to combine the strength and advantages of the different
algorithms into one framework. We have not only implemented a stochastic analysis
library, but we integrated the various state space traversal, generator matrix representa-
tion and numerical analysis algorithms together. Various optimization techniques were
used during the development and many of the algorithms are paralellized to exploit
the advantages of modern mulitcore processor architectures.

From the theoretical side, we have developed an algorithm which can efficiently
compile the symbolic state space representation into the complex data structure repre-
sentation of the stochastic process. We have formalised our algorithm and proved its
correctness. This new algorithm helps us to exploit the efficient state space representa-
tion of symbolic algorithms in stochastic analysis.

In addition we have investigated the composability of the various data storage,
numerical solution and state space representation techniques and combined them
together to provide configurable stochastic analysis in our framework.

Extensive investigation was executed in the field to be able to develop more than 2
state space exploration algorithms, 3 state space representation algorithms, 3 generator
matrix decomposition and representation algorithms, 7 steady-state solvers, 2 transient
analysis algorithms and 4 different computation algorithms for engineering measures.
Our long term goal is to provide these analysis techniques also for a wider community,
we have integrated our library into the PetriDotNet framework. Our algorithms are
used also in the education for illustration purposes of the various stochastic analysis
techniques. In addition, our tool was also used in an industrial project: one of our case-
studies is based on that project. The stochastic analysis library is built from more than
50 000 lines of code. More than 70 000 generated test cases serve to ensure correctness
as much as possible. In addition, software redundancy based testing was applied to
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further improve the quality of our library.
Despite our attepmts to be as comprehensive as possible, many promising directions

for future research and development are

• more extensive benchmarking of algorithms to extend the knowledge base about
the effectiveness and behavior of stochastic analysis approaches toward and
adaptive framework for stochastic analysis;

• support for extended formalisms for stochastic models, such as Generalized
Stochastic Petri Nets (GSPN) [88] and Stochastic Automata Networks (SAN) [51],
as well as models with more general stochastic transition behaviors [57];

• the implementation and development of further numerical algorithms, includ-
ing those that can take advantage of the various decompositions of stochastic
models [15, 16, 33];

• reduction of the size of Markov chains through the exploitation of model symme-
tries [13, 49];

• the development of preconditioners for the available interative numerical solution
methods [56];

• distributed implementations of the existing algorithms [21];

• support for fully symbolic storage and solution of Markov chains [28, 70, 91];

• the use of tensor decompositions instead of vectors to store state distributions
and intermediate results to greatly reduce memory requirements of solution
algorithms [3, 34, 45].

Acknowledgement Wewould like to thank IncQueryLabs Ltd. for their support during
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