
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Bounded Saturation Based
CTL Model Checking

András Vörös, Dániel Darvas
 Budapest University of Technology
and Economics, Budapest, Hungary

Fault Tolerant Systems
Research Group

Tamás Bartha
MTA SZTAKI,

Budapest, Hungary
Computer and Automation

Research Institute

Contents

I. Background – Model checking

II. Overview of saturation

III. Bounded model checking (BMC)

IV. How saturation and BMC can work together?

V. Measurements and conclusion

Formal methods

 Safety critical and embedded systems

oRailway, automotive industry, air transportation

oReliability is an important issue

 Design time analysis:

Modeling Specification
Formal

verification

requirements

– Does my system work well?

– Does it provide services properly?

Mathematically sound answer

Model checking

 Automatic verification method

 Prerequisite:

o Exploring and representing the reachable states

 Problem:

o State space explosion

o Time and space requirements

System
model

Specification,
requirements

Model
checker

Proof /
Counterexample

Saturation algorithm

 Efficient solution for:

o State space generation

o Model checking

 Symbolic algorithm

o Encoding of states

o Special underlying data structures

• Multi-valued decision diagrams (MDDs)

 Special iteration strategy

o Efficient for asynchronous models

Overview of the saturation workflow
Sa

tu
ra

ti
o

n

Model of the system

Decomposition and
ordering

State space exploring

Model checking

Multi-valued Decision Diagrams
 Derived from decision trees

o variables are ordered into levels

0 0 1 0 1 0 1 1

1st variable

2nd variable

3rd variable

terminal constants

Decision tree

1

0 1

0
1 0

1

0 1 0 1 0 1 0

(0,1,1)→1

Multi-valued Decision Diagrams
 Derived from decision trees

o variables are ordered into levels

 Special reduction rules
o in a bottom-up fashion, applying reduction from level-to-levels

 Compact representation of multi valued functions

0 0 1 0 1 0 1 1

Decision tree

1

0 1

0
1 0

1

0 1 0 1 0 1 0

0 1

≡

0 1

0 1
1

1

0

0

MDD

Symbolic algorithm

 Symbolic encoding instead of explicit state
representation

o Decomposition is needed

 Saturation uses componentwise encoding

System Model

Component 2

Component 1

Component 3

Special iteration

 Local exploration in a greedy manner

 Exploring global synchronization events if needed

 Uses the primarily defined order of the decision
diagram variable encoding

System Model

Component 2

Component 1

Component 3 Ite
ratio

n
 o

rd
e

r

Bounded saturation

Motivation for bounded model checking

State space

Initial
states

Explored states

Motivation for bounded model checking

State space

Initial
states

Error states

Requirements

not satisfied

Motivation for bounded model checking

State space

Initial
states

Error states

Requirements

not satisfied

Bounded model checking (BMC)
 explores a k-bounded part of the state space
 (usually in a breadth first manner)
 examines the specification on this smaller part

Problems with Bounded Saturation

 Main problems with bounded saturation:

oSaturation explores the state space in an
irregular recursive order

• ⇒ Difficult to limit the exploration

oThere is no distance information in the MDDs

• ⇒ New data structure is needed

Problems with Bounded Saturation

 Main problems with bounded saturation:

oSaturation explores the state space in an
irregular recursive order

• ⇒ Difficult to limit the exploration

oThere is no distance information in the MDDs

• ⇒ New data structure is needed
New data structure:

Edge-valued decision diagrams (EDDs)

MDD based data structure enriched with
distance information

Bounded number of iterations

Truncating the state space representation

Open questions before our work

 How can we implement a bounded state space
exploration (BSSE) module?

o In theory it needs information about the state space,
but this is not available a priori.

 Can BSSE and a saturation based model checker
work together?

 Is there an efficient way for using exact bounds?

 How can we use this method for model checking
in practice?

Truncating methods

 Two approach:

Approximate truncating

• only k..k∙C-bound
(C: number of components)

• more efficient
(as stated earlier)

Exact truncating

• exact k-bound

• less efficient originally

• in our work:
competitive
(using caches)

Iterative BMC

 The necessary k-bound is not known a priori

 We use an iterative algorithm:

k = B

k-bounded
state space
exploration

k = k + inc
Result?

YES

CTL model
checking

MDD

• System model
(Petri Net)

• Requirement
(CTL expression)

• Initial bound (B)
• Increment (inc)

Inputs

Efficiency problems

 Classical saturation based MC may explore and
check some unreachable states needlessly

o The answer is correct but could be more efficient

oWork in progress (constrained saturation)

 Incremental building of the state space

o The algorithm restarts state space exploration from
the initial state

o Future work

Measurements and conclusion

Measurements

 Scaling with depth of „error state”

0

5

10

15

20

25

30

35

8 32 64 128

R
u

n
ti

m
e

 (
s)

Depth of bug

Approximate truncate Exact truncate Full state space exploration

Measurements

 Scaling with depth of „error state”

0

5

10

15

20

25

30

35

8 32 64 128

R
u

n
ti

m
e

 (
s)

Depth of bug

Approximate truncate Exact truncate Full state space exploration

Model: Hanoi
(12 rings)

Initial bound: 10

Increment: 5

Diameter: 4095

Measurements

 Scaling with increasing increments
Depth of bug: 128

0

5

10

15

20

25

30

35

5 10 20 30 40

R
u

n
ti

m
e

 (
s)

Increment
Approximate truncate Exact truncate Full state space exploration

24 iterations 4 iterations

Conclusion

 We have implemented a bounded
model checker in our tool

o Theoretical and practical improvements in the original
bounded algorithm

 Saturation based bounded state space generation
and classic MC could work together

 Efficient for ”shallow bugs”

 Efficiency is highly depending on the chosen
parameters

Thank you for your attention!

