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Formal methods 

 Safety critical and embedded systems 

oRailway, automotive industry, air transportation 

oReliability is an important issue 

 Design time analysis: 

Modeling Specification 
Formal 

verification 

requirements 

– Does my system work well? 

– Does it provide services properly? 

Mathematically sound answer 



Model checking 

 Automatic verification method 

 

 Prerequisite: 

o Exploring and representing the reachable states 

 Problem: 

o State space explosion 

o Time and space requirements 

System 
model 

Specification, 
requirements 

Model 
checker 

Proof / 
Counterexample 



Saturation algorithm 

 Efficient solution for: 

o State space generation 

o Model checking 

 Symbolic algorithm 

o Encoding of states 

o Special underlying data structures 

• Multi-valued decision diagrams (MDDs) 

 Special iteration strategy 

o Efficient for asynchronous models 



Overview of the saturation workflow 
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Model of the system 

Decomposition and 
ordering 

State space exploring 

Model checking 



Multi-valued Decision Diagrams 
 Derived from decision trees 

o variables are ordered into levels 
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Multi-valued Decision Diagrams 
 Derived from decision trees 

o variables are ordered into levels 

 Special reduction rules 
o in a bottom-up fashion, applying reduction from level-to-levels 

 Compact representation of multi valued functions  
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Symbolic algorithm 

 Symbolic encoding instead of explicit state 
representation 

o Decomposition is needed 

 Saturation uses componentwise encoding 

System Model 

Component 2 

Component 1 

Component 3 



Special iteration 

 Local exploration in a greedy manner 

 Exploring global synchronization events if needed 

 Uses the primarily defined order of the decision 
diagram variable encoding 
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Bounded saturation 

  



Motivation for bounded model checking 

State space 

Initial 
states 

Explored states 
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Motivation for bounded model checking 

State space 

Initial 
states 

Error states 

Requirements 

not satisfied 

Bounded model checking (BMC) 
 explores a k-bounded part of the state space  
 (usually in a breadth first manner) 
 examines the specification on this smaller part 



Problems with Bounded Saturation 

 Main problems with bounded saturation: 

oSaturation explores the state space in an 
irregular recursive order 

• ⇒ Difficult to limit the exploration 

 

oThere is no distance information in the MDDs 

• ⇒ New data structure is needed 



Problems with Bounded Saturation 

 Main problems with bounded saturation: 

oSaturation explores the state space in an 
irregular recursive order 

• ⇒ Difficult to limit the exploration 

 

oThere is no distance information in the MDDs 

• ⇒ New data structure is needed 
New data structure:  

Edge-valued decision diagrams (EDDs) 

MDD based data structure enriched with  
distance information 

Bounded number of iterations 

Truncating the state space representation 



Open questions before our work 

 How can we implement a bounded state space 
exploration (BSSE) module? 

o In theory it needs information about the state space, 
but this is not available a priori. 

 Can BSSE and a saturation based model checker 
work together? 

 Is there an efficient way for using exact bounds? 

 How can we use this method for model checking 
in practice? 



Truncating methods 

 Two approach:  

Approximate truncating 

• only k..k∙C-bound 
(C: number of components) 
 

• more efficient 
(as stated earlier) 

Exact truncating 

• exact k-bound 
  
 

• less efficient originally 

• in our work: 
competitive 
(using caches) 



Iterative BMC 

 The necessary k-bound is not known a priori 

 We use an iterative algorithm: 

 
k = B 

k-bounded 
state space 
exploration 

k = k + inc 
Result? 

YES 

CTL model 
checking 

MDD 

• System model 
(Petri Net) 

• Requirement 
(CTL expression) 

 

• Initial bound (B) 
• Increment (inc) 

Inputs 



Efficiency problems 

 Classical saturation based MC may explore and 
check some unreachable states needlessly 

o The answer is correct but could be more efficient 

oWork in progress (constrained saturation) 

 Incremental building of the state space 

o The algorithm restarts state space exploration from 
the initial state 

o Future work 



Measurements and conclusion 



Measurements 

 Scaling with depth of „error state” 
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Model: Hanoi 
(12 rings) 

Initial bound: 10 

Increment: 5 

Diameter: 4095 



Measurements 

 Scaling with increasing increments 
Depth of bug: 128 
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Conclusion 

 We have implemented a bounded  
model checker in our tool 

o Theoretical and practical improvements in the original 
bounded algorithm 

 Saturation based bounded state space generation 
and classic MC could work together 

 Efficient for ”shallow bugs” 

 Efficiency is highly depending on the chosen 
parameters 

 

 



Thank you for your attention! 

  


