
Advanced Saturation-based Model Checking of

Well-formed Coloured Petri Nets

András Vörös∗, Attila Jámbor, Dániel Darvas†, and Tamás Bartha

Abstract

The failure of safety-critical embedded systems may have catastrophic
consequences, therefore their development process requires a strong veri-
fication procedure to obtain a high confidence of correctness in the speci-
fication and implementation. Formal modelling and model checking pro-
vides a rigorous, mathematically precise verification method. Practical
embedded systems are typically complex, distributed and asynchronous,
thus they need expressive and compact formal models, and efficient model
checking approaches.

The saturation algorithm has an efficient iteration strategy. Combined
with symbolic data structures, it can be used for state space generation
and model checking of asynchronous systems. Coloured Petri nets are a
good choice for modelling distributed and asynchronous systems, however
their integration with saturation has not been solved in the past. In this
paper we describe a new approach for applying saturation-based state
space generation and model checking to coloured Petri nets. We demon-
strate the performance of our new algorithm on the verification of a safety
function used in the Reactor Protection System of a nuclear power plant.

1 Introduction

The formal verification of complex, distributed, and asynchronous embedded
systems is an important but difficult task, complicated by the state space explo-
sion problem. Such systems can be modelled in a compact and well-structured
manner with coloured Petri nets. However, coloured Petri nets lacked efficient
analysis methods in the past, making their application for practical verification
problems hard or even impossible.

Our work focuses on an efficient model checking algorithm for asynchronous
systems, the so-called saturation algorithm. It is a symbolic state space genera-
tion and model checking algorithm that uses a special iteration strategy during

∗This work was partially supported by the ARTEMIS JU and the Hungarian National
Development Agency (NFÜ) in the frame of the R3-COP project.
†Attila Jámbor and Dániel Darvas were partially supported by the MFB Hungarian De-

velopment Bank Plc.

1



the exploration. The problem with saturation is that the symbolic represen-
tation it builds for the next-state relation during the state exploration phase
imposes a high overhead in the analysis of practical systems. We address this
problem by introducing a new strategy to handle the complex logic and large lo-
cal state spaces encoded in the next-state representation of well-formed coloured
Petri nets.

The structure of this paper is the following. Section 2 gives an overview
of the theoretical background. Section 3 introduces the saturation algorithm,
and its application to coloured Petri nets in particular. Our contribution is a
new saturation algorithm presented in Section 4. We examine an industrial case
study for our algorithm: the verification of a safety function. The description
of the verification process and our results are given in Section 5.

1.1 Related work

There is much work in the field of model checking of Petri net models. The dif-
ferent techniques could be sorted into two groups: symbolic and explicit model
checking algorithms. A BDD-based symbolic algorithm was presented in [20, 19],
which was one of the first attempts to combine decision diagram techniques with
Petri nets. Saturation is an efficient symbolic state space exploration [4] and
CTL model checking [5] algorithm. SAT-based symbolic approaches proved
their efficiency in hardware verification, but there are also efficient techniques
for the analysis of Petri nets. We refer the reader to [13, 18]. Explicit tech-
niques are also present for the verification of Petri net models. They usually
use some kind of reduction techniques like symmetry reduction [14] or partial
order reduction based on stubborn sets [21], persistent sets [11] or ample sets
[9]. An other partial order based technique is the so called Petri net unfolding
algorithm [10].

Our case study, the PRISE (primary-to-secondary leaking) safety function
[17] was an important motivation for our research. It has a huge state space (of
> 1012 states) and many different behaviours, therefore most of the previous
verification attempts failed to handle it entirely. The first successful verification
of PRISE was reported in [17], where the authors used coloured Petri nets and
the Design/CPN modelling tool. Design/CPN has a simple explicit state model
checker without built-in reduction methods, therefore the authors had to use
state space reduction techniques manually, then partition the state space and
separately analyse the different subspaces.

Later, we have created a formal model of the PRISE safety function in
the Uppaal tool. Uppaal has symbolic state space representation, built-in
state space reduction methods, and a (partial) Computation Tree Logic (CTL)
model checker. It has failed to handle the complete state space due to memory
overflow, although we have at least succeeded proving some of the requirements
by reducing the model. We have also tried the Symbolic Analysis Laboratory
(SAL) model checker [23]. SAL uses a Binary Decision Diagram based efficient
state space representation, nevertheless this verification attempt has failed as
well due to insufficient memory.

2



We have experimented with using other advanced Petri net verification meth-
ods [22]. In [4] the authors introduced an efficient symbolic state space genera-
tion and model checking method for asynchronous systems, especially for Petri
nets. We have implemented and run the algorithm with different settings. Even
using this method both the state space representation and the next-state rela-
tion have exceeded our resources.

We have published the first successful attempt to explore and verify the full
state space of the PRISE safety function with our new algorithm in [1]. This
paper is an improvement on our previous solution.

2 Background

In this section we outline the theoretical background of our work. First, we
present coloured Petri nets, the modelling formalism we used. Then, we in-
troduce Multiple-valued Decision Diagrams. They form the underlying data
structures of our algorithms that store the state space during model checking.
Finally, we give an overview of the model checking background.

2.1 Petri Nets

Petri nets are graphical models for concurrent and asynchronous systems, mak-
ing both structural and dynamic analysis possible. A (marked) discrete ordinary
Petri net is defined by a 5-tuple PN = (P, T,E,w,M0), represented graphically
by a directed bigraph. P = {p1, . . . , pn} is a finite set of places, T = {t1, . . . , tm}
is a finite set of transitions (P ∩T = ∅), E ⊆ (P ×T )∪ (T ×P ) is a finite set of
edges, and w : E → Z+ is the weight function assigning weights w(e) to each edge
e ∈ E. M : P → N is a marking function, where M(pi) represents the number
of tokens in place pi. M0 is the initial marking function of the net. A transition
t is enabled, if for every e = (pi, t) incoming arc of t : M(pi) ≥ w(pi, t). An
event in the system is the firing of an enabled transition ti, which decreases the
number of tokens in all the input places pj by w(pj , ti) and increases the number
of tokens in every pk output places by w(ti, pk). The firing of the transitions is
nondeterministic [16].

The state space or reachability graph of a Petri net is the set of states reach-
able from the initial state(s) through transition firings. Let N be the next-state
function which depicts the possible state changes. N (s) is a subset of possible
states, containing the states reachable from s through one firing. The complete
set of states reachable from s is {s} ∪ N (s) ∪ N (N (s)) ∪ . . . = N ∗(s), where
N ∗ is the transitive closure of N . The state space of a Petri net is S = N ∗(s0),
where s0 is the initial state of the net (given by the initial marking M0).

2.2 Coloured Petri Nets

The coloured Petri net (CPN) [15] formalism enriches the ordinary Petri nets
with complex data structures, making CPN models more compact and clearer.

3



There are many variants of CPNs in the literature, in this work we use well-
formed coloured Petri nets.

Our modelling formalism has a CPN = (P, T,E,Σ, C,G,A,M c
0 ) structure.

P , T and E have the same meaning as in ordinary Petri nets. Σ = {σ1, . . . , σκ}
is a set of colour sets (data types). In well-formed coloured Petri nets Σ is
finite. C : P → Σ is the colour function assigning colour sets to each place. G
is a function that assigns a guard to each transition. A is the arc expression
function assigning an arc expression to each edge. M c

0 is the initial marking
function assigning multisets of tokens to each place.

The firing semantic is different from ordinary Petri nets. Each G(t) guard
is a Boolean function containing variables, Boolean operators, and marking
expressions. Every A(e) arc expression is a function that evaluates to a multiset
of tokens. The σi colour sets determine the allowed sets of tokens. A transition
t is enabled, if

∧
e=(pi,t)∈E A(e) expression is satisfied (e. g., there is a possible

variable–token assignment (binding) for all variables in every arc expression on
ingoing and outgoing edges of t and for the variables of the guard G(t)) and the
value of the guard G(t) is true. The firing of an enabled transition t takes A(e)
tokens from pi for every incoming edge e = (pi, t) ∈ E and puts A(f) tokens to
po for every outgoing edge f = (t, po) ∈ E.

The different variants of CPNs have different constraints for colour sets,
guards and arc expressions. In our formalism colour sets can be simple or com-
plex. A simple colour set is a finite enumeration or a finite subset of integers. A
complex colour set is a Cartesian product of simple colour sets. An arc expres-
sion can contain token constants and simple variables representing a member of
a simple colour set. The guard expressions can contain token constants, simple
variables, Boolean operators, relation signs and the successor operator.

2.3 Multiple-valued Decision Diagrams

Decision diagrams are used in symbolic model checking for efficiently storing the
state space and the possible state changes of the models [2]. A Multiple-valued
Decision Diagram (MDD) is a directed acyclic graph, representing a function
f consisting of K variables: f : {0, 1, . . .}K → {0, 1}. An MDD has a node set
containing two types of nodes: many nonterminal nodes and two terminal nodes
(namely 0 and 1). The nodes are ordered into K+1 levels. A nonterminal node
is labelled by a variable index k (1 ≤ k ≤ K), referring to which level the node
belongs (i. e., which variable it represents; denoted by Level(p) for node p), and
has nk (domain size of the variable) arcs to nodes in level k−1. We write p[i] = q
if the ith edge of node p is pointing to node q. A terminal node is labelled by
the variable index 0. Duplicate nodes are not allowed, so if two nodes have
identical successors in the lower level, they are also identical [7]. These rules
ensure that MDDs are canonical and compact equivalents of a given function or
set. The evaluation of the function is a top-down traversal of the MDD along
the variable assignments represented by the arcs between nodes.

4



2.4 Model Checking

Model checking is an automatic technique for verifying finite state systems.
Given a model, model checking decides whether the model fulfils the specifica-
tion. Formally: let M be a Kripke structure (i. e., state transition graph). Let
f be a formula of temporal logic (i. e., the specification). The goal of model
checking according to [9] is to find all states s of M such that M, s � f . Struc-
tural model checking [9] computes the results by exploring first the reachable
states and creating a symbolic transition relation representation, and based on
these it we can perform the model checking procedure.

CTL (Computation Tree Logic) [9] is frequently used for temporal specifica-
tion of systems. It has an expressive syntax, and there are efficient algorithms
for its analysis. Operators occur in pairs in CTL: the path quantifier, either A
(on all paths) or E (there exists a path), is followed by the tense operator, one
of X (next), F (future or finally), G (globally), and U (until). However, we only
need to implement 3 of the 8 possible pairings due to duality [9]: EX, EU, EG.

The semantics of the 3 required CTL operators are as follows (where p and
q are predicates):

• EX: s0 � EX p iff ∃s1 ∈ N (s0) state such that s1 � p. This means that
EX corresponds to the inverse N function, applying one step backward
through the next-state relation.

• EG: s0 � EG p iff ∃I = (s0, s1, s2, . . .) infinite path such that ∀j ≥ 0 :
sj+1 ∈ N (sj) and sj � p, so there is a strongly connected component
containing states satisfying p.

• EU: s0 � E(p U q) iff ∃n ≥ 0,∃I = (s0, s1, s2, . . . , sn) path such that
∀1 ≤ j ≤ n : sj ∈ N (sj−1), ∀0 ≤ k < n : sk � p and sn � q.

3 Saturation

Saturation [8] is a symbolic state space generation and model checking algorithm
that proved its efficiency in the verification of asynchronous systems [4]. In this
section we introduce its main features and its application for the verification of
CPN models.

3.1 Saturation-based State Space Exploration

Saturation stores the encoded state space of the model in an MDD. Decompo-
sition serves as the prerequisite for the symbolic encoding in saturation: the
algorithm maps the state variables of the high-level model into symbolic vari-
ables of the decision diagram. A global state sj can be described as the com-
position of the local states of components: sj = (sj1, . . . , s

j
K), where K is the

number of components, sji is a local state of the ith component, and
⋃
j s
j
i = Si

is the local state space. The global state space S is represented by an MDD
with K variables (levels), where variable xi corresponds to the state of the ith
component. A global state sj is encoded by a trace (path) of the MDD, where

5



x1 = sj1, . . . , xK = sjK . Decomposition helps the algorithm to efficiently exploit
the inherent locality of asynchronous systems. Locality ensures that an event
usually affects only a few components, or just certain parts of the submodels.

Saturation uses a peculiar iteration strategy : it iterates through the MDD
nodes and generates the whole state space representation using a node-to-node
transitive closure. Building the MDD representation of the state space starts by
building the MDD representing the initial state. Then the algorithm saturates
every node in a bottom-up manner, by applying saturation recursively when new
states are discovered. The result is the state space representation encoded in
MDD. This way saturation avoids during the iteration that the peak size of the
MDD exceeds its final size, which is a critical problem in traditional approaches.
We refer the reader for details and running example to [3].

3.2 Conjunctive and Disjunctive Partitioning

The next-state function Ne of event e describes the states reachable from a given
state in one step (i. e., with a single firing of a transition). In [4] the authors
used a Kronecker matrix-based representation of Ne. In their solution the next-
state function N(e,i) of the event e (firing of the corresponding transition) in
the ith submodel is encoded by a Kronecker matrix. The global next-state of
event e is Ne = N(e,1) × . . .×N(e,K). This encoding enables building the next-
state functions locally, but it requires a Kronecker-consistent decomposition.
Ordinary Petri nets are Kronecker-consistent for any partitioning of the places,
but this is not guaranteed for more general models, like the well-formed CPNs
[4].

In [6] the authors introduced a new next-state representation for saturation-
based algorithms to be able to analyse a more general class of models. This
solution uses MDDs with 2K levels to symbolically encode a next-state function
N into the relation R of from and to variables: R ⊆ S × S. The variables
x = (x1, x2, . . . , xK) in R refer to the current (‘from’) state, and the variables
x′ = (x′1, x

′
2, . . . , x

′
K) to the next (‘to’) states. R encodes the next-state function

so that from state x we can go to states x′ in one step.
The algorithm avoids creating a large, monolithic next-state relation, it di-

vides the global next-state function into smaller parts instead. The first step
is the disjunctive decomposition according to the set E of e events in the high-
level model: R =

∨
e∈E Re. In many cases the computation of these local Re

relations is still expensive. So, in the next step the algorithm partitions the
Re disjuncts conjunctively according to the enabling and updating relations [6]:

Re =
∧
kRenable

e,k ∧
∧
kR

update
e,k , where e ∈ E , 1 ≤ k ≤ K, and K is the number

of components. The enabling relation is responsible for deciding if the given
event is enabled in a certain state while the update relation decides to which
next states the exploration can go.

The enabling relation consists of variables necessary for deciding the enabling
of the transition related to a certain event. It contains only ‘from’ variables (in
x), and does not change the value of any ‘to’ variables (in x′). The updating

6



relation represents the local state changes, i. e., the local next-state functions,
therefore it contains variables both from x and x′.

This fine-grained decomposition approach makes it possible to handle ar-
bitrary finite next-state functions, which is the key to handle complex events
efficiently.

3.3 Saturation-based Analysis of Coloured Petri Nets

Well-formed coloured Petri nets can model complex systems in a compact form
by utilizing the data content of tokens instead of pure structural constructs.
However, this compactness takes its price during state traversal: local state
spaces and transition relations of the submodels in a decomposed CPN are
typically much larger and more complex than in simple Petri nets. Previous
research [6] proved that the smaller the partitions are, the more efficient the
saturation becomes, since the creation and maintenance of the smaller parts
requires significantly less resources. In this section we present a new approach
to analysing well-formed coloured Petri nets, using the framework to handle a
general class of models introduced in [6].

The efficient construction of the relation Re is a challenging task. The firing
of a transition changes the state of both the input and output places. As a
consequence, if decomposing the transition relation according to [6], then up-
date relations will always contain the enable relations. Therefore, they cannot
be divided into disjunct relations, so the manipulation of the enabled relations
only leads to a computational and storage overhead. Another problem is that
complex guard expressions prevent the algorithm from reaching fine-grained par-
titioning, since all explored possible variable assignments of a guard expression
have to be stored in an MDD as well.

Our aim is to decompose the transition relation into small disjunct relations,
where the simple conjuncts depend only on as few state variables as possible.
In order to be able to build a disjunct enable relation we introduced [1] new
variables (levels) v = {v1, . . . , vn} in the next-state representation, correspond-
ing to the CPN variables used in the guards and arc expressions (where n is
the number of independent variables in the guard and arc expressions). The
enabling constraint has the form Renable

e (v) and it is expressed with the new
v variables in a semantically equivalent way to the Renable

e relation of the al-
gorithm in [6]. An additional advantage of this encoding is that Renable

e (v)
is computable off-line, before running the algorithm. The update relation has
the form Rupdate

e,i (v,x,x′). Using the new variables a fine-grained partition-
ing can be constructed, where each stateful element (i. e., place) has its own
next-state relation. The final transition relation of event e is the following:
Re = {(x,x′)|∃v Renable

e (v) ∧
∧
kR

update
e,k (v,x,x′)}.

3.4 Performance Issues

The coloured saturation algorithm using the disjunctive-conjunctive partition-
ing introduced in this section is designed for a general class of CPNs, without

7



restrictions. As a consequence, the algorithm does not have a priori knowledge
about the possible states, local states, next-states and local next-states. There-
fore, it builds the local state spaces and transition relations on-the-fly, without
having additional information that could be used to optimize the traversal and
the construction of the next-state relations.

Thus, when a new local state is discovered, both the local state space and
the next-state relations need to be updated with regard to the new information.
Since these updates are frequent (as all local states and next-state relations
must be explored), they impose a big overhead on the algorithm. Moreover,
incidental to the greedy transition relation building nature of symbolic methods,
the algorithm builds many transition relations that will never be fired due to
the restrictions by the state space.

In the next chapter we address these problems by adapting the saturation al-
gorithm to those kinds of models, where the local state spaces of the components
are not known before the model checking.

4 Lazy Saturation

In this section we introduce our new saturation algorithm, which uses a more
resource-efficient strategy to compose the next-state relations during the state
space traversal. The aim is to be able to filter out the unnecessary state changes
by delaying the construction of the next state relation. We named this new
approach as lazy coloured saturation, or lazy saturation for short.

4.1 Overview of the Approach

Symbolic algorithms encode all of the possible state changes in the transition
relation. The disjunctive-conjunctive partitioning algorithm decomposes this
relation, and saturation benefits from the efficient manipulation of the smaller
parts. During the iteration these subrelations are updated according to the
new information found about the substates: every time a new local state sji is

discovered, all possible local state transitions from sji are computed and added
to every next-state relation. However, there can be state transitions that are
possible locally, but the algorithm will never reach a state where they become
enabled on the global, Petri net level. Since these infeasible local state transi-
tions have been added to the local next-state relations, the decomposed symbolic
representation becomes bigger than necessary.

The aim of our new algorithm is to filter out as many infeasible transition
relations as possible. We introduce a new ER relation that only stores the states
from which state transitions are possible. In other words, this relation contains
only ‘from’ states (x), contrary to the next-state relation the ‘to’ states (x′) are
not stored. This lets the building of the next-state relations be delayed until
the algorithm can exactly decide which relation should be updated with the
new information. First, we build only the ER relation, and we include a state
transition in the next-state relation only when it becomes globally enabled. In

8



this way the next-state relation will contain only a few globally infeasible state
transitions, and its size will be significantly more compact. The motivation
of our work is based on the observation that the size of the ER relation is
always smaller than the size of the R relations: using this smaller ER relation
to postpone or to skip the building of the R relations is a good pay-off regarding
the performance of the algorithm.

We include the pseudocode of the lazy saturation algorithm in the rest of
this section. The cache manipulation and decision diagram specific operations
are omitted for brevity, but the interested reader can find them in [4]. The
changes compared to former approaches are marked with “stars” (∗), the rest
of the algorithms are from [4].

The entry point of saturation is the GenerateStateSpace function (Algo-
rithm 1). This function creates a new MDD node for every submodel to repre-
sent the initial state, and immediately saturates each one of them in a bottom-
up manner. The saturation of nodes are done by the Saturate (Algorithm 2)
and SatFire (Algorithm 3) functions. These functions build the MDD of the
state space by firing all enabled events in a recursive, exhaustive manner. If
a new state is discovered, all states reachable from it are explored by calling
the Confirm (Algorithm 4) function. This function is explained in detail in
Section 4.2. The R relation is updated by the UpdateRelation function at this
point of saturation. Its operation is described in Section 4.3.

4.2 Building the ER Relation

We apply the conjunctive-disjunctive decomposition also to the ER relation.
The algorithm creates a separate ERe relation for each event e. For efficient
manipulation, the algorithm partitions each ERe relation into K smaller parts,
and stores them separately: ER =

∨
e∈E ERe and ERe =

∧
1≤k≤K ERe,k. This

way we can exploit event-locality and the other advantages of the saturation
algorithm.

Contrary to the next-state representation of the traditional algorithm, our
algorithm builds primarily the ER relation during the iteration. The algorithm
discovers the new states from which we can fire an event. The states we get after
firing the event are ignored in this phase of the iteration. Formally, our ERe
relation is the ‘simplified’ version of the Re relation of the traditional algorithm:
∀e ∈ E : x ∈ ERe, iff ∃x′ : (x,x′) ∈ Re.

The pseudocode of the Confirm function that updates the next-state infor-
mation is shown in Algorithm 4. The parameters are the following: i denotes
the local state at the kth level we are in before firing. The found possible state
change from this state is updated in the ERe,k relation by the UpdateConjunct

function (its pseudocode is omitted, since it only does simple decision diagram
manipulations). After a conjunct of ERe was updated, we must update the
whole ERe relation by computing symbolically: ERe =

∧
1≤k≤K ERe,k. This is

carried out by the UpdateEventEnable function.

9



Algorithm 1 GenerateStateSpace

input: initial state
output: set of reachable states
1. last← 1
2. for k ← 1 to K do
3. Confirm(k, 0)
4. r← NewNode(k)
5. r[0]← last
6. Saturate(r)
7. last← r
8. return last

Function Description
Confirm(k, i) Registers state i on level k to be globally

reachable, refreshes enabled relations.
GenerateStateSpace Entry point of the algorithm, generates the

symbolic representation of the state space.
NewNode(k) Creates a new MDD node on level k.
SatFire(e, p, R) Exhaustively fires event e using the next-state

relation R on the states represented by the
subgraph of p.

Saturate(p) Exhaustively fires all enabled events for the
states represented by the subgraph of p.

Top(e), Bot(e) Returns the number of highest (lowest) level
affected by event e.

UpdateConjunct(R, i) Updates the conjunct represented by R when
new parts of the state space are discovered.

UpdateEvent(e) Builds (or rebuilds) the Re relation from the

Rupdate
e,k conjuncts.

UpdateEventEnable(e) Builds (or rebuilds) the ERe relation from the
ERe,k conjuncts.

UpdateRelation(e, p, ER, R) Decides if the next-state relation has to be up-
dated according to the newly explored states.

Table 1: Brief description of the used functions

10



Algorithm 2 Saturate

input: p : node
1. k ← Level(p)
2. chng ← true
3. while chng do
4. chng ← false
5. foreach e : Top(e) = k do
6. UpdateRelation(e, p, ERe,

Re) *
7. foreach i ∈ Sk, j ∈ Lk :

p[i] 6= 0 ∧Re[i][j] 6= 0 do
8. f← SatFire(e, p[i], Re[i][j])
9. if f 6= 0 then

10. u← Union(f , p[j])
11. if u 6= p[j] then
12. p[j]← u
13. chng ← true
14. if j /∈ Sk then
15. Confirm(k,j)

Algorithm 3 SatFire

input: e : event, p : node, R : relation
output: node
1. k ← Level(p)
2. if k < Bot(e) then
3. return p
4. s← NewNode(k)
5. chng ← false
6. foreach i ∈ Sk, j ∈ Lk : p[i] 6= 0 ∧
R[i][j] 6= 0 do

7. f = SatFire(e, p[i], R[i][j])
8. if f 6= 0 then
9. u← Union(f , p[j])

10. if u 6= p[j] then
11. p[j]← u
12. chng ← true
13. if j /∈ Sk then
14. Confirm(k,j)
15. if chng then
16. Saturate(s)
17. return s

4.3 Updating the Next-state Relation

The next-state relations are updated by the UpdateRelation function shown in
Algorithm 7. This function recursively computes if an event is enabled, and up-
dates the next-state relation if needed. It traverses recursively all event firings
from the ER and R relations, and the MDD denoted by p that encodes the state
space. During this traversal the algorithm decides whether a state transition
is enabled or not. If the algorithm finds an enabled state transition, i. e., the
UpdateRelation called in a deeper level has returned with a true value, and this
state change has not appeared in R yet (i. e., R[i][j] = 0, this means that the
path in the MDD containing the ’from’ value i and ’to’ value j leads to the ter-
minal zero), then it must be put into R. After every update we must recalculate
theR relation by calling the UpdateEvent function (Algorithm 6). This function

updates the Re relation by calculating: Re = Renablee ∧ (
∧

1≤k≤K R
update
e,k ).

4.4 Operation of Lazy Saturation

We illustrate the operation of the lazy saturation algorithm with an example.
The chosen model shown in Figure 1a is a simple coloured Petri net consisting
of two places and a transition. Both places have the same colour set with two
values: 1 and 2. Initially the place pA is marked with a token valued 1, and
the place pB is empty. During the decomposition we create two submodels, one
for place pA and one for place pB . The encoding of the local states is shown in
Figure 1b. Based on the table, the initial (local) state of place pA is 1 and the

11



Algorithm 4 Confirm

input: k, i : int
1. foreach e : Bot(e) ≤ k ≤ Top(e)

do
2. if Ne,k(i) 6= ∅ then
3. UpdateConjunct(ERe,k,i) *
4. UpdateEventEnable(e) *
5. Sk ← Sk ∪ {i}

Algorithm 5 UpdateEventEnable

input: e : event
1. ERe ← 1
2. for k = 1 to K do
3. ERe ← ERe ∧ ERe,k

Algorithm 6 UpdateEvent

input: e : event
1. Re ←Renable

e

2. for k = 1 to K do
3. Re ← Re ∧Rupdate

e,k

Algorithm 7 UpdateRelation

input: e : event, p : node, ER, R : relation
output: bool
1. if p = 0 or ER = 0 then
2. return false
3. if p = 1 then
4. return true
5. k ← Level(p)
6. a← false
7. foreach i ∈ Sk : p[i] 6= 0 ∧ ER[i] 6= 0 do
8. foreach j ∈ Ne,k(i) do
9. if UpdateRelation(e, p[i], ER[i],

R[i][j]) then
10. a← true
11. if R[i][j] = 0 then
12. UpdateConjunct(Rupdate

e,k ,i,j)
13. Lk ← Lk ∪ {j}
14. UpdateEvent(e)
15. return a

initial state of place pB is 0. The decomposition of the R relation (and of the
ER relation) conforms to the decomposition of the state space, i. e., there are

two update conjuncts, RupdateA and RupdateB .
The MDDs created during the event handling of saturation are shown in

Table 2. The content of the first row belongs to the former coloured saturation
algorithm, while the second row belongs to our new lazy algorithm. The decision
diagram levels (variables) corresponding to the variables of the guard and arc
expressions are omitted from the MDDs for brevity.

The execution steps of the former coloured saturation algorithm and the new
lazy algorithm for the example are the following:

1. GenerateStateSpace is called. It creates the Renable relation, and calcu-
lates its content off-line. (This relation is not shown in Table 2.)

2. Confirm(1, 0) is called. Coloured saturation explores and collects all pos-

sible state changes into the RupdateB relation. Locally there are two new
reachable states depending on the assignment of the y variable. Lazy sat-
uration examines only whether the transition is fireable from state 0, and
the Confirm function collects this enabled state into the ERB relation.

3. The Saturate function cannot make any steps, as the R and ER relations
are still empty, since the RupdateA and ERA conjuncts are still empty.

12



pA pB

x y

[x = y]

color: 1..2 color: 1..2

1

(a) Example CPN model

Local state Meaning

0 The place is empty.
1 The place is marked with a token valued 1.
2 The place is marked with a token valued 2.
11 The place is marked with two tokens, both valued 1.
12 The place is marked with two tokens, the value of the

first is 1, the value of the second is 2.
etc.

(b) Encoding of the local states

Figure 1: Example to illustrate the operation of lazy saturation

4. The GenerateStateSpace function calls Confirm(2, 1). Coloured satura-

tion creates theRupdate
A conjunct, lazy saturation creates the ERA relation.

5. The UpdateEvent function results the R relation. In this step lazy satu-
ration calculates only the ER relation by calling the UpdateEventEnable

function. The (not represented) Renable conjunct prevents the next-state
relation from storing the (A,A′, B,B′) = (1, 0, 0, 2) global state change
(i. e., the (1, 0)→ (0, 2) state transition, which is evidently impossible).

6. The Saturate function is called. Coloured saturation fires the (1, 0, 0, 1)
global state change (the (1, 0)→ (0, 1) state transition) while it builds the
state space MDD. This is the point where the lazy saturation algorithm
realizes that it should update the R relation, because it is still empty.
The algorithm first calls UpdateRelation. After updating the next-state
relation, it makes the same steps as coloured saturation.

7. The newly reached local states must be confirmed. Calling Confirm(2, 0)
(i. e., confirming the local state 0 at the level of place pA) does nothing,
because the transition cannot fire when place pA is empty. However, the
transition is enabled locally, if place pB contains a token. So we need to
update theRupdateB of coloured saturation, and the ERB of lazy saturation.

8. The algorithm updates the R and ER relations, respectively.

9. Similarly to the 5th step, we need to update the R with the enabled
state changes, before the next step of the iteration progresses. However,
there is no newly enabled state change, so lazy saturation does not extend
the relation with the change represented by (A,A′, B,B′) = (1, 0, 1, 11),
because (1, 1)→ (0, 11) is not possible with the given initial marking.

10. There is no newly enabled relation for neither the lazy nor the coloured
saturation algorithm, so the procedure is finished. The next-state relation
of the lazy saturation algorithm contains less next-states.

13



Table 2: Data structures (MDDs) of coloured saturation and lazy saturation

2nd 4th 5th 6th 7th 8th 9th
step step step step step step step

R
u
p
d
a
te

B

R
u
p
d
a
te

A

R R
u
p
d
a
te

B

R

C
o
lo

u
re

d
S
a
tu

ra
ti

o
n

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

ER
B

ER
A

ER R
u
p
d
a
te

B

R
u
p
d
a
te

A

R ER
B

ER R
u
p
d
a
te

B

R

L
a
zy

S
a
tu

ra
ti

o
n

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

B

B’

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

B

B’

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

5 Analysis

In this section we show how our new algorithm performs on an industrial case
study. We have implemented our lazy saturation-based state space generation
algorithm using on-the-fly state updates. We have created a coloured Petri net
model of a safety function of a real industrial embedded system, and used the
implemented lazy saturation algorithm for state space generation and model
checking. We could successfully prove the correctness of the safety function by
exploring its entire state space. In the following, we present the case study and
our measurement results.

5.1 The Modelled Industrial System

Our industrial case study is a safety function included within the Reactor Pro-
tection System of a nuclear power plant [17]. This safety function initiates an
emergency operation when a predefined chain of events happens. The detection
of the specific event chain requires a complex logic, the design of which is error

14



prone. This also puts emphasis on the necessity of using formal verification to
ensure correctness.

The safety function receives inputs from 9 different sensors, and computes
the values of 2 outputs, one of which initiates the emergency protection action.
The values of the outputs depend on the recent and past values of the inputs, and
some internal timers. The design of the controller was specified by a Functional
Block Diagram (FBD). The FBD representation contains simple combinatorial
(OR gates, AND gates, and inverters), and sequential (SR flip-flops, delay and
pulse modules) logic gates. The proper combination of these logic elements
needs to guarantee that the emergency protection action will be initiated only
in the case of a specific dangerous event happened.

We have created a coloured Petri net model of the safety logic. The structure
of the CPN model preserves the data flow characteristics of the FBD description.
Therefore, the high-level view of the CPN model (shown in Figure 2) is isomor-
phic to the FBD description. The subnets of the CPN model are the models for
the functional modules of the FBD. After the subnets have been derived and
verified separately, they only had to be connected together properly.

INPUT-1

INPUT-2

INPUT-3

INPUT-4

INPUT-5

INPUT-6

INPUT-7

INPUT-8

INPUT-9

neg

or

or

pulse
module

delay
module

pulse
module

pulse
module

neg

and

or

pulse
module

S

R
neg

neg

and
S

R
and

S

R

OUTPUT-1

OUTPUT-2

Figure 2: The coloured Petri net model of the safety function

An example CPN subnet (modelling the operation of a functional block,
namely the Delay module or TON module) is shown in Figure 3a. The func-
tionality of the Delay module is given by a time diagram in Figure 3b. The
purpose of the module (as its name implies) is to delay a rising edge pulse for a
predefined D number of cycles. When the module detects a rising edge, it starts
a counter. If the pulse is active (the input remains 1) for at least D number of
cycles, the Delay module will “let the pulse pass”, that is it sets its output to
1 (the true Boolean value). The output will remain 1 as long as the input is
active. When a falling edge is detected, the module resets itself to its default
inactive state.

In the next step we have formalized the required operation of the safety

15



INPUT-1

bool

1‘true

1‘true

1‘false 1‘false

1‘false

cp

cp

cp

1‘9

DELAY

int_0_9

cp cn

[cp = 0]

bool

OUTPUT

[cp != 0 && succ(cn) = cp]

1‘true

1‘9

(a) The CPN subnet of the Delay (TON)
module

0

1

0

1

OUTPUT

INPUT-1

t

t
k1 k1+D k2 k2+D

(b) Time diagram of the operation

Figure 3: Delay module: model and operation

function. We could translate the functional requirements into the following
verification goals:

• Liveness requirement: the emergency protection action is always initiated
when the specific type of accident has occurred (no actuation masking).

• Safety requirement: the emergency protection action is never initiated if
no, or another type of accident has occurred (no unintended actuation).

• Deadlock freeness: No deadlock situation can arise for any combination
and sequence of input signals.

These requirements were formalized with CTL temporal logic in the following
way:

• First, we checked the deadlock freeness of the system. Informally this
means that in every state there exists at least one reachable successor
state. The equivalent CTL temporal logic expression is: AG(EX(true)).

• We also checked if the model is reversible, that is from every state we can
reach the initial state. We expressed it with the following CTL expression:
AG(EF([init ])). This property ensures that the safety function can be made
ready to fulfil its purpose in all circumstances.

• We used indirect proof to prove the safety requirement. We transformed
the inverse requirement into: E(¬ [accident event ] U [actuation]). This
formula is satisfied only if the emergency protection action is initiated
without a proper accident event.

• The liveness requirement was also easier to prove by indirect proof. We for-
malised the inverse requirement as: EF([accident event ] ∧ EG(¬ [actuation]
∧ ¬ [reset event ])). Informally, we are searching for strongly connected

16



components in the state space that contain no actuation and reset event,
but contain an unsafe event.

5.2 Results

The next step of the verification was to explore and store the state space of
the CPN model of the safety function, using our lazy saturation algorithm and
state space storage data structures described in Section 4. After obtaining the
complete state space we could evaluate the four CTL expressions introduced in
the previous section. For state space traversal and temporal logic-based model
checking we developed our own experimental implementation of our algorithms
written in the C# programming language. We used the following configuration
for our measurements: Intel L5420 2.5 GHz processor, 8 GB memory, Windows
Server 2008 R2 (x64) operation system, .NET 4.0 runtime. The measurement
results are listed in Table 3.

Table 3: Characteristics of the state space traversal

Coloured Lazy
Parameter saturation saturation

Run time 367 s 242 s
Number of global states 2.701 · 1012

State space representation (nodes) 1 587
Number of local state changes 10 084 401 1 864
Sum of nodes in next-state relations 164 711 66 741
Sum of nodes in ER relations 0 2 419
Total number of nodes 2.131 · 107 1.338 · 107

Run time represents the time needed to explore the state space. The state
space generation required 367 s for the CPN model of the safety function using
our former coloured saturation algorithm, and only 242 s with the new lazy
saturation algorithm. This is a 35% improvement considering the runtime.
Note, that former, non saturation-based approaches [17] could not discover the
full state space of the model. The evaluation of the temporal expressions took
considerably less time: deadlock freedom and reversibility checking temporal
expressions took 6 s each to evaluate on the existing state space representation.
The liveness and safety requirements were evaluated in 2 s and 3 s, respectively.

Beside the run time, the memory requirement is also the subject of interest.
Measuring the memory consumption of programs executed in managed envi-
ronment is problematic, because the garbage collector does not free up all the
unused memory necessarily [12]. However, as most of the memory is used by
the nodes and edges of the decision diagrams, the number of these elements can
be used as a representative of the memory consumption.

17



6 Conclusion

In this paper we have presented a new saturation algorithm for coloured Petri
nets, called lazy saturation. It introduces a new next-state relation building
strategy that partitions the transition relations in a temporal manner, and up-
dates only the appropriate relations with relevant information, while filtering
out infeasible transitions. This makes on-the-fly local state and transition rela-
tion construction more suitable for CPNs. Another benefit is that the MDDs
storing the transition relations and guards get smaller, so their manipulation
becomes more efficient.

In order to test lazy saturation, we have created a CPN model of a real
industrial system: a safety function in a nuclear power plant. We successfully
explored the state space and verified the correctness of this model with our
tool. We could achieve this result only with our saturation algorithms, since
the former attempts using other well-known tools have failed due to insufficient
memory. We have also compared the performance of lazy saturation to our
previous coloured saturation algorithm, and found a significant improvement in
the run-time.

References

[1] T. Bartha, A. Vörös, A. Jámbor, and D. Darvas. Verification of an in-
dustrial safety function using coloured Petri nets and model checking. In
Proceedings of the 14th International Conference on Modern Information
Technology in the Innovation Processes of the Industrial Entreprises (MI-
TIP 2012), pages 472–485, Budapest, Hungary, 2012. Hungarian Academy
of Sciences, Computer and Automation Research Institute.

[2] G. Ciardo. Data representation and efficient solution: A decision diagram
approach. In M. Bernardo and J. Hillston, editors, Formal Methods for Per-
formance Evaluation, volume 4486 of Lecture Notes in Computer Science,
pages 371–394. Springer Berlin Heidelberg, 2007.

[3] G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation: An efficient
iteration strategy for symbolic state-space generation. In T. Margaria and
W. Yi, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 of Lecture Notes in Computer Science, pages 328–
342. Springer Berlin Heidelberg, 2001.

[4] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In
Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 379–393. Springer Berlin Heidelberg, 2003.

[5] G. Ciardo and R. Siminiceanu. Structural symbolic CTL model checking of
asynchronous systems. In Computer Aided Verification (CAV’03), LNCS
2725, pages 40–53. Springer Berlin Heidelberg, 2003.

18



[6] G. Ciardo and A. Yu. Saturation-based symbolic reachability analysis using
conjunctive and disjunctive partitioning. Correct Hardware Design and
Verification Methods, 3725:146–161, 2005.

[7] G. Ciardo, Y. Zhao, and X. Jin. Ten years of saturation: A petri net
perspective. In K. Jensen, S. Donatelli, and J. Kleijn, editors, Transactions
on Petri Nets and Other Models of Concurrency V, volume 6900 of Lecture
Notes in Computer Science, pages 51–95. Springer Berlin Heidelberg, 2012.

[8] G. Ciardo, Y. Zhao, and X. Jin. Ten years of saturation: A Petri net
perspective. In K. Jensen, S. Donatelli, and J. Kleijn, editors, Transactions
on Petri Nets and Other Models of Concurrency V, volume 6900 of Lecture
Notes in Computer Science, pages 51–95. Springer Berlin Heidelberg, 2012.

[9] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[10] J. Esparza and K. Heljanko. Unfoldings – A Partial-Order Approach to
Model Checking. EATCS Monographs in Theoretical Computer Science.
Springer Berlin Heidelberg, March 2008.

[11] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer Berlin
Heidelberg, 1996.

[12] S. Goldshtein, D. Zurbalev, and I. Flatow. Pro .NET Performance. Apress,
2012.

[13] K. Heljanko. Bounded reachability checking with process semantics. In
Proceedings of the 12th International Conference on Concurrency Theory,
CONCUR ’01, pages 218–232, London, UK, 2001. Springer Berlin Heidel-
berg.

[14] K. Jensen. Condensed state spaces for symmetrical coloured Petri nets.
Formal Methods in System Design, 9(1):7–40, 1996.

[15] K. Jensen, L. Kristensen, and L. Wells. Coloured Petri nets and CPN Tools
for modelling and validation of concurrent systems. International Journal
on Software Tools for Technology Transfer, 9(3–4):213–254, 2007.

[16] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, April 1989.

[17] E. Németh and T. Bartha. Formal verification of safety functions by rein-
terpretation of Functional Block based specifications. In D. Cofer and
A. Fantechi, editors, Formal Methods for Industrial Critical Systems, vol-
ume 5596 of Lecture Notes in Computer Science, pages 199–214. Springer
Berlin Heidelberg, 2009.

19



[18] S. Ogata, T. Tsuchiya, and T. Kikuno. SAT-based verification of safe
Petri nets. In F. Wang, editor, Automated Technology for Verification and
Analysis, volume 3299 of Lecture Notes in Computer Science, pages 79–92.
Springer Berlin Heidelberg, 2004.

[19] E. Pastor, J. Cortadella, and O. Roig. Symbolic analysis of bounded Petri
nets. Computers, IEEE Transactions on, 50(5):432–448, 2001.

[20] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis using
Boolean manipulation. In Proceedings of the 15th International Conference
on Application and Theory of Petri Nets, pages 416–435, London, UK, UK,
1994. Springer Berlin Heidelberg.

[21] A. Valmari. Stubborn sets for reduced state space generation. In G. Rozen-
berg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in
Computer Science, pages 491–515. Springer Berlin Heidelberg, 1991.

[22] A. Vörös, D. Darvas, and T. Bartha. Bounded saturation-based CTL model
checking. Proceedings of the Estonian Academy of Sciences, 62(1):59–70,
March 2013.

[23] Webpage of the SAL tool. (accessed: 1 August 2013)
http://sal.csl.sri.com/.

20


