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Abstract. Stochastic Petri nets are widely used for the modeling and
analysis of non-functional properties of critical systems. The state space
explosion problem often inhibits the numerical analysis of such mod-
els. Symbolic techniques exist to explore the discrete behavior of even
complex models, while block Kronecker decomposition provides memory-
efficient representation of the stochastic behavior. However, the com-
bination of these techniques into a stochastic analysis approach is
not straightforward. In this paper we integrate saturation-based sym-
bolic techniques and decomposition-based stochastic analysis methods.
Saturation-based exploration is used to build the state space represen-
tation and a new algorithm is introduced to efficiently build block Kro-
necker matrix representation to be used by the stochastic analysis al-
gorithms. Measurements confirm that the presented combination of the
two representations can expand the limits of previous approaches.

Keywords: Stochastic Petri nets · stationary analysis · block Kronecker
decomposition · numerical algorithms · symbolic methods.

1 Introduction

Stochastic analysis provides information about the quantitative aspects of mod-
els and is used for the analysis of non-functional properties of critical systems.
Stochastic Petri nets are widely used in reliability, availability and performa-
bility modelling to capture the stochastic behaviours and the analysis questions
are answered with the help of Markovian analysis. However, successful stochastic
analysis is often prevented by the state space explosion problem: in addition to
the complexity of traditional qualitative analysis, stochastic computations re-
quire more involved data structures and numerical algorithms. To successfully
tackle these problems, efficient algorithms are needed.
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Many efficient techniques exist in the literature for the exploration and stor-
age of the state space of Petri net models. One of the most efficient is the so-called
saturation algorithm which uses a special iteration strategy for the state space
traversal and stores the state space representation symbolically in decision di-
agrams [13]. On the other hand, numerical algorithms for Markovian analysis
neccesitates the representation of the stochastic behaviours.

The infinitesimal generator matrix describes the behaviours of stochastic
Petri nets and the underlying Markov chains. The size of the matrix is quadratic
in the number of reachable states of the system. This implies a quadratic storage
complexity in case the matrix is directly represented in a dense form. Sparse
matrix formats, such as Compressed Column Storage (CCS) [3, Section 4.3.1],
reduce memory requirements to be proportional to the transitions in the system.
However, even sparse storage techniques tend to fail quickly due to state space
explosion.

Potential Kronecker methods [8] divide the large matrix representation into
smaller matrices using only local information. Computations are then performed
with the local matrices and vectors. Unfortunately, using local information leads
to storing probabilities for unreachable states. This may cause problems in some
numerical solver algorithms as well as increases storage requirements.

In contrast, actual Kronecker methods [5, 8, 18] apply additional conversions
and computations to handle unreachable states in the encoding. This yields
higher implementation complexities and computational overhead.

The basis of our work is block Kronecker decomposition which imposes a hier-
archical structure on the reachable state space to solve the issue of unreachable
potential states [4, 7, 9].

Several algorithms have been developed that use variations of decision dia-
grams to represent the infinitesimal generator. Matrix diagrams [12,21] general-
ize the Kronecker representation to arbitrary matrices and not necessarily Kro-
necker consistent model partitions. Multi-Terminal Decision Diagrams (MTDDs)
can store both the generator matrix [20] and the vector of state probabilities [19]
by extending decision diagrams with terminal nodes corresponding to real num-
bers. Multiplicative Edge-valued Multilabel Decision Diagrams (EV∗MDDs) [25]
can provide up to exponential space savings compared to MTDDs by storing ma-
trix and vector entries as edge labels instead of terminal nodes.

While vector-matrix products can be handled with symbolic approaches eas-
ily, more elaborate matrix access becomes difficult. For example, efficient access
of a single column of the symbolic descriptor requires the introduction of caching
strategies [26].

As it turns out from the literature, the combination of efficient state space
traversal and matrix representation techniques into a stochastic analysis ap-
proach is not straightforward. In this paper we elaborate an idea of Buchholz [10]
to construct the matrix representation of the stochastic behaviour from symbolic
state space representation. In addition to the initial idea of Buchholz [10], we fur-
ther extended the method by employing partition refinement instead of hashing
and we also proved correctness of the algorithm formally. The stochastic analysis
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framework uses saturation-based exploration to build the state space represen-
tation and the new algorithm builds the block Kronecker matrix representation
to be used by the stochastic analysis algorithms. Measurements confirm that
the presented combination of the two representations can expand the limits of
previous approaches.

2 Background

In this section, we overview the basic formalisms and scope of our work. At
first, a stochastic Petri net based formalism is introduced. Kronecker algebra
and multivalued decision diagrams are also discussed.

2.1 Stochastic Petri Nets

Stochastic Petri Nets extend Petri nets by assigning exponentially distributed
random delays to transitions [1]. After the delay associated with an enabled
transition is elapsed the transition fires and transition delays are reset.

Definition 1. A Stochastic Petri Net is a pair SPN = 〈PN, Λ〉, where PN is a
Petri net and Λ : T → IR+ maps the set of transitions to transition rates. PN
may contain inhibitor arcs but no priority specifications.

The stochastic behaviours of a stochastic Petri net are defined by an un-
derlying continuous-time Markov chain (CTMC). The Markov chain associated
with an SPN is a stochastic process X(τ) ∈ RS, τ ≥ 0, where RS is the set of
reachable markings of the underlying Petri net.

We will only consider the case when the Petri net is bounded, hence n =
|RS| <∞. In order to establish the transformation between the Petri net and its
underlying Markov chain, we have to define a mapping from states to indices. A
bijection ι : RS→ {0, 1, . . . , n− 1} exists between the reachable markings and a
set of indices. This allows representing the distribution of X(τ) as a vector

π(τ) ∈ IRn, π(τ)[x] = Pr(X(τ) = ι−1(x)),

i.e. π(τ)[ι(M)] is the probability that the SPN is in the marking M at time τ .
The time evolution of the X(τ) is described by the differential equation

∂π(τ)
∂τ

= π(τ)Q, (1)

where Q ∈ IRn×n is the infinitesimal generator matrix of the CTMC associated
with the stochastic Petri net.

Off-diagonal elements q[x, y] of Q (0 ≤ x, y < n and x 6= y) contain the
rate of exponentially distributed transitions from the marking ι−1(x) to ι−1(y).
Diagonal elements q[x, x] are calculated such that Q1T = 0T, where 1 and
0 ∈ IRn are vectors with every element equal to 1 and 0, respectively. That is,

q[x, y] =
{
−
∑n−1
z=0,z 6=x q[x, z] if x = y,∑t∈T

ι−1(x)[t〉ι−1(y) Λ(t) if x 6= y.
(2)



4

P (2)

P (1)
P (0)

pW1 ta1 pS1 td1

•
pC1 tr1

•

pW2
ta2

pS2
td2

•
pC2

tr2

pS

1.0 0.5 1.6

1.0 1.1 0.8

RS =



M0={C1, C2, S}
M1={W1, C2, S}
M2={C1, W2, S}
M3={W1, W2, S}
M4={S1, C2}
M5={S1, W2}
M6={C1, S2}
M7={W1, S2}

Fig. 1. Example stochastic Petri net with superposed partitions.

The notation ι−1(x) [t〉 ι−1(y) indicates that the transition t can be fired in the
marking ι−1(x) to assume the marking ι−1(y).

Example 1. In Fig. 1 we introduce the SharedResource model which will serve
as a running example throughout this paper.

The model consists of a single shared resource S and two consumers. Each
consumer can be in one of the following states: Ci (calculating locally), Wi

(waiting for resource) and Si (using shared resource). The transitions ri (request
resource), ai (acquire resource) and di (done) correspond to behaviors of the
consumers. The net has 8 reachable states, which are also shown in Fig. 1. As
the net is 1-bounded, only the marked places are listed for each state.

The net is annotated with exponentially distributed transition rates. The
clients have different request (1.6 and 0.8) and completion (0.5 and 1.1, respec-
tively) rates, while both clients have an acquire rate of 1.0.

2.2 Superposed Stochastic Petri Nets

As the decomposition method in our approach fits the concept of superposed
Petri nets, we use it in the rest of the paper.

Definition 2. A Superposed Stochastic Petri Net (SSPN) is a pair SSPN =
〈SPN,P〉, where P = {P (0), P (1), . . . , P (J−1)} is the partitioning of the set of
places P in the underlying Petri net of SPN such that P = P (0)t· · ·tP (J−1) [15].

The partition P (j) is called the jth local net or component of SSPN. A local
marking M (j) : P (j) → IN is obtained from a global marking M : P → IN by
restricting the domain to P (j), i.e. M (j) = M |P (j) .

The local reachable state space of the jth local net contains the restrictions
of the globally reachable markings RS(j) = {M (j) : M ∈ RS}.

We will assume a bijection ι(j) : RS(j) → {0, 1, . . . , nj} from local markings
to an index set, where nj = |RS(j)|. Let the notation x(j) refer to the local
marking

(
ι(j)
)−1(x).
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If x = 〈x[0], x[1], . . . , x[J − 1]〉 is a vector of indices, then let the notation

M = 〈〈x〉〉 = 〈〈(x[0])(0), (x[1])(1), . . . , (x[J − 1])(J−1)〉〉

refer to the marking M with the property M (j) = (x[j])(j) for all j, i.e. M is the
marking obtained by joining the local markings indexed by x. We extend this
notation to take sets of local states and yield a set of markings.

The potential state space

PS = 〈〈RS(0),RS(1), . . . ,RS(J−1)〉〉

is isomorphic to the Cartesian product of local state spaces. More concretely,
each M ∈ PS can be identified with a vector of indices x such that M = 〈〈x〉〉,
i.e. M can be obtained by joining some local states for each component. This
vector is the state coding of M expressed by the function ι(M) : PS → INJ ,
ι(〈〈x〉〉) = x.

Let us write x(j) [t〉 y(j) if there is a reachable marking Mx ∈ RS such that

Mx|P (j) = x(j), Mx [t〉My, My|P (j) = y(j),

i.e. there is a global state transition that takes the jth local net from the state
x(j) to y(j). It is important to note that superposed stochastic Petri nets are
Kronecker consistent: if x(j) [t〉 y(j) and x(j) [t〉 z(j), then y(j) = z(j).

Example 2. The SharedResource SPN in Fig. 1 contains three partitions. The
local nets P (0) and P (1) correspond to the two clients, while P (2) contains the
shared resource. The local state spaces of the components are

RS(0) =


0(0)={C1}
1(0)={W1}
2(0)={S1}

, RS(1) =


0(1)={C2}
1(1)={W2}
2(1)={S2}

, RS(2) =
{

0(2)={S}
1(2)=∅ .

The reachable states can be factored over the local state spaces, e.g. the
marking M4 = {S1, C2} = 〈〈2(0), 0(1), 1(2)〉〉. However, the potential state space
PS contains |RS(0)| · |RS(1)| · |RS(2)| = 3 ·3 ·2 = 18 states, 10 more than the reach-
able state space RS. For example, the marking 〈〈2(0), 2(1), 0(2)〉〉 = {S1, S2, S},
which violates mutual exclusion, is not reachable, although it is in PS.

2.3 Decision Diagrams

Multivalued decision diagrams (MDDs) [13] provide a compact, graph-based
representation for boolean functions defined over Cartesian products of domains.

Definition 3. A quasi-reduced ordered multivalued decision diagram (MDD)
encoding the function f(x[0], x[1], . . . , x[J−1]) ∈ {0, 1}, where the domain of each
variable x[j] is D(j) = {0, 1, . . . , nj−1}, is a tuple MDD = 〈V, r, 0, 1, level, child〉,
where
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– V =
⋃J
i=0 Vi is a finite set of nodes, where V0 = {0, 1} are the terminal

nodes, the rest of the nodes VN = V \ V0 are nonterminal nodes;
– level : V → {0, 1, . . . , J} assigns nonnegative level numbers to each node, i.e.
Vi = {v ∈ V : level(v) = i};

– r ∈ VJ is the root node;
– 0, 1 ∈ V0 are the zero and one terminal nodes;
– child :

(⋃J
i=1 Vi × D(i−1)) → V is a function defining edges between nodes

labeled by the items of the domains, such that either child(v, x) = 0 or
level(child(v, x)) = level(v)− 1 for all v ∈ V , x ∈ D(level(v)−1);

– if n,m ∈ Vj , j > 0 then the subgraphs formed by the nodes reachable from n
and m are either non-isomorphic, or n = m.

According to the semantics of MDDs, f(x) = 1 if the node 1 is reachable
from r through the edges labeled with x[0], x[1], . . . , x[J − 1],

f(x[0], x[1], . . . , x[J − 1]) = 1 ⇐⇒
child(child(. . . child(r, x[J − 1]) . . . , x[1]), x[0]) = 1.

Definition 4. A quasi-reduced ordered edge-valued multivalued decision dia-
gram (EDD) [22] encoding the function g(x(0), x(1), . . . , x(J−1)) ∈ IN is a tuple
EDD = 〈V, r, 0, 1, level, child, label〉, where

– MDD = (V, r, 0, 1, level, child) is a quasi-reduced ordered MDD;
– label :

(⋃J
i=1 Vi ×D(i−1))→ IN is an edge label function.

According to the semantics of EDDs, the function g is evaluated by summing
edge labels along the path from r to 1. Formally,

g(x) =
{
undefined if f(x) = 0,∑J−1
j=0 label(n(j), x[j]) if f(x) = 1,

where f is the function associated with the underlying MDD and n(j) are the
nodes along the path to 1, i.e. n(J−1) = r, n(j) = child(n(j+1), x[j + 1]).

Symbolic State Spaces. Symbolic techniques involving MDDs can efficiently
store large reachable state spaces of superposed Petri nets. Reachable statesM ∈
RS are associated with state codings ι(M) = x. The function f : PS → {0, 1}
can be stored as an MDD where f(x) = 1 if and only if 〈〈x〉〉 ∈ RS. The domains
of the MDD are the local state spaces D(j) = RS(j).

Similarly, EDDs can efficiently store the mapping between symbolic state
encodings x and reachable state indices x = ι(〈〈x〉〉) as the function g(x) = x.
This mapping is used to refer to elements of state probability vectors and the
sparse generator matrix Q when these objects are created and accessed [12].

Some iteration strategies for MDD state space exploration are breath-first
search and saturation [13].
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V3 : 0 1 M
(2)
4 = 1(2)

V2 : 0 1 2 0 1 2 M
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2

0
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Fig. 2. EDD state space mapping of the SharedResource model.

Example 3. The EDD displayed in Fig. 2 describes the reachable state space of
the SharedResource model from Example 2. Edges to 0 were omitted for clarity.

The edge labels allow computation of the indexing function ι for a given
state. For example, to find the index of the marking M4 = 〈〈2(0), 0(1), 1(2)〉〉, we
can follow the edges corresponding to the local states to 1 and sum their labels
to find ι(M4) = 4 + 0 + 0 = 4. In contrast, if we follow the edges corresponding
to the unreachable state 〈〈2(0), 2(1), 0(2)〉〉, 0 is reached instead of 1.

2.4 Kronecker Algebra

In linear algebra, the Kronecker product operation may be used to build large
matrices from smaller ones. It therefore plays an important role in the stochastic
analysis of Markovian systems, where Kronecker products of matrices may help
reducing the memory requirements of the infinitesimal generator matrix Q.

Definition 5. The Kronecker product A ⊗ B of matrices A ∈ IRn1×m1 and
B ∈ IRn2×m2 is the matrix C ∈ IRn1n2×m1m2 , where

c[i1n1 + i2, j1m1 + j2] = a[i1, j1]b[i2, j2].

The Shuffle family of algorithms [5] allows efficient evaluation of vector-
matrix products of the form

v · (A(0) ⊗A(1) ⊗ . . .⊗A(J−1)).

The factors A(j) ∈ IRnj×mj together represent an n0n1 · · ·nJ−1×m0m1 · · ·mJ−1
matrix in the J-way Kronecker product.

Recent developments include the Slice [16] and Split [14] algorithms for
vector-descriptor products, which allow parallel implementation while retaining
the beneficial properties of the Shuffle algorithm.

3 Stochastic Petri Net Stationary Analysis

In this section the used stochastic analysis approach is introduced.
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Fig. 3. Stochastic analysis workflow.

3.1 Analysis Workflow

The tasks performed by stochastic analysis tools that operate on stochastic Petri
nets, can be often structured as follows (Fig. 3).
1. State space exploration. The reachable state space of the Petri net is explored

to enumerate the possible behaviors of the model. For superposed stochastic
Petri nets, this step includes the exploration of the local state spaces of the
component as well as the possible global combinations of states.

2. Descriptor generation. The infinitesimal generator matrix Q is built in order
to describe the Markov chain X(t) over the reachable states of the stochastic
Petri net.

3. Numerical solution. Numerical algorithms obtain probability vectors π from
the matrix Q.

4. Engineering measure calculation. The studied performance measures are cal-
culated from the output of the previous step. The expected values of most
measures of interest can be obtained as weighted sums of state probabilities.

In stochastic model checking, where the desired system behaviors are ex-
pressed in stochastic temporal logics [2, 6], these analytic steps are called as
subrouties to evaluate propositions.

In the steady-state analysis of continuous-time Markovian stochastic systems,
the steady state solution

π(0) = π0,
∂π(τ)
∂τ

= π(τ)Q, π = lim
τ→∞

π(τ) (3)

of Eq. 1 is sought, where π0 describes the initial probability distribution and
π is the stationary solution. If the CMTC is irreducible, i.e. there is a nonzero
probability of transitioning from any state to any other, π is independent from
π0 and is the initial solution of the system of linear equations

πQ = 0, π1T = 1. (4)

Example 4. The utilization of the shared resource in the SharedResource SPN,
presented in Fig. 1, can be calculated as the sum

U = π[ι(M4)] + π[ι(M5)] + π[ι(M6)] + π[ι(M7)]

after obtaining π from Eq. (4). Notice that the resource is in use in the reachable
markings M4, M5, M6 and M7.

To solve Eq. (4), the matrix Q and the vector π must be stored. Additionally,
the numerical algorithm may reserve additional vectors for intermediate storage.
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3.2 Infinitesimal Generator Matrix Storage

In this section the basic complexity issues behind our developments are summa-
rized. Traditional methods use sparse or dense matrix storage methods.

Dense and Sparse Matrices. The infinitesimal generator matrix Q of a
stochastic Petri net is an n× n matrix of real numbers, where n is the number
of reachable states. The storage of Q thus requires memory proportional to the
square of the state space size if a dense matrix form is used.

Sparse matrix representation [3, Section 4.3.1], reduces memory requirements
to O(NZ), where NZ is the number of nonzero elements in Q.

Kronecker Decomposition. To alleviate the high memory requirements of Q,
the Kronecker decomposition for a superposed SPN expresses the infinitesimal
generator matrix as a sum of Kronecker products. Let

Q = QO +QD, QD = diag{−Q1T}, (5)

where QO and QD are the off-diagonal and diagonal parts of Q, respectively.
The off-diagonal part may be written as

QO =
∑
t∈T

Λ(t)
J−1⊗
j=0

Q
(j)
t . (6)

The matrix Q(j)
t ∈ IRnj×nj describes the effects of the transition t on the jth

local net. If t ∈ p• ∪ •p ∪ p◦ for some p ∈ P (j), i.e. t is connected to a place in
the jth local net with an input, output or inhibitor arc,

q
(j)
t [x, y] =

{
1 if x(j) [t〉 y(j),
0 otherwise.

(7)

If t is not adjacent to the jth local net, Q(j)
t is set to an nj ×nj identity matrix.

3.3 Block Kronecker Decomposition

In this section, we review the concept of block Kronecker decomposition and
hierarchical structuring of the state space from [7], which divides big monolithic
matrices into smaller pieces by the use of macro states.

Let R̃S(j) denote the local macro states of the jth local net of an SSPN.
Elements of R̃S(j) form a partition of the local state space RS(j) of the jth
component, i.e. RS(j) =

⊔
R̃S(j).

The macro state indexing function ι̃(j) : R̃S(j) → {0, 1, . . . , ñj − 1} assigns a
unique index to every macro state, where ñj = |R̃S(j)|. We use the notation m̃(j)

to refer to
(
ι̃(j)
)−1(m) ⊆ RS(j).
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A vector m = 〈m[0],m[1], . . . ,m[J − 1]〉 is a global macro state index if

〈〈m̃[0](0), m̃[1](1), . . . , m̃[J − 1](J−1)〉〉 ⊆ RS,

i.e. a subset of reachable markings is isomorphic to a Cartesian product of local
macro states. Such subset is called a global macro state.

Hierarchical structuring of the reachable state space expresses RS as a disjoint
union of global macro states R̃S = {0̃, 1̃, . . . , ˜̃n− 1}.

The bijection ι̃ : R̃S→ {0, 1, . . . , ñ−1} assigns indices to global macro states
such that ι̃−1(m) = m̃, while the function ι̃ : R̃S → INJ assings their respective
global macro state index vectors.

Since each global macro state has the structure of a Cartesian product of
local macro states, the Kronecker product may be used to construct a matrix of
state transitions between two global macro states.

Let m and k be two reachable global macro state indices. The matrix
Q

(j)
t [m[j], k[j]] is obtained from Q

(j)
t in Eq. (7) by only keeping the rows that

correspond to m[j](j) and the columns that correspond to k[j](j). The matrix

QO[m, k] =
∑
t∈T

Λ(t)
J−1⊗
j=0

Q
(j)
t [m[j], k[j]] (8)

describes the states transitions from the macro state ι̃−1(m) to ι̃−1(k), where
m and k are the indices of global macro states with index vectors m and k,
respectively.

We can finally express the infinitesimal generator matrix Q as a block matrix
with ñ×ñ blocks. Let the 〈m, k〉th block of the off-diagonal part QO be QO[m, k]
as defined in Eq. (8) above. Then it can be seen that the matrix

Q = QO +QD, QD = diag{−Q1T} (9)

is equivalent to the matrix Q in Eq. (2).

Example 5. The state space of the SharedResource model in Fig. 1 may be hier-
archically structured as follows.

Recall from Example 2 that the model has three local nets, two corresponding
to the clients with three local states each and a local net with two local states
corresponding to the shared resource. We may partition the local state spaces
into local macro states as

R̃S(0) =
{

0̃(0)={0(0), 1(0)}
1̃(0)={2(0)}

, R̃S(1) =
{

0̃(1)={0(1), 1(1)}
1̃(1)={2(1)}

, R̃S(2) =
{

0̃(2)={0(2)}
1̃(2)={1(2)}

.

Observe that, for each component j, the macro state 0̃(j) contains local states
that are reachable when the shared resource is not in use, while 1̃(j) corresponds
to the allocation of the resource.
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The global reachable state space is then partitioned into global macro states
as

R̃S = {〈〈0̃(0), 0̃(1), 0̃(2)〉〉, 〈〈0̃(0), 1̃(1), 1̃(2)〉〉, 〈〈1̃(0), 0̃(1), 1̃(2)〉〉},
i.e. any state that does not require use of the shared resource is reachable when
the shared resource is available, while if one of the clients allocates the resource,
the other cannot simultaneously acquire it.

Macro State Construction. Let us introduce the notation

x̂(j) = 〈x[0], x[1], . . . , x[j − 1], x[j + 1], . . . , x[J − 1]〉.

Suppose that the reachable marking M is coded by the vector of local state
indices x = ι(M), i.e. M = 〈〈x〉〉. Then the vector x̂(j) contains the local state
indices of all components except the jth.

The environment of a local state x(j) is the set of vectors

env x(j) = {ẑ(j) : M ∈ RS, z = ι(M), z[j] = x}, (10)

i.e. the local state combinations of other local nets that result in reachable mark-
ings together with x(j). We define the equivalence relation ∼(j) ⊆ RS(j)×RS(j),

x(j) ∼(j) y(j) ⇐⇒ env x(j) = env y(j). (11)

The equivalence classes RS(j)/∼(j) define the local macro states R̃S(j). Now
we can construct the equivalence relation ∼ ⊆ RS× RS,

M ∼ K ⇐⇒ M (j) ∼(j) K(j) for all j = 0, 1, . . . , J − 1,

i.e. two markings are equivalent if all their local nets belong to the same local
macro states. The set of global macro states is the partition R̃S = RS/∼.

Explicit Macro State Algorithm. The original hierarchical structuring al-
gorithm proposed by Buchholz is based on a bit array representation of the
potential state space PS [7].

Algorithm 1 shows local and global macro state generation. The environment
env x(j) is represented explicitly as a row of the reshaped bit array B. Nonzero
elements correspond to reachable states.

Lexicographic ordering is used to make local states with equal environments
adjacent. After extracting local macro states from the bit array, only a single
representant of every local macro state is kept. This both accelerates further
iterations of the algorithm and results in reduced bit array at the end that has
a nonzero element for every combination of local states that is reachable. Note
that the permutations used to reorder local states must be stored in order to
recover the global macro state indices.

Note that storage of the bit array requires O(|PS|) memory, therefore the bit
array based macro state generation is unsuitable for extremely large potential
state spaces due to memory requirements.
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Algorithm 1: Bit array based macro state construction.
Input: Reachable state space RS, reachable local states RS(j)

Output: Local macro states R̃S(j), global macro states R̃S
1 Allocate an array of bits B ∈ {0, 1}n0×n1×···×nJ−1

2 foreach M ∈ RS do x← ι(M); B[x[0], x[1], . . . , x[J − 1]]← 1
3 for j ← 0 to J − 1 do
4 Reshape B into a matrix with nj , where the xth row corresponds to the

local state x(j) ∈ RS(j) and its environment env x(j)

5 Sort the rows of the matrix lexicographically
6 Partition the rows such that equal rows form local macro states R̃S(j)

7 Discard all but one representant row for each local macro state m̃(j)

8 Nonzero elements of the resulting bit array B are correspond to the reachable
global macro states R̃S

4 Symbolic Decomposition Algorithm

In this section, we present our symbolic decomposition algorithm that allows the
construction of macro state spaces without explicit enumeration and storage of
the potential state space PS.

4.1 Description

The memory requirements and run time of bit array based macro state decom-
position may be significantly improved by the use of symbolic state space storage
instead of a bit vector. Algorithm 2 constructs the local macro states from the
MDD representation of the state space.

The algorithm partitions the local states RS(j) of every component of the
stochastic Petri net into local macro states. In order to perform this operation,
the nodes in the levels V1, V2, . . . , VJ of the MDD corresponding to the state space
RS must be provided. While symbolic techniques often share nodes between
multiple MDDs, in Algorithm 2 the sets Vj should contain only nodes reachable
from the root r corresponding to RS. These sets can be extracted from a shared
MDD container by e.g. depth first search starting at r.

The lines 2–13 implement partition refinement for RS(j) based on the local
states associated with the edges between nodes in Vj+1 and Vj , i.e. the jth level
of the MDD.

The candidate macro state partition Done is initialized to contain only RS(j).
Then, the lines 5–12 refine the candidate macro states for each node n ∈ Vj+1
according to the associated local states of the arcs starting at n. After moving
the sets from Done to the queue Q, every candidate macro state S ∈ Q is split
into S1 and S2. Arcs from n with local states x ∈ S1 all go to some node m ∈ Vj .
The candidate macro state S1 is added to the new Done partition. Arcs from n
with local states y ∈ S2 may not be all parallel, therefore S2 is placed back to
Q if it is nonempty.
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Algorithm 2: Local macro state construction by partition refinement.
Input: Symbolic state space MDD
Output: Local macro states R̃S(j)

1 for j ← 0 to J − 1 do
2 Initialize the empty queue Q and Done← {RS(j)}
3 foreach n ∈ Vj+1 do
4 foreach S ∈ Done do Enqueue(Q, S)
5 Done← ∅
6 while ¬Empty(Q) do
7 S ← Dequeue(Q); S1 ← ∅; S2 ← ∅
8 Let x0 be any element of S and m← child(n, x0)
9 foreach x ∈ S \ {x0} do

10 if m = child(n, x) then S1 ← S1 ∪ {x} else S2 ← S2 ∪ {x}
11 if S2 6= ∅ then Enqueue(Q, S2)
12 Done← Done ∪ {S1}

13 ñj ← |Done|; R̃S(j) ← Done

After Q becomes empty and no new S2 is enqueued, edges starting at n which
correspond to x ∈ S all go to the same mS ∈ Vj for all candidate macro states
S ∈ Done. No two candidate macro states S 6= S′ have mS = mS′ due to the
construction of the partition refinement. Moreover, this property also holds for
nodes n′ ∈ Vj+1 processed in lines 5–12 before n. Hence macro states in the
final partition Done constructed in lines 2–13 are all parellel in the sense that
child(n, x) = child(n, y) for all n ∈ Vj+1 and x, y ∈ S ∈ Done.

In Subsection 4.2 we will prove that the final partition Done is indeed the
set of local macro states R̃S(j).

Algorithm 2, unlike Algorithm 1, does not output the global macro state
space R̃S. An MDD representation of R̃S may be obtained by replacing every
arc x with the index m of the local macro state such that x(j) ∈ m̃(j). The
original state space MDD can be recovered by the opposite operation, which
replaces m with parallel arcs x0, x1, . . . having m̃(j) = {x(j)

0 , x
(j)
1 , . . .}.

Example 6. Fig. 4 shows the MDD state space of the SharedResource model,
its local macro state decomposition and the MDD representation of the global
macro states.

The edges corresponding to local states that belong to the same local macro
state are parallel for all parent nodes on a level. This is represented in the figure
with ellipses connecting the edges. In the global macro state MDD, these parallel
edge sets collapse to a single edge, as every edge from the original MDD is replace
with its macro state.

Block Kronecked decomposition of the infinitesimal generator Q can be per-
formed based on the sets of macro states R̃S(j) obtained by the partition refine-
ment. By enumerating paths in the macro state MDD, global macro states R̃S
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0 1 0̃ 1̃

0 1 2 0 1 2 0̃ 1̃ 0̃ 1̃

0 1 2 0 1 2 0̃ 1̃ 0̃ 1̃

0 1 0 1

0̃(0) = {0(0)}
1̃(0) = {1(0)}

0̃(1) = {0(1), 1(1)}
1̃(1) = {2(1)}

0̃(2) = {0(2), 1(2)}
1̃(2) = {2(2)}

⇒ ⇒

Fig. 4. Symbolic macro state construction for the SharedResource model.

can be listed. Moreover, the macro state MDD can be turned into an EDD for
mapping indices between block Kronecker and sparse representations, which is
described in Subsection 4.3.

4.2 Proof of Correctness

To show the correctness of the partition of the local states RS(j) into macro
states R̃S(j), we will use the notations of above and below substates from [13]:

Definition 6. The set of above substates coded by the node n is

A(n) ⊆ {〈x[j + 1], x[j + 2], . . . , x[J − 1]〉 ∈ D(j+1) ×D(j+2) × · · · ×D(J−1)},
x ∈ A(n)⇐⇒ child(child(. . . child(r, x[J − 1]) . . . , x[j + 2]), x[j + 1]) = n,

where j = level(n)− 1, i.e. A(n) is the set of all paths in the MDD from r to n.

Definition 7. The set of below substates coded by the node n is

B(n) ⊆ {〈x[0], x[1], . . . , x[j]〉 ∈ D(0) ×D(1) × · · · ×D(j)},
x ∈ B(n)⇐⇒ child(child(. . . child(n, x[j]) . . . , x[1]), x[0]) = 1,

where j = level(n)− 1, i.e. B(n) is the set of all paths in the MDD from n to 1.

Proposition 1. If n and m are distinct nonterminal nodes of a quasi-reduced
ordered MDD, A(n) ∩ A(m) = ∅ and B(n) 6= B(m).

Proof. We prove the statements by contradiction. Let a ∈ A(n) ∩ A(m). If we
follow the path a from r we arrive at n because a ∈ A(n). However, we also
arrive at m, because a ∈ A(m). Since n 6= m, such a cannot exist. A(n) and
A(m) must be disjoint.

Now suppose that there are n,m ∈ VN such that B(n) = B(m). Because the
set of paths B(n) fully describes the subgraph reachable from n, this means the
subgraphs reachable from n and m are isomorphic. This is impossible since the
MDD is quasi-reduced. B(n) and B(m) must be distinct. ut
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Proposition 2. The environment of the local state x(j), defined in Eq. (10),
may be written as

env x(j) = {〈〈b,a〉〉 : n ∈ Vj+1, a ∈ A(n), b ∈ B(child(n, x(j)))}.

Proof. Any reachable state 〈〈z〉〉 ∈ RS that has z[j] = x is represented by a path
from r to 1 in the MDD that passes through a pair of nodes n ∈ Vj+1 and
k = child(n, x(j)). Therefore, some path a ∈ A(n) must be followed from r to
reach n, then after traversing the edge between n and k, some path b ∈ B(k)
must be followed from k to 1.

This means all paths from r to 1 containing x(j) are of the form z = (b, x,a)
and the converse also holds. Thus, ẑ(j) = 〈a,b〉 holds for some a and b defined
as above for all reachable states z. ut

The relation ∼(j) over RS(j) can be expressed with A(n) and B(n) in a way
that can be handled with symbolic techniques.

Proposition 3. The relation x(j) ∼(j) y(j) can be formulated as

x(j) ∼(j) y(j) ⇐⇒ edges(x, j) = edges(y, j),
where edges(z, j) = {〈n, child(n, z)〉 : n ∈ Vj+1}.

Proof. Recall that x(j) ∼(j) y(j) is defined as env x(j) = env y(j) in Eq. (11). Let
X and Y be the environments of x(j) and y(j), respectively, so that x(j)∼(j) y(j)

holds if and only if X = Y . Define

X(n) = {b : 〈b,a〉 ∈ X,a ∈ A(n)}, Y (n) = {b : 〈b,a〉 ∈ Y,a ∈ A(n)}.

Observe that X = Y if and only if X(n) = Y (n) for all n ∈ Vj+1, because the
sets {X(n)×A(n)}n∈Vj+1 and {Y (n)×A(n)}n∈Vj+1 are partitions of X and Y .

According to Proposition 2,

X(n) = B(child(n, x)), Y (n) = B(child(n, y)).

Thus, X(n) = Y (n) if and only if child(n, x) = child(n, y), because the B-sets
are distinct for each node. Hence X(n) = Y (n) for all n ∈ Vj+1 is equivalent to
the statement edges(x, j) = edges(y, j). ut

Proposition 3 can be interpreted as the statement that x(j) ∼(j) y(j) if and
only if the MDD edges corresponding to x(j) are always parallel, i.e. from the
node n they all go to the same node m(n), which only depends on n, for all
n ∈ Vj+1.

4.3 Symbolic State Indexing

The last step of the stochastic analysis workflow is the calculation of engineer-
ing measures by weighted sums of state probabilities, which were obtained by
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ι(M)

π vector
(index-prob. map)

0 1

0 1 2 0 1 2

0 1 2 0 1 2

0 1

0
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0 2 0 1
2

0
1 0

EDD (state-index map)

RS(0) RS(1) RS(2)

x=〈1, 0, 2〉
index vector

M

Fig. 5. Index manipulations for EDD-based state spaces.

x = 〈1, 0, 2〉

local index
vector RS(0)

RS(1)

RS(2)

M

R̃S(0)

R̃S(1)

R̃S(2)

m = 〈0, 0, 1〉

macro index
vector

lexicographic
state offset

∑

ι(M)

π vector (index-prob. map)

0 |0̃| |0̃|+|1̃|
macro state offsets

⇑
global macro
states EDD

Fig. 6. Index manipulations for EDD-based macro state spaces.

the numerical solution algorithm. This requires iteration over all states and the
corresponding indices of the probability vector.

In this section, we review techniques for state-index mapping in superposed
stochastic Petri nets. An implementation of the mapping is presented for macro
state decompositions in symbolic form.

The EDD-based state-index mapping is depicted in Fig. 5. A vector of local
macro state indices is formed by observing the local states of the components.
Both forward and reverse mapping between linear indices ι(M) of the probability
vector and index vectors x is possible [12].

In block Kronecker decompositions, the generator matrix, as well as the vec-
tor π is partitioned according to the global macro states R̃S. Within a partition,
markings are ordered lexicographically by their local state indices. Although it
is possible to construct an EDD representing this ordering, it can easily grow
large, due to the intertwined ordering.

To efficiently store the index mapping (Fig. 6), a macro state offset vector
o of length ñ is populated with the starting offsets of the global states by enu-
meration of the global macro state space. The ith marking in the lexicographic
ordering within the global macro state m̃ has the linear index x = o[m] + i.
Conversion between linear macro state indices m and macro state index vectors
m is performed by an EDD, analogously to the mapping in Fig. 5.
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5 Evaluation

The decomposition algorithms were implemented in the PetriDotNet modelling
framework, which supports structural analysis of Petri nets, saturation-based
CTL and LTL model checking and reachability checking as well as Markovian
stochastic analysis. The algorithms may be used in Markovian transient, sensi-
tivity and time-to-first-failure analysis in addition to steady state analysis.

Our symbolic block Kroncker decomposition approach is compared with
sparse generator matrices and the explicit block Kronecker decomposition al-
gorithm by Buchholz [7]. The explicit decomposition algorithm was executed on
an explicit representation of the state space as a hash table, while symbolic al-
gorithms used saturation and MDDs. Steady-state analysis was performed using
the BiCGSTAB [24] numerical linear equation solver with a tolerance of 10−10.

Running time was limited to 1 hour on virtual machines with 8 execution
threads and 30 GiB memory.

Three scalable families of models were used in the evaluation:

– The SR family of models are upscaled variants of the SharedResource model
that served as a running example throughout this paper. The model was
extended with additional clients, moreover, the number of tokens was in-
creased. In SR-Sym, each transition rate is set to 1.0, while in SR-Asym,
different rates were chosen for the transitions.

– The KanBan SPN models from [11] describe the kanban manufacturing sys-
tem with various resource pool sizes.

– Members of the Cloud family are SPN performability models of a cloud ar-
chitecture [17]. Scaling of the state space is achieved by changing the number
of physical and virtual machines. Some aspects of the models from [17] were
modified, as our tool currently does not support the GPSN formalism.

The models in several SPN formats and the PetriDotNet 1.5 tool are available
at our website1.

Table 1 shows the measured execution times and memory usages. The exe-
cution time of the decomposition algorithm tmacro, the construction of the gen-
erator matrix tgen and the BiCGSTAB solver tsolve is displayed, as well as the
peak memory usage Mpeak. Minimum values of every measure are emphasised
in bold for each model.

The symbolic decomposition algorithm was executed under 100ms for all
the studied models, even in cases when the BiCGSTAB algorithm timed out.
Block Kronecker based analysis with symbolic state space also consumed the
least amount of memory, except in a single variation of the KanBan model.

Matrix construction was also fastest with symbolic decomposition. While the
same matrices are constructed after explicit decomposition, the matrices were
built slower based on the explicit state space than on MDDs due to fast access
to the decision diagram data structures.
1 https://inf.mit.bme.hu/en/petridotnet/stochasticanalysis

https://inf.mit.bme.hu/en/petridotnet/stochasticanalysis
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Table 1. Measurement results.

Sparse Explicit BK Symbolic BK

Model States tgen tsolve Mpeak tmacro tgen tsolve Mpeak tmacro tgen tsolve Mpeak

SR-Sym 26 464 147ms 296 ms 40M 464ms 562ms 303ms 55M 23 ms 142 ms 370ms 38 M
842 051 2 s 10 s 296M 22 s 11 s 10 s 1035M 23 ms 582 ms 12 s 98 M

1.1 · 107 24 s 182 s 3404M 530 s 183 s 231 s 12G 24 ms 5 s 155 s 791 M
8.2 · 107 215 s 1985 s 25G Timed out 26 ms 31 s 1612 s 5563 M

SR-Asym 26 464 132ms 482 ms 42M 455ms 402ms 580ms 57M 26 ms 125 ms 638ms 39 M
842 051 2 s 17 s 296M 22 s 10 s 20 s 1035M 23 ms 519 ms 21 s 99 M

1.1 · 107 22 s 327 s 3404M 540 s 246 s 463 s 12G 27 ms 6 s 285 s 793 M
8.2 · 107 217 s Timed out Timed out 31 ms 32 s Breakdown

KanBan 58 400 181ms 1 s 51M 250ms 847ms 3 s 77M 24 ms 130 ms 2 s 45 M
454 475 1 s 11 s 181M 1 s 4 s 31 s 448M 26 ms 285 ms 19 s 171 M

2.5 · 106 5 s 81 s 388 M 6 s 28 s 240 s 2276M 22 ms 1 s 124 s 780M
1.1 · 107 33 s 436 s 3727M 31 s 138 s 1274 s 10G 25 ms 5 s 737 s 3591 M

Cloud 2.7 · 106 38 s 446 s 5846M 119 s 48 s 913 s 3361M 64 ms 4 s 278 s 291 M
2.0 · 107 Out of memory 2021 s 464 s Timed out 29 ms 9 s Timed out
1.3 · 108 Out of memory Timed out 32ms 75 s Timed out
8.2 · 108 Out of memory Timed out 42 ms 574 s Out of memory

The state space data structure must be kept in memory throughout the
numerical solution, because it is needed in the phase of engineering measure
evaluation. Thus, BiCGSTAB ran slower after explicit decomposition due to the
pressure on the garbage collector (GC) caused by the larger size of the state space
data structures. For smaller models, numerical solution with sparse matrices
was faster than with block Kronecker matrices. However, for larger models the
decomposed matrix utilized the memory bandwidth and caches more efficiently.

The sole difference between the Sym and Asym versions of the SR models
are the transition rates, which only affected the numerical solution time. The
structure of the state space remained identical.

Failures of BiCGSTAB included exhaustion of the time limit and the avail-
able memory. In the largest SR-Asym model, a numerical breakdown condition
occurred. This condition may be handled by switching to a more stable solver,
such as Jacobi or Gauss–Seidel iteration [23, Section 2.2]. These solvers are also
implemented in the PetriDotNet framework.

6 Conclusion and Future Work

In this paper we introduced an efficient stochastic analysis approach using
symbolic algorithms to explore the possible behaviours of the system and
decomposition-based stochastic analysis algorithms to efficiently compute sta-
tionary measures of stochastic Petri nets. In our work we established an efficient
mapping technique which can bridge the gap between the encoded state space
representation and the decomposition-based numerical algorithms. This algo-
rithm supports the analysis of Petri net models with huge state spaces and
complex behaviours. Measurements on models with various sizes and character-



19

istics showed the effectiveness of the introduced approach and the benefits of the
new mapping algorithm.

In the future, we plan to further extend our stochastic analysis framework
with other numerical solution algorithms such as the Split algorithm for Kro-
necker products. In addition, we will also investigate GPU and distributed im-
plementation of the available algorithms.
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