New Search Strategies for the Petri Net CEGAR Approach

Ákos Hajdu¹, András Vörös¹, Tamás Bartha²

¹Department of Measurement and Information Systems Budapest University of Technology and Economics, Budapest, Hungary ²Institute for Computer Science and Control MTA SZTAKI, Budapest, Hungary

Petri Nets 2015, Brussels, Belgium, 26.06.2015.

Budapest University of Technology and Economics Department of Measurement and Information Systems

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. New iteration strategy
- 4. Search strategies
- 5. Evaluation
- 6. Conclusions

1. Introduction

- 2. The CEGAR approach on Petri nets
- 3. New iteration strategy
- 4. Search strategies
- 5. Evaluation
- 6. Conclusions

Introduction – Reachability analysis

- Reachability analysis
 - o Is a given marking reachable from the initial marking?
 - Drawback: complexity
 - Decidable [Mayr'81]
 - At least EXPSPACE-hard [Lipton'76]
 - No precise upper bound is known
 - Possible solutions
 - Partial order reduction
 - Symbolic methods
 - Abstraction

Introduction – Abstraction

Abstraction

- General approach to handle large (infinite) state spaces
 - Less detailed (finite, smaller) state space representation
- Abstraction refinement is required
 - A behavior in the abstract model may not be realizable
 - Refine using information from the explored part
- → CounterExample Guided Abstraction Refinement
- Applying CEGAR on Petri nets [Wimmel & Wolf'11]

1. Introduction

- 3. New iteration strategy
- 4. Search strategies
- 5. Evaluation
- 6. Conclusions

New Search Strategies for the Petri Net CEGAR Approach

- Analysis of the abstract model
 - Solving the state equation for the firing count of transitions

$$m_0 + C \mathbf{x} = m_1$$

- Integer Linear Programming problem
- Necessary, but not sufficient criterion for reachability

Examining the solution

Bounded exploration of the state space

- Abstraction refinement
 - Exclude the counterexample without losing any realizable solution
 - Constraints can be added to the state equation
 - The state equation may become infeasible
 - A new solution can be obtained
 - Traversing the solution space of the state equation

- Traversing the solution space
 - Semi-linear space
 - Base solutions
 - T-invariants
 - Two types of constraints
 - Jump: obtain different base solution
 - Increment: reach non-base solutions by adding T-invariants

Our previous results

- Correctness of the algorithm [Hajdu et al.'14]
 The algorithm may give a wrong answer
 Detect these cases and also solve some of them
- Completeness of the algorithm [Hajdu et al.'13]
 The algorithm may...
 - ...fail to decide the problem
 - ...fail to terminate
 - Improvements, but still incomplete

1. Introduction

2. The CEGAR approach on Petri nets

3. New iteration strategy

- 4. Search strategies
- 5. Evaluation
- 6. Conclusions

New iteration strategy

- A reason for incompleteness
 - Increment constraints add a T-invariant to a solution
 - Possible cases:
 - 1. Cannot fire
 - 2. Fires and enables some other transition \boldsymbol{J}

Repeat refinement cycle

- 3. Fires but does not enable any transition
 - Different solution is obtained without any progress ightarrow terminate
 - There may be "distant" invariants

New iteration strategy

- Our new strategy
 - Extending increment constraints
 - "Lending" tokens to places \rightarrow "lending" tokens to invariants
 - Distant invariant
 - Z is a distant invariant for Y if Z can produce tokens in places connected to Y
 - Problems to be solved
 - Number of tokens to "borrow"
 - Termination criterion
 - E.g.: X lends to Y and Y lends to X \rightarrow infinite loop

New iteration strategy

- Number of tokens "borrowed"
 - One token at a time and repeat
 - Some problems cannot be solved this way
- Termination criterion
 - Form a chain of invariants
 - If Z did not help Y \rightarrow find distant invariant for (Z + Y)
 - Union of transitions \rightarrow finite

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. New iteration strategy
- 4. Search strategies
- 5. Evaluation
- 6. Conclusions

- The algorithm traverses the solution space
 Multiple jump/increment constraints
 - We examined different strategies
 - Depth-first search
 - Breadth-first search
 - We developed a complex strategy

New Search Strategies for the Petri Net CEGAR Approach

- Depth-first search
 - + Efficient regarding memory usage
 - + Fast convergence
 - May not find the minimal solution
 - May not terminate
- Breadth-first search
 - + Always finds the minimal solution
 - Less efficient than DFS
 - May not terminate if there is no solution

- Complex strategy
 - Based on DFS
 - Expand one level of the solution space
 - All partial solutions of a solution vector
 - Define an ordering between the partial solutions
 - Filter based on the order

- Ordering
 - Partial order: Parikh image of firing sequence
- Filtering
 - Maximal solutions
 - Closest to a realizable solutions
 - Infinite loops can be detected
 - Minimal solutions
 - Slower convergence
 - May involve different T-invariants

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. New iteration strategy
- 4. Search strategies
- 5. Evaluation
- 6. Conclusions

Evaluation

- Implementation: PetriDotNet framework
- Comparison of algorithms
 - SARA tool
 - Wimmel & Wolf
 - Saturation-based method (developed at our group)
 - Symbolic algorithm
- Comparison of search strategies
 BFS ↔ DFS ↔ Complex strategy

Comparison of the algorithms

FMS

- Flexible manufacturing system
- Fixed structure
- Parameter affects state space

- Dining philosophers
 - Illustration of mutual exclusion
 - Structure grows with parameter

Comparison of search strategies

Models with large solution space

New Search Strategies for the Petri Net CEGAR Approach

RG

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. New iteration strategy
- 4. Search strategies
- 5. Evaluation
- 6. Conclusions

Conclusions

- Theoretical results
 - New iteration strategy and limitations
- Practical results
 - Behavior of BFS, DFS and a complex strategy
- Future work
 - Forward reachability: did we reach the limits?
 - How structure and behavior affects performance?

hajduakos182@gmail.com vori@mit.bme.hu PetriDotNet: bit.ly/1Rqnare Measurements: bit.ly/1CoMJSG

References

[Mayr'81] MAYR, EW. "An algorithm for the general Petri net reachability problem." *Proc. 13th Annual ACM Symposium on Theory of Computing, 1981*. 1981.

[Lipton'76] Lipton, Richard. "The reachability problem requires exponential space." *Research Report 62, Department of Computer Science, Yale University, New Haven, Connecticut* (1976).

[Wimmel & Wolf'11] Wimmel, Harro, and Karsten Wolf. "Applying CEGAR to the Petri net state equation." *Tools and Algorithms for the Construction and Analysis of Systems*. Springer Berlin Heidelberg, 2011. 224-238.

- **[Hajdu et al.'13]** Hajdu, Ákos, et al. "Extensions to the CEGAR approach on Petri Nets." (2013): 274-288.
- **[Hajdu et al.'14]** Hajdu, Akos, et al. "Extensions to the CEGAR Approach on Petri Nets." *Acta Cybernetica* 21 (2014): 401-417.

Models

Dining philosophers

New Search Strategies for the Petri Net CEGAR Approach

