
FORWARD SATURATION BASED MODEL CHECKING

András VÖRÖS
Advisor: Tamás BARTHA

I. Introduction

Formal methods are gaining importance as safety critical, distributed and embedded systems are be-
coming widespread. By using formal verification we can find errors or we can prove the correctness
in an early stage of the design. Model checking is an automatic verification method to check discrete,
finite state models. In the last 20 years many model checking algorithms appeared: in this paper we
focus on one of them, the so-called saturation algorithm. Saturation is a symbolic state space genera-
tion and model checking algorithm, which is efficient for globally asynchronous, locally synchronous
(GALS) models. Former work presented structural model checking algorithms using saturation and
constrained saturation, which were based on the classical backward traversal of the state space. In this
paper we introduce saturation model checking based on forward state traversal. We hope this research
direction to further improve the efficiency of model checking algorithms.

II. Preliminaries

Petri nets [1] are graphical models for concurrent and asynchronous systems, providing both structural
and dynamical analysis.

An event in the system is the firing of an enabled transition. The firing of transitions is non-
deterministic. The state space of a Petri net is the set of states reachable through transition firings.

In order to examine a model (for example a Petri net), we have to explore its possible dynamic
behaviour, i.e. the state space. Traditional symbolic state space exploration uses encoding for the
traversed state space, and stores this compact, encoded representation only. Decision diagrams proved
to be an efficient form of symbolic storage, as applied reduction rules provide a compact representation
form. Another important advantage is that symbolic methods enable us to manipulate large set of states
efficiently.

A Multiple-valued Decision Diagram (MDD) is a directed acyclic graph, representing a function f
consisting of K variables: f : {0, 1, . . .}K → {0, 1}. An MDD has a node set containing two types
of nodes: non-terminal and two terminal nodes (0 and 1). The nodes are ordered into K + 1 levels. A
non-terminal node is labelled by a variable index 0 < k ≤ K, indicating which level the node belongs
to (which variable it represents), and has nk (the domain size of the variable, in binary case nk = 2)
edges pointing to nodes in level k − 1 (the i-th edge of node n is written as n[i]). A terminal node is
labelled by the variable index 0. Further information can be found in [2].

With the help of MDD based symbolic representation we are able to explore the state space of com-
plex systems. The first step of symbolic state space generation is to encode the possible states. Tradi-
tional approach encodes each state with a certain variable assignment of state variables (v1, v2 . . . vn),
and stores it in a decision diagram. To encode the possible state changes, we have to encode the tran-
sition relation, the so called next-state function. This can be done in a 2n level decision diagram with
variables: N = (v1, v2 . . . vn, v

′
1, v
′
2 . . . v

′
n), where the first n variables represent the “from”, and sec-

ond n variables the “to” states. The next-state function represents the possibly reachable states in one
step.

Usually the state space traversal builds the next-state relation using a breadth first search. The reach-
able set of states S from a given initial state s0 is the transitive closure (in other words: the fixed-point)



of the next-state relation: S = N ∗(so). Saturation based state space exploration differs from traditional
methods as it combines symbolic methods with a special iteration strategy. This strategy is proved to
be very efficient for asynchronous systems modelled with Petri nets.

The saturation algorithm consists of the following steps:
• Decomposition: Petri nets can be decomposed into local submodels. The global state is the

composition of the components’ local states: sg = (s1, s2, . . . , sn), where n is the number of
components, and sn is the local state of the n-th component. This decomposition is the first step
of the saturation algorithm.
• Event localization: As the effects of the transitions are usually local to the component they

belong to, we can omit these events from other sub-models, which makes the state space traversal
more efficient. For each event e we set the border of its effect by the top (tope) and bottom (bote)
levels (submodels). Outside of this interval we omit the event e from the exploration.
• Special iteration strategy: Saturation iterates through the MDD nodes and generates the whole

state space representation using a node-to-node transitive closure. In this way saturation avoids
the peak size of the MDD to be much larger than the final size, which is a critical problem in
traditional approaches. Let B(k, p) represent the set of states represented by the MDD rooted at
node p, at level k. Saturation appliesN ∗ locally to the nodes from the bottom of the MDD to the
top. Let E be the set of events affecting the k-th level and below, so tope ≤ k. We call a node
p at level k saturated, iff node B(k, p) =

⋃
∀e∈E N ∗e (B(k, p)). The state space generation ends

when the node at the top level becomes saturated, so it represents the state space: S = N ∗(s0).
• Encoding of the next-state function: Saturation algorithm uses a disjunctive-conjunctive tran-

sition relation decomposition [3], where the global next state relation N is constructed as the
disjunction of the transition relations for all event: N =

⋃
∀eNe. Each transition relation Ne

is then constructed as the conjunction of sub-relations. Sub-relations are constructed model de-
pendently, as the chosen higher level model determines how they can be efficiently created. In
the case of ordinary Petri nets conjunctive representation can be based on Kronecker matrices
[2], however for scalability and flexibility reasons we employ symbolic representation of the
Next-state functions.
• Building the MDD representation of the state space: At first we build the MDD representing the

initial state. Then we start to saturate the nodes in the first level by trying to fire all e events
where tope = 1. After finishing the first level, we saturate all nodes at the second level by firing
all events, where tope = 2. If new nodes are created at the first level by the firing, they are also
saturated recursively. The procedure is continued at every level k for events, where tope = k.
When new nodes are created in a level below the current one, they are also recursively saturated.
If the root node at the top level is saturated, the algorithm terminates. Now the MDD represents
the whole state space with the next-state relation encoded in Kronecker matrices or symbolically
in MDD-s.
• State space representation as an MDD: A level of the MDD generated during saturation rep-

resents the local state space of a submodel. The possible states of the submodel constitute the
domain of the variables in the MDD. Each local state space is encoded in a variable.

Model checking [4] is an automatic technique for verifying finite state systems. Given a model
defined for example as a Petri net in our context, model checking decides whether the model fulfils the
specification. Formally: let M be a Kripke structure (i.e. state–transition graph). Let f be a formula of
temporal logic (i.e. the specification). The goal of model checking is to find all states s of M such that
M, s � f (“�” means “satisfies”).

State space generation serves as a prerequisite for the structural model checking: verifying temporal
properties needs the state space and transition relation representation. CTL (Computation Tree Logic)
is widely used to express temporal specifications of systems, as it has expressive syntax and there are



efficient algorithms for its analysis. Operators occur in pairs in CTL: the path quantifier, either A
(on all paths) or E (there exists a path), is followed by the tense operator, one of X (next), F (future,
or finally), G (globally), and U (until). However we only need to implement 3 of the 8 possible
pairings due to the duality [4]: EX, EU, EG, and we can express the remaining with the help of
them in the following way: EFp ≡ E[true Up], AXp ≡ ¬EX¬p, AGp ≡ ¬EF¬p, AFp ≡ ¬EG¬p,
A[p U q] ≡ ¬E[¬q U (¬p ∧ ¬q)] ∧ ¬EG¬q.

The CTL model checking algorithm efficiently utilizes the data structures created previously, during
the state space exploration. As CTL operators express next-state relations and fixed point properties,
we have to efficiently express the inverse of the next-state function N−1. The semantics of the 3 CTL
operators:
• EX: i0 � EXp iff ∃i1 ∈ N (i0) s.t. i1 � p. This means that EX corresponds to the inverse N

function, applying one step backward through the next-state relation, formally: EX p = N−1(p)
• EG: i0 � EGp iff ∀n ≥ 0,∃in ∈ N (in−1) s.t. in � p so that there is a strongly connected compo-

nent containing states satisfying p. This computation needs a greatest fixed-point computation:
EGp = gfp Z[p ∧ EXZ]
• EU: i0 � E[p U q] iff ∃n ≥ 0, ∃i1 ∈ N (i0), . . . ,∃in ∈ N (in−1) s.t. in � q and im � p for allm <
n. Informally: we search for a state q reached through only states satisfying p. The computation
of this property needs a least fixed-point computation: E[p U q] = lfp Z[q ∨ (p ∧ EXZ)]

As it is easy to see, these operations and fixed-point calculations are based on the pre-image (inverse
Next-state) computation operator: N−1. The question comes naturally: can we replace backward
traversal based operators? The idea of forward state traversal symbolic model checking appeared to
replace backward state traversal.

In order to be able to do forward model checking, we have to convert the semantics of the backward
model checking [5]. If we examine a model with initial state s0, where exactly predicate p0 is true,
so that s0 � f can be rewritten: s0 � f ⇐⇒ p0 ∧ f 6= false ⇐⇒ p0 ∧ ¬f = false. The semantic
of forward and backward traversal model checking differs, like the expressible possible properties
[6]. Forward model checking is built on path expressions, which is contrary to the approach used by
backward structural model checking. The forward model checking approach builds a so-called path
set expression (PSE) and checks its validity in the model [7]. The basic elements of PSE-s are the
following (p and q are propositional formulas):
• [p] matches every one-step sequence, which satisfies p
• [p]∗[q] matches every finite sequence, which ends in a state satisfying q, and all states before

satisfies p. This is the forward traversal counterpart of the E[pUq] CTL operator.
• [p]ω matches every infinite sequence such that each state satisfies p. This is the forward traversal

counterpart of the EG p CTL operator.
• αβ matches to every sequence, such that the first finite part matches formula α, and after it the

(tail) sequence matches β
• α : β matches to every sequence, such that the first finite part matches formula α, then there is a

state, where both α and β is true, then the last (tail) sequence matches β
The main forward traversal evaluation procedures and their semantics are the following:
• fw([p][f ]): it computes the PSE [p][f ], the procedure computes N (p) ∧ f 6= false,
• fwU(p, q): it computes the PSE [p] : [q]∗, the procedure computes the forward least-fixed point

lfp Z[p ∨N (Z ∧ q)]
• fwG(init, p): it computes the PSE [init] : [p]ω, the procedure computes the forward greatest

fixed-pont gfp Z[p∧N (Z)]; to be able to compute this greatest fixed-point, we have to compute
the reachable states from init state satisfying p: lfp Z[init∨N (Z ∧ p)], which can be done with
the formerly defined procedure: fwU(init, p)



III. Saturation based forward model checking

Our aim is to apply saturation in forward model checking, so we need saturation based fw, fwU and
fwG procedures. At the end of this section we show how CTL expressions are computable with these
forward traversal procedures.

For this reason, we employ the so-called constrained saturation algorithm [8], with small modifica-
tions. The traditional constrained saturation algorithm uses N−1l to explore the states, so it uses back-
ward state traversal. By changing the direction, and usingNl in the algorithm ConsSaturate(p, q) [8],
it will compute exactly the same states as procedure fwU(p, q). The main advantage of this approach
is that we can avoid the intersection operations which are applied in the traditional approaches at every
breadth-first step. So we have an algorithm to compute fwU(p, q). We have to be able to compute
fw([p][f ]) and fwG(p) too to be able to handle more CTL operators. fw([p][f ]) needs a Next-state
computation, which does not use saturation, it can be done with former approaches. The algorithm
computing fwG(init, p) starts with computing ConsSaturate(init, q), and then by standard breadth
first search it computes the greatest fixed-point gfp Z[p ∧N (Z)].
In the following the basic CTL expressions and their forward traversal based counterparts are:
• Forward EX evaluation: It can be changed to fw([p][f ]). So we can replace the outermost EX

evaluation with Next-state computation, fw([p][f ]) : p ∧ EXf 6= false⇐⇒ N (p) ∧ f 6= false
• Forward EU evaluation: It can be changed to fwU(p, q), so we can replace the outermost EU

evaluation as follows: p ∧ E[q U f ] 6= false⇐⇒ fwU(p, q) ∧ f 6= false
• Forward EG evaluation: Using the fwG operator, we can replace the outermost EG evaluation

as follows: p ∧ EG q 6= false⇐⇒ fwG(p, q) 6= false
This way many of the CTL expressions are convertible to model check in a forward manner. How-

ever, there are still some examples, which are not, according to the literature [6]. The theoretical
question is still open: which formulas are expressible with this logic [6].

IV. Conclusion

In this paper I have presented how forward traversal based CTL model checking can be done with the
help of the saturation algorithm. The main motivation of this work is to further improve the efficiency
of saturation by avoiding the full state space exploration which was necessary with former saturation
based model checking algorithms.

In the future we plan to implement these algorithms and we would like to further improve EG
computation, which seems to be the bottleneck of our approach.

References
[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, 77(4):541–580, April 1989.
[2] G. Ciardo and A. S. Miner, “Storage alternatives for large structured state spaces,” in Proceedings of the 9th ICCPE:

Modelling Techniques and Tools, pp. 44–57, London, UK, 1997. Springer-Verlag.
[3] G. Ciardo and A. Yu, “Saturation-based symbolic reachability analysis using conjunctive and disjunctive partitioning,”

Correct Hardware Design and Verification Methods, 3725:146–161, 2005.
[4] E. Clarke, O. Grumberg, and D. A. Peled, Model Checking, The MIT Press, 1999.
[5] H. Iwashita, T. Nakata, and F. Hirose, “CTL model checking based on forward state traversal,” in 1996 IEEE/ACM

International Conference on Computer-Aided Design, pp. 82–87. IEEE, 1996.
[6] T. Henzinger, O. Kupferman, and S. Qadeer, “From pre-historic to post-modern symbolic model checking,” in Com-

puter Aided Verification, pp. 195–206. Springer, 1998.
[7] H. Iwashita and T. Nakata, “Forward model checking techniques oriented to buggy designs,” Proceedings of IEEE

International Conference on Computer Aided Design (ICCAD) ICCAD-97, pp. 400–404, 1997.
[8] Y. Zhao and G. Ciardo, “Symbolic CTL model checking of asynchronous systems using constrained saturation,” in

Proceedings of the 7th International Symposium on Automated Technology for Verification and Analysis, ATVA ’09,
pp. 368–381, Berlin, Heidelberg, 2009. Springer-Verlag.


