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I. Introduction 

Formal methods are widely used for the verification of safety critical and embedded systems. 

However, nowadays the use of formal methods is not limited to these areas as the demand for proven 

functional correctness increased in many other fields, e.g. in telecommunication and automotive 

industry. The main advantage of formal methods compared to extensive testing is that they can 

provide a mathematical proof for the correct behavior of the system, or they can prove that the 

system does not meet its specification. On the other hand, testing can only examine a portion of the 

possible behaviors. Usually the system undergoes testing after the implementation phase; formal 

methods can help finding bugs and design errors earlier, in the design phase. This makes the 

correction cheaper, and the development process more effective.  

Nevertheless, formal verification is a complex task. As systems become more complex, the 

excessively growing number of possible behaviors of them leads to enormous memory or time 

consumption, so that the completion of the analysis process becomes impossible due to the 

limitations of the computational architecture. This is called the state space explosion problem.  

One of the most prevalent techniques in the field of formal verification is model checking, which 

is an automatic technique to check whether a system fulfills the requirements. There are several 

model checking algorithms and approaches, starting from explicit traversal through the use of 

different reduction techniques and ending at the abstract methods. However, all methods need to 

generate a representation of the state space in order to run some analysis on it. Storing the state space 

representation can turn out to be quite difficult in cases where the state space explodes. 

There are two main reasons behind this problem. The first reason is that the independently updated 

state variables lead to exponential growth in the number of the system states, even in the case of 

Boolean variables. The second reason is the asynchronous characteristic of distributed systems; the 

composite state space is often the Cartesian product of the local components’ state spaces. 

There are different ways to efficiently handle state space explosion. We can reduce the memory 

and time consumption with intelligent state traversal – we only traverse and store a representative set 

of the state space, which preserves the examined properties.  

To overcome the difficulties caused by the large number of state variables, the use of symbolic 

methods is widespread. These algorithms can avoid storing state space explicitly; instead they 

encode the states and store them implicitly for example in decision diagrams. Symbolic methods 

enable us to efficiently store huge sets in memory. In general: symbolic techniques were a good 

choice at the register transfer level (RTL) design, where the large number of variables lead to large 

memory consumption. At system level, asynchronous components lead to large state spaces, dealt 

with reduction. This also shows the different strengths of the algorithms. In this paper I introduce a 

special symbolic model checking algorithm, called saturation, and I examine the effect of some 

heuristics to its performance. 

II. Symbolic state representation and saturation 

Traditional symbolic model checking use encoding to store the traversed state space, and stores this 

compact representation only. Decision diagrams proved to be a proper solution for this purpose, as 

applied reduction rules provide a compact representation form. In the early times Binary Decision 

Diagrams were the most common, but in the last decade many other variants appeared to comply 
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with the broadening application requirements. From this wide area I introduce Multiple Valued 

Decision Diagrams (MDD), which I present in the remaining of the paper. 

Multiple Valued Decision Diagram is a directed acyclic graph with a node set containing 2 types 

of nodes ordered into levels: non-terminal and 2 terminal vertices. A non-terminal vertex is labeled 

by a variable index k, which indicates to which level belongs the node (which variable is represented 

by it), and has nk (domain size of the variable, in binary case nk=2) arcs pointing to nodes in level k-

1. Duplicate nodes are not allowed, so if in level k two nodes have identical successors, they are also 

identical. Redundant nodes are allowed, so it is possible that a node’s all arcs point to the same 

successor. These rules ensure that MDD-s are canonical representation of a given function or set. 

The first step in symbolic model checking is to encode the possible states. Traditional approach 

encodes each state with a given variable assignment (v1, v2… vn) and stores it in a decision diagram. 

To encode the possible state changes, we have to encode the transition relation, which can be done in 

a 2n level decision diagram with variables: (v1, v2 …vn, v’1, v’2…v’n), where the first n variables 

represent the “from”, and variables (v’1, v’2…v’n) the “to” states. The state space traversal builds this 

during a breadth first search, or in a combined breadth first and depth first traversal called chaining. 

The main motivation of saturation state space exploration [1] is to combine symbolic methods with 

a special iteration strategy, which proved to be very efficient for asynchronous models. These models 

consist of some components interacting with each other less often than executing their local 

transitions. In this case, we can decompose the model to local sub-models, and the global state is the 

composition of the components’ local states: sg = (s1, s2,…, sn), where n is the number of components. 

This decomposition is the first step of the saturation algorithm. Saturation needs the so called 

Kronecker consistent decomposition, which means that the global transition (Next-state) relation is 

the Cartesian product of the local-state transition relations. Formally: if Ni,e is the Next-state function 

of the transition  (event) e in the i-th sub-model, the global Next-state of event e is: Ne = 

N1,e×N2,e×…×Nn,e. Note that when modeling asynchronous systems, a transition usually affects only 

some or some parts of the sub-models. This kind of event locality can be easily exploited with this 

decomposition. Many modeling languages, such as Petri nets have this property [1].  

During saturation, decomposition serves the basic of the symbolic encoding – we code in a 

variable a sub-model’s local states. We need as many variables as many sub-models we divided the 

model into. Opposite to the traditional approach, the Next-state function is not coded explicitly in a 

from-to relation in the MDD, instead we store to each sub-model the local Next-state function in the 

so called Kronecker matrix [2]. As the transitions usually have only local effects, we can omit these 

events from other sub-models, which makes the state space traversal more efficient. For each event e 

we set the border of its effect, the top (tope) and bottom (bote) levels (sub-models). Outside this 

interval we don’t deal with it. Kronecker matrices and local state spaces are built dynamically during 

the traversal, while affected level intervals of events (tope, bote) are defined before, from structure. 

Saturation is a special iteration strategy, which consists of a bottom-up building of the decision 

diagram with a special depth first traversal of the state space. The main aim is to explore the sub-

models local state space in a greedy manner, and encode them before other sub-models are explored. 

This is similar to the chaining method; the main difference is that saturation localizes the effects of 

the changes in the MDD, updating nodes instead of updating the whole MDD. 

The reachable set of states S from a given initial state s is the closure of the Next-state relation: S = 

N 
*
(s). Saturation iterates through the MDD nodes and reaches the whole state space representation 

from node to node transitive closure generation. In this way saturation avoids that the peak size of 

the MDD to be much larger than the final size, which is a critical problem in traditional approaches. 

Let B(k,p) represent the set of states represented by the MDD rooted at node p, at level k. Saturation 

applies N 
*
 locally to the nodes from the bottom of the MDD to the top. Let ε be the set of events 

affecting k. level and below, so where tope ≤ k. We call a node p at level k saturated, if node B(k,p) = 

  ε N e
*
(B(k,p)). The state space generation ends when the node at the top level becomes saturated,  

97



so it represents S = N 
*
(s) for all events. 

As saturated nodes represent the local fixed-points for events having effects localized to the sub-

graph, only saturated nodes can appear in the final state space representation [2]. In addition, 

updating nodes during the traversal can be made locally, called in-place update, just setting the edges 

to the newly explored sub-MDD. So we need fewer operations affecting the whole MDD than 

traditional approaches, instead we make operations with smaller impact. This property helps keeping 

the peak size of the MDD low during the state space exploration.   

State space generation serves as a prerequisite for the structural model checking: verifying 

temporal properties needs the state space and transition relation representation. CTL is widely used 

to express temporal specifications of systems, as it has expressive syntax and there are efficient 

algorithms for its analysis. In CTL, operators occurs in pairs: the path quantifier, either A (on all 

paths) or E (there exists a path), is followed by the tense operator, one of X (next), F (future, or 

finally), G (globally), and U (until). However, from the 8 possible pairings due to the duality [1], we 

only need to implement 3: EX, EU, EG, and we can express the remaining with the help of them. 

These operators also benefit from the locality exploited by saturation. The semantics of them are: 

 EX: i
0
 |= EX p iff   i

1
   N(i

0
) s.t. i

1
 |= p (“|=” means “satisfies”). This means that EX                                                                                   

corresponds to the inverse N function, applying one step backward through the Next-state relation, 

using transposed Kronecker matrix. This way we can exploit locality efficiently.  

 EG: i
0
 |= EG p iff  n ≥ 0,  i

n
   N(i

n-1
) s.t. i

n
 |= p so that there is a strongly connected component 

containing states satisfying p. This computation needs a greatest fixed-point computation, so that 

saturation cannot be applied for it. Computing the closure of this relation however profits from the 

locality accompanying the decomposition.  

 EU: i
0
 |= E[pU q] iff  n ≥ 0,  i

1
   N(i

0
), ...,  i

n
   N(i

n−1
) s.t. i

n
 |= q and i

m
 |= p for all m < n.  

Informally: we search for a state q reached through only states satisfying p. The computation of 

this property needs a least fixed-point computation, which can exploit the efficiency of saturation. 

However, before performing saturation in EU, we have to classify events into categories in order to 

define the breadth first and the saturation based steps in the fixed-point calculation: 

 An event e is dead with respect to a set of states S if Ne
−1

 (S) ∩ S = Ø, these events are omitted 

from the fixed-point calculation.  

 An event e is safe, if it cannot lead from outside S to sates in S, formally: Ø ⊂ Ne
−1

 (S) ⊆ S.  

 All other events are unsafe.  

With the help of this categorization, we decompose the fixed-point calculation into 2 steps:  

 Computing the closure of relations of the safe events can be efficiently done by saturation 

 By breadth-first traversal the algorithm explores unsafe events. As from states reached by unsafe 

steps we have to filter out those, which do not satisfy p or q, we have to compute the intersection 

of them with p q. This intersection is evaluated in all iteration. 

The efficiency of EU computation highly depends on the efficiency of the saturation steps, because 

the number of breadth first steps (and intersection operations) depends on the model and the temporal 

logic formula itself, so we can only reduce the runtime of the saturation. 

Time and memory consumption of saturation depends on the iteration order, and of course on the 

size of the MDD. Measurements showed that the size of the Next-state Kronecker matrices is just a 

small fraction of the whole memory required by the algorithms.  

Iteration order and MDD size are not independent. Actually, the algorithm iterates through all 

nodes, so the complexity is at least the number of nodes in the MDD. We have to point out that there 

are more iterations, usually by a polynomial factor. As the size of the MDD can be exponential in the 

size of the variables, this is a critical point in symbolic model checking. Good variable ordering is the 

key in MDD size reduction. Finding good variable order is an NP hard problem, however there are 

usable heuristics that perform well. 
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III. Optimization 

The main motivation of the optimization is to enable the algorithm to exploit locality efficiently, 

which is important not only because of the number of the iteration steps, but the size – and of course, 

the efficiency – of the MDD operations. In addition, the cached values of the event-node pairs – 

which enable the algorithm to avoid redundant operations on MDD nodes – couldn’t be used 

efficiently, when the iteration order, so that the MDD variable order doesn’t reflect the structure of 

the system. Optimizing saturation consists of the decomposition of the model into sub-models, and 

then the algorithm assigns an MDD variable to each of them. Good decomposition, i.e. when 

functionally dependent sub-models are composed into the same variable can reduce the size of the 

MDD [2]. However, coding big state spaces into a single variable leads soon to an unusable 

algorithm as it converges to the explicit state space representation method.  

There are two main trends in order to improve the efficiency of the saturation iteration strategy [2]: 

choosing the ordering of the variables to make the effects of the transitions locally or to make the top 

levels of the transitions effects lower. First approach improves locality by trying to reduce the 

distance between the top and bottom levels of the transitions, so that we minimize the sum of 

transition spans. Second approach uses the fact that saturation builds the MDD representing S in a 

bottom-up fashion, so placing transitions as low as possible is the preferable. This approach 

minimizes the sum of the transition tops. Combining the approaches is a good compromise.  

The literature about MDD size reduction is wide. These approaches use some kind of variable 

reordering method. The basic operation is the so called “adjacent level interchange”, which changes 

the order of the adjacent variables, trying to reduce their sizes. This way we can reduce the size of 

the MDD step-by-step, and avoid overrunning the memory limit. The optimization algorithms 

perform these steps until a good variable order is found. However, in this context, this method can 

only be used after the state space generation, so it cannot make saturation faster.  

Reducing the size of the MDD needs some heuristics to find a good variable order before the 

generation. If we use some knowledge about the model it can help us to avoid mistakes which 

enlarge the MDD. It is well known, that if there are concurrent sub-models, the variables 

representing their states shouldn’t be overlapped. Consider 2 components with variables x1, x2 and y1, 

y2, where functional dependencies (→) occur inside the components. In this case there is no 

functional dependence: (x1, x2) → (y1, y2), only (x1) → (x2, y1, y2) and (x1, x2, y1) → (y2). Using the 

variable order x1, y1, x2, y2, 2 dependencies remain: (x1) → (y1, x2, y2) and (x1, y1, x2) → (y2), however 

we create a new dependence: (x1, y1) → (x2, y2), which will increase the number of nodes. Let me 

point out, that these functional dependencies mean some transitions in the model checking context, 

which control the possible reachable states, so the heuristics used for the iteration order indeed 

localizes the dependencies in the MDD making it smaller. 

Using heuristics from [2] in the structural CTL model checking may improve the performance. As 

EU and EF computation builds mostly on saturation, they can exploit heuristics after the state space 

generation. However the algorithm was optimized also before state space generation, applying the 

heuristics during the model checking, there were a 3-5% additional performance gain. Applying 

MDD size reduction before EG computation decreased the computation time with 5-50%. 

IV. Conclusion, further work 

The usage of static variable ordering in CTL model checking proved its usefulness. In the future I 

would like to extend the algorithms to apply dynamic reordering during saturation.  
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