
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Advanced Saturation-based Model
Checking

Master’s thesis

Author Supervisors
Vince Molnár dr. Tamás Bartha,

András Vörös

December 21, 2014

Contents

Kivonat 5

Abstract 6

Introduction 7

1 Background 9

1.1 Modeling Formalisms . 10

1.1.1 Kripke structures . 10

1.1.2 Petri nets . 11

1.2 Temporal Logics . 13

1.2.1 CTL* . 13

1.2.2 CTL . 15

1.2.3 LTL . 17

1.3 Automata Theory . 19

1.3.1 Büchi automata . 21

1.3.2 Synchronous product of Büchi automata 23

1.3.3 Generalized Büchi automata . 24

1.3.4 Transforming LTL expressions . 26

1.3.5 Language emptiness of Büchi automata 28

1.4 Model Checking . 28

1.4.1 CTL model checking . 29

1.4.2 LTL model checking . 30

1.4.3 Symbolic model checking . 31

1

1.5 Decision Diagrams . 32

1.5.1 Reduced ordered binary decision diagrams. 32

1.5.2 Multi-valued decision diagrams. 33

1.5.3 Operations and notations . 34

1.6 Saturation . 35

1.6.1 Input model . 35

1.6.2 Symbolic encoding . 36

1.6.3 Iteration strategy . 37

1.6.4 Constrained saturation . 38

2 Related Work 40

2.1 Explicit Techniques in Model Checking . 40

2.1.1 Explicit on-the-fly SCC computation 40

2.1.2 Partial order reduction . 41

2.2 SAT-based Model Checking . 41

2.3 Decision Diagram-based LTL Model Checking 42

2.3.1 Fixed point algorithms on decision diagrams 42

2.4 Abstraction in LTL Model Checking . 43

2.4.1 Abstraction based on the automaton 43

2.4.2 Abstraction based on components 43

2.5 Saturation in Model Checking . 44

2.5.1 Fixed point algorithms using saturation 44

3 Symbolic Computation of the Synchronous Product 45

3.1 Tableau-based Product Computation . 45

3.1.1 Tableau automata . 46

3.1.2 Encoding the product automaton . 48

3.1.3 Investigation of correctness and efficiency 51

3.2 Decompositions-based Product Computation 53

3.2.1 Composing the transition relation of the product automaton 53

3.2.2 Investigation of correctness and efficiency 54

2

4 Checking language emptiness 57

4.1 Lemma of Saturated State Spaces . 58

4.2 Incremental Symbolic SCC Computation . 58

4.2.1 Extensions to support fair SCCs . 62

4.3 Indicators of SCCs in the Product Automaton 63

4.3.1 Recurring states during state space exploration 63

4.3.2 Using abstractions to reason about emptiness 65

4.4 On-the-fly Incremental Hybrid Model Checking of LTL Properties 69

4.4.1 Recurring states in the fixed point computation 69

4.4.2 Constraining the explicit search of abstractions 70

4.4.3 SCC candidates in the fixed point computation 70

4.4.4 Assembling the pieces – the full SCC detection algorithm 71

5 Evaluation 73

5.1 Implementation . 73

5.2 Benchmark Cases . 73

5.2.1 Tools and Inputs . 75

5.2.2 Benchmark settings . 76

5.3 Results . 76

5.3.1 Comparison of runtime results . 76

5.3.2 Efficiency of the presented techniques 80

6 Summary 82

List of figures 85

List of algorithms 86

Bibliography 87

3

HALLGATÓI NYILATKOZAT

Alulírott Molnár Vince, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2014. december 21.

Molnár Vince
hallgató

Kivonat

A lineáris temporális logikai (LTL) specifikációk verifikációjára számos explicit és szim-
bolikus modellellenőrzési technikát dolgoztak ki az elmúlt évtizedekben. Manapság a
kutatások meghatározó iránya a két algoritmuscsalád előnyeinek kombinálása, legfőképp
az ún. “on-the-fly” (menet közbeni) modellellenőrzés megvalósítása szimbolikus kódolást
használva. Az LTL modellellenőrzés megvalósításához két problémát kell megoldani: ki
kell számolni a rendszer állapotterének és a követelményt leíró automatának a szinkron
szorzatát, majd ebben ellenpéldákat, vagyis hibás lefutásokat keresni. Utóbbi vissza-
vezethető körök vagy erősen összefüggő komponensek keresésére a szorzatot leíró gráfban.
Konkurens rendszerek esetén az ún. szaturációs algoritmus nagyon hatékony megoldásnak
bizonyult a szimbolikus állapottér-felderítés problémájának megoldására.

Jelen diplomamunka célja egy olyan új megoldás bemutatása, amely a szaturációs al-
goritmus előnyeit mind a szorzat közvetlen kiszámításában, mind egy erősen összefüggő
komponenseket kereső inkrementális fixpont-számító algoritmusban kiaknázza. A keresést
kiegészítve explicit megoldások és absztrakció segítségével a bemutatott algoritmus menet
közben az ellenpélda hiányát is megpróbálja bebizonyítani. Az eredmény egy “on-the-fly”
működésű, inkrementális LTL modellellenőrző algoritmus ami a Model Checking Contest
modelljein végzett kísérletek alapján jól skálázódik a vizsgálandó modell méretével.

5

Abstract

Efficient symbolic and explicit model checking approaches have been developed for the
verification of linear time temporal logic (LTL) properties. Nowadays, several attempts
have been made to combine on-the-fly search with symbolic encoding. Model checking
LTL properties usually pose two challenges: one must compute the product between the
state space of the system and the automaton model of the desired property, then look for
counterexamples that is reduced to searching for fair loops or strongly connected compo-
nents (SCCs) in state space of the product. In case of concurrent systems, the so-called
saturation algorithm proved to be an efficient symbolic state space generation approach.

This thesis proposes a new approach that leverages the saturation algorithm both as an
iteration strategy used to compute the product directly, as well as in a new incremental
fixed-point computation algorithm to compute strongly connected components on-the-fly.
Complementing the search for SCCs, explicit techniques and abstraction will be used to
prove the absence of counterexamples. The result is an on-the-fly, incremental LTL model
checking algorithm that proved to scale well with the size of models, as evaluation on
models of the Model Checking Contest suggests.

6

Introduction

In 1968, a revolutionary conference was held by NATO, a conference that signals the birth
of “software-engineering” [45]. Computer scientists realized that while software is getting
"mainstream", there are no such paradigms that can ensure quality and safety like in
other areas of engineering. Few things have changed since then, but today we face an even
greater challenge. Computer systems have invaded our house, software runs in our phone,
our car, in the traffic control system, in airplanes we travel by, even in industrial control
systems found in factories or nuclear power plants. While programmers found the way to
build critical infrastructure with proper design architectures, much less progress has been
made in ensuring, verifying and proving the correctness and safety of such systems.

Among the various techniques that tried to tackle the above problem, formal methods
represent a mathematical perspective. Formal methods can be used on a number of levels
in software engineering. First of all, formal specifications can precisely characterize the
requirements towards a system and provide the basis of applying other techniques. Formal
development and verification are then used to ensure that the produced system really sat-
isfies its specifications, raising the overall quality of the product in terms of dependability
and robustness. A more heavyweight approach in formal methods is theorem proving,
where highly trained personnel provide fully formal mathematical proofs with the aid of
automatic theorem provers.

In the early ’80s, model checking, a promising new technique of formal verification was
developed by E. M. Clarke and E. A. Emerson [25] and by J. P. Quielle and J. Sifakis
[48]. They used temporal logics to specify the formal requirements and enumerated the
possible behaviors of the system, checking them against the specification. Since then, there
has been an enormous leap in the field of model checking. Various kinds of algorithms
have been implemented for different temporal logics and model formalisms, and a lot of
optimizations and special methods were devised to broaden the range of systems that can
be verified this way.

A great challenge of model checking – even to this day – is the so-called state space explo-
sion problem. Especially when a system has independent components or many variables,
the number of states of the system can grow extremely large. To address this problem,
symbolic model checking was introduced in the early ’90s [8]. In symbolic model checking,
states and state transitions are not simply enumerated, but represented symbolically by

7

functions, encoded in efficient data structures such as decision diagrams. Although this
encoding can usually represent state spaces larger by several orders of magnitudes, the
traditional explicit state model checkers can sometimes outperform symbolic approaches
using the many devised optimizations that could not be implemented in symbolic model
checking so far. The reason behind this mostly lies in graph traversal algorithms, because
symbolic methods usually have to use breadth-first search instead of depth-first search.

In the early 2000s, G. Ciardo developed a new iteration strategy specially tailored to
decision diagrams [13]. He called it the saturation iteration strategy, in which the search
was driven by the structure of the decision diagram, processing nodes in it instead of
the states it represented. Saturation proved to be very successful in verifying concurrent,
asynchronous systems. These systems are common when modeling the interaction of
individual components, and they are especially prone to the state space explosion problem.

In terms of temporal logic specifications, two formalisms became widespread. Linear
temporal logic (LTL) was the first formalism introduced in formal specification due to its
intuitive interpretation. Computational tree logic (CTL) became popular with the first
model checker algorithms, because the worst-case complexity of CTL model checking is
linear in the size of the state space (cf. state space explosion) and the specification as
well. LTL model checkers appeared later, with exponential complexity in the size of the
specification [49]. However, the semantics of LTL provided an opportunity to design the
algorithms to work in an on-the-fly manner, terminating immediately when a proof is
found. CTL model checkers rarely possess such a feature, because many of them explore
the state space first, then compute fixed points according to the subexpressions of the
specification formula.

On the other hand, the latter approach made CTL model checking suitable for a symbolic
implementation, since fixed point computations on decision diagrams were easy to perform.
Symbolic LTL model checkers also appeared, but the on-the-fly manner of the explicit
algorithms relied on depth-first search, which is cumbersome to implement in a symbolic
way. This is what makes symbolic LTL model checking an interesting challenge, one that
has been therefore tackled by many researchers in different ways.

This thesis aims to 1) give the reader a deeper insight into the current state of symbolic
LTL model checking, as well as to 2) propose new algorithms based on the saturation
iteration strategy and the presented related work.

The layout of the thesis is aligned according to the stated two goals. After setting the his-
torical background and motivation here, the theoretical background of LTL model checking
and symbolic techniques – including the saturation iteration strategy – are presented in
Chapter 1. Chapter 2 presents the related work in LTL model checking, summarizing
various approaches implemented in state-of-the-art tools. The main contributions are
presented in Chapters 3 and 4 in the form of new algorithms solving the LTL model
checking problem. The prototype implementation of the presented algorithm is evaluated
in Chapter 5. Finally, Chapter 6 concludes the results.

8

Chapter 1

Background

This chapter will introduce the basic concepts behind the solutions presented in this thesis.
Since the main emphasis is on symbolic LTL model checking, the reader should first
get familiar with a few modeling formalisms (Section 1.1) and a family of specification
languages called temporal logics (Section 1.2). Section 1.3 will present automata theory,
which is closely related to linear time temporal logic and model checking. Based on the
presented artifacts, the model checking problem itself will be characterized in Section
1.4. The description of the saturation iteration strategy closes the chapter by introducing
symbolic representation and the algorithm to generate the state space of a system with
saturation.

Common notations

Throughout this thesis, the following notations will be used for sets of numbers and
Boolean symbols:
• N is the set of natural numbers {0, 1, 2, . . .};
• Z is the set of integers {. . . ,−1, 0, 1, . . .};
• Z+ is the set of positive integers {1, 2, . . .};
• B is the set of Boolean values consisting of two symbols: true (>) and false (⊥).

A sequence of elements from a set Σ is a mapping f : {0, 1, 2, . . . , |f |} → Σ where |f |
is the length of the sequence. An element at a certain position k is therefore f(k).
Subsequences of f starting from position k are denoted by f [k], where f [k](i) = f(k+i)
for all 0 ≤ i ≤ |f | − k = |f [k]|. A sequence is called infinite if it maps from N. An
infinite sequence has an infinite length |f | =∞. The sets of possible sequences with a
certain length are denoted by:

• Σn for the set of sequences with length n;
• Σ∗ for the set of finite sequences;
• Σω for the set of infinite sequences.

9

In this thesis, paths, runs and words are typically defined as sequences. In case of
words, the set Σ is called an alphabet and its elements are letters. A word over an
alphabet denotes a sequence of letters from the alphabet.

1.1 Modeling Formalisms

Formal verification of systems cannot be possible without defining a model of the sys-
tem with mathematical precision. Such a model is called formal if it has a well-defined
syntax and precise semantics. There are low-level formalisms, which are usually built on
simple mathematical constructs such as sets, relations and functions. The most common
model types are based on graphs with annotations or labels on either arcs, nodes or both.
Low-level formalisms are easy to handle mathematically, while they are usually hard to
comprehend for humans and are impractical for direct modeling of a system. Kripke
structures are presented in Section 1.1.1 as a good example that is widely used in model
checking.

Higher-level formalisms address the practical modeling difficulties by providing constructs
that are closer to the modeled phenomena. These models also have formal semantics,
usually given by a transformation to a lower-level formalism. A common higher-level
formalism for modeling concurrent systems is Petri nets. Since many examples in this
thesis will be modeled by Petri nets, Section 1.1.2 will introduce them briefly.

1.1.1 Kripke structures

Kripke structures [39] are directed graphs with labeled nodes. Nodes represent different
states of the modeled system, while arcs denote state transitions. Each state is labeled
with properties that hold in that state. This way, paths in the graph represent possible
behaviors of the system. Labels along the paths give the opportunity to reason about
sequences of valuations of Boolean propositions (see temporal logics in Section 1.2).

Definition 1 (Kripke structure). Given a set of atomic propositions AP = {p, q, . . .},
a (finite) Kripke structure is a 4-tuple M = 〈S, I,R, L〉, where:

• S = {s1, . . . , sn} is the (finite) set of states;
• I ⊆ S is the set of initial states;
• R ⊆ S × S is the transition relation consisting of state pairs (si, sj);
• L : S → 2AP is the labeling function that maps a set of atomic propositions to each
state. �

When used in model checking, the transition relation is often defined as left-total, i. e., for
all si ∈ S, there exists sj ∈ S such that (si, sj) ∈ R. In that case, a path in M can be

10

defined as an infinite sequence ρ ∈ Sω with ρ(0) ∈ I and (ρ(i), ρ(i + 1)) ∈ R for every
i ≥ 0. The infinite sequence of sets of atomic propositions assigned to the states in ρ by
L is called a word on the path and is denoted by L(ρ) ∈ (2AP)ω. The language that the
Kripke structure M can produce (i. e., the set of all possible words on every path of M) is
L(M).

Without the labeling function, the structure is called a transition system. Since many
algorithms ignore the labeling, sometimes transition systems are used in definitions instead
of Kripke structures. Even then, the labeling function is usually implicitly there, in the
form of different properties of a state or some related information.

{p} {q} {p}

s1 s2 s3

Figure 1.1. A simple finite Kripke structure with a left-total transition rela-
tion.

Example 1. Figure 1.1 shows a simple finite Kripke structure with left-total transition
relation. States are denoted by circles, while arrows between them are transitions of the
Kripke structure. The initial state is s1, this is denoted by the arc without a source. Labels
are written inside the states.

A path of the Kripke structure can be ρ = s1s1s2s3s3 . . ., its corresponding word is w =
{p}{p}{q}{p}{p} This Kripke structure produces words with infinitely many letters of
{p} and at most one {q}.

1.1.2 Petri nets

A Petri net [44] is a mathematical modeling language applicable to many kinds of systems.
It is traditionally used to describe and study concurrent, asynchronous and nondeterminis-
tic systems. Besides the mathematical definition and semantics, Petri nets have a graphical
representation similar to flow charts or block diagrams, with tokens to simulate dynamic
behavior. Despite their simple definition and semantics presented below, Petri nets have
a very deep mathematical theory that is out of the scope of this thesis.

A Petri net is a directed, weighted, bipartite graph with the partite sets called places and
transitions. Places have a visual representation of a circle, while transitions are drawn
as bars or boxes. Arcs are going from places to transitions or vice versa, labeled with a
positive integer indicating their weights. The weight k of an arc can be interpreted as k
parallel arcs (with weight 1) between the same place and transition. The state of a Petri
net is called a marking, which assigns a nonnegative integer to each place of the net. State
changes occur when transitions fire.

11

Definition 2 (Petri net). A Petri net is a 5-tuple PN = 〈P, T,E,w,M0〉, where:

• P = {p1, . . . , pn} is the finite set of places;
• T = {t0, . . . , tm} is the finite set of transitions;
• E ⊆ (P × T) ∪ (T × P) is the set of directed arcs;
• w : E → Z+ is the weight function;
• M0 : P → N is the initial marking;
• P ∩ T = ∅ and P ∪ T 6= ∅ must also hold. �

Input (output) places of a transition t ∈ T is denoted by •t = {p | (p, t) ∈ E} (and
t• = {p | (t, p) ∈ E} respectively). State changes are described by the following firing
rule: 1) A transition t is enabled if each input place p ∈ •t is marked with at least w(p, t)
tokens. 2) An enabled transition may fire nondeterministically, or may not fire at all. 3)
The firing of an enabled transition t removes w(p, t) tokens from each input place p ∈ •t
and puts w(t, p) tokens to each output place p ∈ t•.

The semantics of Petri nets in terms of Kripke structures are given by the following
transformation. Let the states of the Kripke structure be the (possibly infinite) set of
possible markings S = {M0,M1, . . .} with the initial marking as the initial state I = {M0}.
A pair of markings (Mi,Mj) is in the transition relation of the Kripke structure iff there
exists a transition in the Petri net that is enabled in Mi and its firing in Mi results in Mj .

A marking M is reachable if there exists a (possibly infinite) path in the Kripke structure
that ends in M. A Petri net is bounded if there exists a nonnegative integer b such that
there is no reachable marking in which any of the places p ∈ P is marked with more than
b tokens. Kripke structures of bounded Petri nets are always finite. The Kripke structure
of a Petri net (or other higher-level model) is often referred to as its state space. In this
context, the transformation to the Kripke structure (or transition system) is called state
space generation or state space exploration.

H2

O2

H2O

2
2

(a) Before firing the transition.

H2O

2
2H2

O2

(b) After firing the transition.

Figure 1.2. Petri net modeling the chemical reaction of hydrogen and oxygen.

Example 2. Figure 1.2 shows a Petri net modeling the reaction of hydrogen and oxygen
(before formalizing it, Petri initially used Petri nets to visualize chemical reactions). Firing
the transition in the middle changes the marking according to the weights of the arcs.

12

1.2 Temporal Logics

Temporal logics [19] are widely used to reason about paths of Kripke structures. In this
sense, time is only represented by the order of states in a path, no explicit clock values
appear in the logic itself.

In the family of temporal logics, the most general formalism for characterizing infinite
traces of system behaviors is the µ-calculus. However, due to its cumbersome interpreta-
tion, it is rarely used as a real-life specification language. CTL* is a less general but more
intuitive subset of the µ-calculus, using temporal operators and path quantifiers to reason
about possible behaviors and temporal relations. Nevertheless, the most widespread tem-
poral logics in formal specification are two of its subsets, linear temporal logic (LTL) and
computational tree logic (CTL).

Historically, LTL and CTL were developed separately. CTL* was designed as a combi-
nation of the two, and later it was proved that both three can be translated into the
µ-calculus. The following sections present CTL*, CTL and LTL both formally and infor-
mally. Since the classic scheme of LTL model checking involves a translation to automata,
it is not strictly necessary to delve into the formal definitions in order to understand the
presented model checking algorithms later.

1.2.1 CTL*

CTL* [27] is a branching-time logic: every nondeterministic choice branches the time
model to form a tree structure of possible futures. The tree can be regarded as unfolded
paths of a Kripke structure starting from a certain state. This model motivates the
operators of CTL* – besides the operators of propositional logic, CTL* defines temporal
operators and path quantifiers to reason about paths and branches, respectively.

Temporal operators are:

• X ϕ: the next state operator, ϕ must hold in the next state along the path;
• F ϕ: the eventually (or future) operator, ϕ must hold in some future state along the

path;
• G ϕ: the globally operator, ϕ must hold in every state of the path;
• [ψ U ϕ]: the until operator, ϕ most hold in some future state, but until then, ψ must
hold in every state;
• [ψ R ϕ]: the release operator, ϕ must hold in every state along the path which is

not after a state in which ψ was true.

Path quantifiers are:

• A ϕ: the universal path quantifier, ϕ must hold for every paths starting in the
current state;

13

• E ϕ: the existential path quantifier, ϕmust hold for some path starting in the current
state.

In CTL*, these operators can be mixed almost arbitrarily. For a graphical explanation of
temporal operators, observe Figure 1.4 is Section 1.2.3.

Definition 3 (Syntax of CTL*). The formal syntax of CTL* is given by the following
BNF grammar, where p ∈ AP is an atomic proposition:

Φ= > | ⊥ | p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | Φ⇒ Φ | Φ⇔ Φ | Aφ | Eφ

φ= Φ | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ | φ⇔ φ | X φ | F φ | G φ | [φ U φ] | [φ R φ]

A well-formed CTL* formula is generated by the symbol Φ. Formulae generated by this
symbol are called state formulae, while those generated by φ are path formulae. �

Apart from the well-known equivalences of logical operators, the following equivalences
apply to temporal operators and path quantifiers:

• ¬X ϕ ≡ X ¬ϕ
• ¬F ϕ ≡ G ¬ϕ
• ¬[ψ U ϕ] ≡ [¬ψ R ¬ϕ]
• F ϕ ≡ [> U ϕ]
• G ϕ ≡ [⊥ R ϕ]
• Aϕ ≡ ¬E¬ϕ

Using these equivalences, it is possible to construct a minimal set of connectives that can
define the other operators. Such a set is {>,¬,∧,A,X,U}.

Definition 4 (Semantics of CTL*). The formal semantics of CTL* is defined with
respect to a Kripke structure M with a left-total transition relation (i. e., every path ρ of
M is infinite).

A state s of M satisfies the state formula Φ, denoted by (M, s) |= Φ if its a valid model
of the formula. This is defined inductively:

1. (M, s) |= >;
2. (M, s) |= p iff p ∈ L(s);
3. (M, s) |= ¬Φ iff (M, s) 6|= Φ;
4. (M, s) |= Φ1 ∧ Φ2 iff (M, s) |= Φ1 and (M, s) |= Φ2;
5. (M, s) |= A φ iff ρ |= φ for all paths ρ of M starting in s.

Let ρ be a path of M , and let ρ[k] be a sub-path of ρ. The satisfaction of φ by ρ, denoted
by ρ |= φ is also defined inductively:

14

1. ρ |= Φ iff (M, s0) |= Φ;
2. ρ |= ¬φ iff ρ 6|= φ;
3. ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;
4. ρ |= X φ iff ρ[1] |= φ;
5. ρ |= [φ1 U φ2] iff for some k ≥ 0, ρ[k] |= φ2 and for all 0 ≤ i < k, ρ[i] |= φ1. �

1.2.2 CTL

Computational tree logic (often called branching-time logic) differs from CTL* in a single
restriction of the syntax: valid operators consist of a single path quantifier followed by
a single temporal operator [33]. This way, the possible operators (apart from the logical
operators) are AX, AF, AG, AU, AR, EX, EF, EG, EU and ER1. For a graphical explanation
of the meaning of these operators, observe Figure 1.3.

AX a:
a

a

a

AF a:

a

a

a

a

AG a:

a

a

a

a

a

aa

a a

a a

a a

A[a U b]:

b

b

b

b

a

a

a a

a

a

EX a:
a

EF a:
a

EG a:
a aa

E[a U b]:

ba

a

a

a

Figure 1.3. Illustration of CTL operators.

1The release operator is rarely used in CTL.

15

The main advantage of restricting the syntax is that this way, every possible subformula
is a state formula. A way of model checking CTL properties is assigning new labels to the
states by iteratively computing the sets of states in which the subfromulae hold. Since
this approach processes only the states of a Kripke structure and not paths in it, such an
algorithm can be linear in the number of states of the Kripke structure.

Definition 5 (Syntax of CTL). The formal syntax of CTL is given by the following
BNF grammar, where p ∈ AP is an atomic proposition:

Φ= > | ⊥ | p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | Φ⇒ Φ | Φ⇔ Φ |

AX Φ | AF Φ | AG Φ | A[Φ U φ] | EX Φ | EF Φ | EG Φ | E[Φ U Φ]

A well-formed CTL formula is a generated by the symbol Φ. �

A possible minimal set of connectives in CTL is {>,¬,∧,EX,EG,EU}. The other operators
can be defined by the following equivalences (and the well-known logical equivalences):

• AX ϕ ≡ ¬EX ¬ϕ
• AF ϕ ≡ ¬EG ¬ϕ
• AG ϕ ≡ ¬EF ¬ϕ
• EF ϕ ≡ E[> U ϕ]
• A[ψ U ϕ] ≡ ¬E[¬ϕ U ¬ψ ∧ ¬ϕ] ∧ AF ϕ

The last equivalence states that there must always come a state in which ϕ holds, and no
path can lead to a state in which neither ϕ nor ψ holds when there has not been a state
on the path before in which ϕ held.

Definition 6 (Semantics of CTL). The formal semantics of CTL is defined with re-
spect to a Kripke structure M with a left-total transition relation (i. e., every state si
of M has at least one successor sj such that (si, sj) ∈ R). The satisfaction relation
(M, s) |= Φ is defined inductively:

1. (M, s) |= >;
2. (M, s) |= p iff p ∈ L(s);
3. (M, s) |= ¬Φ iff (M, s) 6|= Φ;
4. (M, s) |= Φ1 ∧ Φ2 iff (M, s) |= Φ1 and (M, s) |= Φ2;
5. (M, s0) |= EX φ iff for some path ρ = s0s1s2 . . . of M , (M, s1) |= φ;
6. (M, s0) |= EG φ iff for some path ρ = s0s1s2 . . . of M , (M, sk) |= φ for every k ≥ 0;
7. (M, s0) |= E[φ1 U φ2] iff for some path ρ = s0s1s2 . . . of M , there exists some k ≥ 0

such that (M, sk) |= φ2 and for all 0 ≤ i < k, (M, si) |= φ1. �

Example 3. An example for a CTL formula is AG EF (init). This is the so-called reset
property, requiring that the system can always return to the initial state.

16

1.2.3 LTL

At first glance, linear temporal logic [47] is very similar to path formulae in CTL*. In LTL,
a formula cannot contain path quantifiers, and this is not only a syntactic restriction: the
time model of LTL is linear, meaning that it considers a single realized future behavior of
a system, that is, a single path in a Kripke structure. The possible oprators in LTL are
the same as the temporal operators of CTL*. For a graphical explanation, observe Figure
1.4.

a

a

a a a a a

a a a b

b b b b b

b b b a ∧ b

X a:

F a:

G a:

[a U b]:

[a R b]:

Figure 1.4. Illustration of LTL operators.

An LTL formula ϕ is said to be valid with regard to a Kripke structure M , if it holds for
all paths of M . It is satisfiable if it holds for some path is M . As a specification language,
usually validity is desired. A CTL* formula equivalent to ϕ is Aϕ in case of validity, while
Eϕ in case of satisfiability.

Definition 7 (Syntax of LTL). The formal syntax of LTL is given by the following
BNF grammar, where p ∈ AP is an atomic proposition:

φ= > | ⊥ | p | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ | φ⇔ φ | X φ | F φ | G φ | [φ U φ] | [φ R φ]

A well-formed LTL formula is generated by φ. �

In LTL, a minimal set of connectives can be {>,¬,∧,X,U}. The CTL* equivalences listed
in Section 1.2.1 can be used to define the remaining temporal operators.

Definition 8 (Semantics of LTL). The formal semantics of LTL is defined with respect
to a Kripke structure M with a left-total transition relation (i. e., every path ρ of M is
infinite). Let ρ be a path of M , and let ρ[k] be a sub-path of ρ. The relation ρ |= φ is
again defined inductively:

1. ρ |= >;
2. ρ |= p iff p ∈ L(s0);
3. ρ |= ¬φ iff ρ 6|= φ;
4. ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;
5. ρ |= X φ iff ρ[1] |= φ;
6. ρ |= [φ1 U φ2] iff for some k ≥ 0, ρ[k] |= φ2 and for all 0 ≤ i < k, ρ[i] |= φ1. �

17

As the definition of the semantics suggests, LTL can distinguish between words on paths
of a Kripke structure, which are ω-regular words over 2AP as discussed in Section 1.1.1.
This way, it is possible to speak about such words satisfying an LTL formula ϕ, denoted
by w |= ϕ, and the language of the formula L(ϕ) = {w | w |= ϕ}, which is an ω-regular
language. More specifically, the set of languages that can be described in LTL is the set
of star-free languages that is a strict subset of ω-regular languages.

Example 4. A typical example for an LTL property is G F (step). This is a so-called
fairness property that requires the system to step infinitely often.

CTL*, CTL and LTL

CTL and LTL differs in expressive power mainly due to the different semantical models
[57]. There are properties that can be expressed in both, but there are also some that
only one can formulate. CTL* includes both of them.

An example for a CTL property that cannot be described in LTL is the so-called reset
property: AG EF ϕ, i. e., there is always a possibility to reach ϕ. LTL cannot describe
such possibility, only that something has to happen. On the other hand, a similar
property in LTL called stability property is outside of the expressive power of CTL:
G F ϕ, i. e., ϕ will eventually hold forever. CTL can express only stricter (AF AG ϕ) or
more permissive (AF EG ϕ) properties. The latter is cleary no the stability property,
since it only requires the possibility of stability. The former one is a bit harder to see.

Consider the Kripke structure of Figure 1.1 and the formula AF AG p. While F G p

hold for the model, the semantics of CTL causes the formula to be invalid here. It is
clear that the rightmost and the middle state can be labeled with AG p. The initial
state, however, cannot receive the label AG AF p, because there is always a path that
leads to the middle state with label q.

Properties only describable with CTL* are easily built by mixing state and path for-
mulae, for example EX ϕ ∧ A(G F ϕ) is not expressible in either LTL or CTL.

Negation normal form

The negation normal form of an LTL formula [30] is particularly useful when transforming
it to an automaton (see Section 1.3.4). In negation normal form, negations can appear only
before atomic propositions, and the usable logical and temporal operators are restricted
to >, ⊥, ∧, ∨, X, U and R.

All LTL formulae can be transformed into negation normal form by applying the following
equivalences (replace left hand side to right hand side whenever possible):

18

1. ψ ⇒ ϕ ≡ ¬ψ ∨ ϕ
2. ψ ⇔ ϕ ≡ (ψ ∧ ϕ) ∨ (¬ψ ∧ ¬ϕ)
3. F ϕ ≡ [> U ϕ]
4. G ϕ ≡ [⊥ R ϕ]
5. ¬(ψ ∧ ϕ) ≡ ¬ψ ∨ ¬ϕ

6. ¬(ψ ∨ ϕ) ≡ ¬ψ ∧ ¬ϕ
7. ¬X ϕ ≡ X ¬ϕ
8. ¬[ψ U ϕ] ≡ [¬ψ R ¬ϕ]
9. ¬[ψ R ϕ] ≡ [¬ψ U ¬ϕ]

10. ¬¬ϕ ≡ ϕ

Example 5. Consider a formula ¬[p U q∨F p∧ q]. Conversion to negation normal form
involves the following steps:

¬[p U (q ∨ F p ∧ q)] =

¬[p U (q ∨ [> U p ∧ q])] =

[¬p R ¬(q ∨ [> U p ∧ q])] =

[¬p R (¬q ∧ ¬[> U p ∧ q])] =

[¬p R (¬q ∧ [⊥ R ¬(p ∧ q)])] =

[¬p R (¬q ∧ [⊥ R (¬p ∨ ¬q)])]

1.3 Automata Theory

An automaton is an abstract machine that models some kind of computation over a
sequence of input symbols. In formal language theory, automata are mainly used as a
finite representation of infinite languages. In that context, they are often classified by the
class of language they are able to recognize.

The simplest class of automata is finite automata (also known as finite state machines).
A finite automaton operates with a finite and constant amount of memory (independent
of the length of the input). A finite automaton can operate on finite or infinite inputs.
In formal language theory, inputs are called words, while elements of the input are called
letters, the set of all possible letters constituting the alphabet.

Definition 9 (Finite automaton). A finite automaton is a 5-tuple A = 〈Σ,Q, I,∆,F〉,
where:

• Σ = {α1, α2, . . .} is the finite alphabet, i. e., the set of possible letters;
• Q = {q1, q2, . . .} is the finite set of states;
• I ⊆ Q is the set of initial states;
• ∆ ⊆ Q × Σ × Q is the transition relation consisting of state–input–state triples

(q, α, q′);
• F ⊆ Q is the set of final or accepting states. �

Let w ∈ Σ∗ be a finite word over the alphabet Σ, with length |w|. A run of the finite
automaton A reading the word w is a sequence of automaton states ρw ∈ Q∗, where
ρw(0) ∈ I and (ρw(i), w(i), ρw(i+ 1)) ∈ ∆ for all i, that is, the first state is an initial state

19

and state changes are permitted by the transition relation. The ultimate goal of automata
in formal language theory is to distinguish between words that are part of a language and
those that are not. This behavior is defined by the acceptance condition.

Definition 10 (Acceptance condition for finite words). A run ρw of a finite au-
tomaton A reading the finite word w is called accepting iff the last state is a final state,
i. e., ρw(|ρw|) ∈ F . A finite automaton A accepts a finite word w iff it has an accepting
run reading w. �

The set of all finite words accepted by a finite automaton A is denoted by L(A) ⊆ Σ∗ and
is called the language of A. The class of languages that can be characterized by a finite
automaton over finite words is called regular languages.

Regular expressions

Regular expressions are textual descriptions of regular languages. Given an alphabet
Σ, three constants are defined as regular expressions:
• ∅ that characterizes an empty language;
• ε that characterizes the language consisting of only the empty word;
• a ∈ Σ describing a language with a single-letter word a.

Given two regular expressions R and S, the following operators are defined to produce
regular expressions:

• RS is the concatenation of the languages (words of S are concatenated to words
of R in every combination);
• R|S is the alternation of the languages (it represents the union of the sets of
words represented by R and S);
• R∗ is the Kleene star denoting the smallest superset of the set of words repre-
sented by R that contains ε and is closed under concatenation (this includes any
word that can be obtained by concatenating a finite number of words from R,
including zero).

There is an extension to regular expressions that can describe ω-regular languages
called ω-regular expressions. In addition to the former construct, it contains another
operator: Rω means almost the same as R∗, but with an infinite number of words
concatenated.

Example 6. The regular expression ε|((a|b)∗a) describes the every word that ends with
an a and the empty word. The omega regular expression (b∗a)ω describes infinite words
that contain infinitely many a’s.

A finite automaton can be deterministic or nondeterministic. Definition 9 described the
nondeterministic version where the structure describing the transitions is a relation. In the

20

case of deterministic automata, transitions can be described as a function of the current
state and the input letter ∆ : Q×Σ→ Q. In practice, this means that given two transitions
(q, α, q′) and (q, α, q′′), the target states must be the same (q′ = q′′). Another implication
is that a specific word can have at most one corresponding run in a deterministic finite
automaton. In the rest of this thesis, we will consider nondeterministic automata.

q1 q2

a

b

a b

Figure 1.5. A finite automaton.

Example 7. Figure 1.5 shows the graphical representation of an automaton. It is similar
to that of a Kripke structure, but labels are written on the transitions, denoting the letter
that they can read. Accepting states are marked with double circles.

The automaton accepts the word abbaa, because there exists an accepting run q1q1q2q2q1q1

reading it. The language described by this automaton is ε|((a|b)∗a), i. e., the empty word
and those ending with an a.

1.3.1 Büchi automata

Büchi automata [7] are the simplest finite automata operating on infinite words. The
structure of a Büchi automaton is the same as that of a finite automaton (defined by
Definition 9). A run of a Büchi automaton reading an infinite word w ∈ Σω is now an
infinite sequence ρw ∈ Qω with the same rules as finite runs of a finite automaton. Since
the last state in a run can no longer be defined, the acceptance condition has to be modified
to treat infinity.

Definition 11 (Büchi acceptance condition). Let w ∈ Σω be an infinite word and
ρw ∈ Qω be an infinite run reading w. Let inf (ρw) denote the set of states that appear
infinitely often in ρw. The run ρw is called accepting iff it has at least one accepting state
appearing infinitely often, i. e., inf (ρw) ∩F 6= ∅. A Büchi automaton A accepts a word w
iff it has an accepting run reading w. �

The class of languages that can be characterized by Büchi automata is called ω-regular
languages.

Example 8. Figure 1.5 can also be interpreted as a Büchi automaton. Then it accepts
the language (b∗a)ω, i. e., every infinite word containing an infinite number of a’s.

21

Kripke structures, LTL and Büchi automata

Three structures were presented so far that are related to words and languages. In
terms of terminology, Kripke structures produced words, while linear temporal logic
and Büchi automata characterized or recognized them. These terms essentially mean
the same – both three structures are associated with a family of languages.

Büchi automata are one of the standard means to characterize ω-regular languages,
meaning that for every ω-regular language, there exists a Büchi automaton that rec-
ognizes exactly that language and vice versa.

Although Kripke structures are very similar in structure, they are less expressive, i. e.,
there are ω-regular languages that Kripke structures cannot produce. To see this,
the following proposition presents a way to construct a Büchi automaton that accepts
exactly the language of a Kripke structure.

Proposition 1 (Büchi automaton of Kripke structure). Given a Kripke struc-
ture M = 〈S, I,R, L〉 with the set of atomic propositions AP, an equivalent Büchi
automaton that accepts the language produced by M is AM = 〈Σ,Q, I,∆,F〉, where:

• Σ = 2AP , i. e., letter are sets of atomic propositions;
• Q = S ∪ {init}, i. e., the states of the Kripke structure together with a special
initial state;
• I = {init}, i. e., the special initial state;
• ∆ = {(s, α, s′) | (s, s′) ∈ R ∧ α = L(s′)} ∪ {(init, α,s) | s ∈ I ∧ α = L(s)},

i. e., the automaton reads the labels of target states and additional transitions
go from the special initial state to initial states of the Kripke structure;
• F = Q, i. e., every state is accepting. �

Defining accepting states as the entire set of states is indeed necessary, because every
path in a Kripke structure produces a word, no matter what states it passes. In other
words, there is no such thing as fairness in ordinary Kripke structures. Based on
that, an example ω-regular language that cannot be produced by a Kripke structure is
a∗bω (infinitely many b’s after finitely many a’s). Any Büchi automaton accepting this
language must have a loop that reads the letter a arbitrary many times and another
loop that reads b infinitely many times. Only the second loop can contain an accepting
state to force runs out of first loop, which cannot be modeled in Kripke structures.

The set of languages that can be described by linear temporal formulae is the set of
star-free languages, which is also a strict subset of ω-regular languages. An example
ω-regular language that cannot be described by a finite LTL formula is ((a|b)b)ω (every
second letter is a b, the others may be a or b).

It is also easy to see that Kripke structures and LTL has different expressive powers,
since ((a|b)b)ω can be modeled by a Kripke structure, while a∗bω can be expressed by
the LTL formula [a ∧ ¬b U G b].

22

1.3.2 Synchronous product of Büchi automata

The synchronous product of two Büchi automata A1 and A2 is another Büchi automaton
A1 ∩A2 that accepts exactly those words that both A1 and A2 accept [19]. The language
of the product automaton is therefore L(A1 ∩ A2) = L(A1) ∩ L(A2).

Definition 12 (Synchronous product). Given two Büchi automata A1 =
〈Σ,Q1, I1,∆1,F1〉 and A2 = 〈Σ,Q2, I2,∆2,F2〉, their synchronous product is
A1 ∩ A2 = 〈Σ,Q∩, I∩,∆∩,F∩〉, where:

• Q∩ = Q1 ×Q2 × {0, 1, 2}, i. e., the pair of states of A1 and A2 and a counter;
• I∩ = I1 × I2 × {0}, i. e., every state with counter value 0;
• F∩ = Q1 ×Q2 × {2}, i. e., every state with counter value 2.

A transition ((q, r, x), α, (q′, r′, y)) is part of the transition relation ∆∩ iff:

• (q, α, q′) ∈ ∆1 and (r, α, r′) ∈ ∆2, i. e., both automata can progress with the input
letter α;
• the third component satisfies the following rule (i. e., counts the accepting states
encountered):

y =


0 if x = 2
1 if x = 0 and q′ ∈ F1
2 if x = 1 and r′ ∈ F2
x otherwise. �

The third component ensures that an accepting path contains accepting states of both
automata infinitely often. Simply using F1 × F2 is not sufficient, since even though both
A1 and A2 have to pass their own accepting states infinitely often, they are not required
to do so at the same time.

The third component is a counter that can reach 2 (an accepting state by definition) after
seeing at least one accepting state from A1 and then at least one from A2. The counter
resets in the next state, so an infinite number of accepting states in the product automaton
implies an infinite number of accepting states in both A1 and A2. If at any point, no more
accepting state is encountered in one of the automata, that automaton will reject the word.
In that case, the counter gets stuck and the product will not accept the word either. See
Figure 1.6 for an example.

In the special case where all states of one of the automata are accepting (F1 = Q1),
the definition of the product automaton is simpler. Since any infinite run in A1 will be
accepting, the counter in not necessary – the product inherits the accepting states of A2.
Such is the case when an automaton describes the possible behaviors of a Kripke structure
(see Proposition 1).

23

q1

a

b

a b

r1

b

a

b a

q2 r2

a a

a

a

a

b

b

bb

b

(q1, r1, 0)

(q1, r2, 1) (q2, r1, 0)

(q2, r2, 0)(q2, r1, 2)

Figure 1.6. Two automata and their synchronous product.

Definition 13 (Synchronous product – special case). Given two Büchi automata
A1 = 〈Σ,Q1, I1,∆1,F1〉 and A2 = 〈Σ,Q2, I2,∆2,F2〉 with F1 = Q1, their synchronous
product is A1 ∩ A2 = 〈Σ,Q∩, I∩,∆∩,F∩〉, where:

• Q∩ = Q1 ×Q2;
• I∩ = I1 × I2;
• ∆∩ = {((q, r), α, (q′, r′)) | (q, α, q′) ∈ ∆1 ∧ (r, α, r′) ∈ ∆2};
• F∩ = F1 ×F2 = Q1 ×F2. �

1.3.3 Generalized Büchi automata

Sometimes – especially in model checking – it is more convenient to use a special variant of
Büchi automata called generalized Büchi automata (GBA). A generalized Büchi automaton
has multiple sets of accepting states (possibly even zero), a feature that enables more
compact encoding of languages [19].

Definition 14 (Generalized Büchi automaton). A generalized Büchi automaton is a
5-tuple A = 〈Σ,Q, I,∆,F〉, where Σ, Q, I an ∆ denote the same as in Büchi automata,
while F ⊆ 2Q is the set of acceptance sets instead of a single acceptance set. �

Example 9. Figure 1.7 shows a generalized Büchi automaton. It has two acceptance sets:
the two states belong to different ones (states of different acceptance sets are denoted by
double circles and dashed circles). It accepts the language (aa ∗ bb∗)ω|(bb ∗ aa∗)ω, i. e.,
words that contain infinitely many a’s and b’s as well.

24

q1 q2

a

b

a b

Figure 1.7. A generalized Büchi automaton with two acceptance sets.

The acceptance condition of a generalized Büchi automaton is similar to the Büchi accep-
tance condition, but it is extended to multiple acceptance sets.

Definition 15 (Generalized Büchi acceptance condition). Let w ∈ Σω be an infi-
nite word and ρw ∈ Qω be an infinite run reading w. Let inf (ρw) denote the set of states
that appear infinitely often in ρw. The run ρw is called accepting iff it has at least one
accepting state from all acceptance sets appearing infinitely often, i. e., for all Fi ∈ F ,
inf (ρw) ∩ Fi 6= ∅. A generalized Büchi automaton A accepts a word w iff it has an
accepting run reading w. �

The expressive power of generalized Büchi automata is equivalent to that of Büchi au-
tomata, because there exists a language preserving transformation between them.

Proposition 2 (Equivalent Büchi automaton of generalized Büchi automaton).
Given a generalized Büchi automaton A = 〈Σ,Q, I,∆,F〉 where |F| = n, an equivalent
Büchi automaton is A′ = 〈Σ,Q′, I ′,∆′,F ′〉, where:

• Q′ = Q× {0, . . . , n}, i. e., the states of the GBA combined with a counter;
• I ′ = I × {0}, i. e., the initial states of the GBA combined with counter state 0;
• F ′ = Q× {n}, i. e., states with counter state n are accepting.

A transition ((q, x), α, (q′, y)) is part of the transition relation ∆′ iff:

• (q, α, q′) ∈ ∆, i. e., , the GBA can progress with the input letter α.
• the third component satisfies the following rule (where F = {F1, . . . ,Fn}):

y =


0 if x = n

i if x = i− 1 and q′ ∈ Fi
x otherwise. �

Just like when building the synchronous product, the counter ensures that accepting states
from every acceptance set are visited infinitely often. To understand the working of the
counter, one can imagine the structure of the generalized Büchi automaton copied n + 1
times, with instances having the different accepting sets. The run starts in instance 0.
Whenever an accepting state is encountered in the current instance, the next transition

25

takes the run into the following state, but in the next instance. Accepting sets of the
resulting Büchi automaton are in the nth instance, where every transition goes back into
instance 0. If the generalized Büchi automaton has no acceptance sets, every state will be
accepting in the equivalent Büchi automaton.

1.3.4 Transforming LTL expressions

Since linear temporal logic formulae characterize a strict subset of ω-regular languages,
there is an equivalent Büchi automaton for every LTL formula ϕ that accepts the same
language that satisfies φ. The algorithm of Gerth, Peled, Vardi and Wolper [30] is able to
transform an LTL formula in negation normal form into a generalized Büchi automaton.
This section informally presents the main ideas of the algorithm.

The algorithm constructs a tableau, a tree-like structure that represents the evaluation
of the formula with possible inputs. The base element of the construction is a node,
which represents a state of the resulting generalized Büchi automaton, as well as it is an
intermediate data structure of the construction. It has three sets of fomulae and a set of
incoming transitions from other nodes.

The set of formulae Old contains subformulae that will be evaluated in the corresponding
automaton state. Atomic propositions and their negations will be used to characterize the
input read by incoming transitions, while other formulae will be used to determine the
accepting states of the automaton.

The sets New and Next are used in the construction process. New contains formulae that
have to be processed before a node is finished, while Next contains formulae that will be
processed in the successor node.

When processing New, the algorithm removes formulae from it and may insert new ones
in Old and Next, as well as split the node. The node is finished if New gets empty. At
that point, the algorithm checks if there is an already finished node with the same Old
and Next sets. If there is such a node, their Incoming sets are merged and the old node is
replaced, otherwise the new node is inserted into the set. If at any time, Old contains ϕ
and ¬ϕ, the node is discarded due to contradiction.

The algorithm starts with a single node, with Old and Next as empty sets, New containing
only the full LTL formula, and Incoming consisting of a single element, the special init
state. Whenever a formula ϕ is chosen, removed from New and put into Old, the following
can happen based on the root operator of its expression tree.

• If ϕ is an atomic propositions (p) or its negation (¬p) nothing more has to be done.
• If ϕ is a conjunction (ψ ∧ φ), φ and ψ are put in New.
• If ϕ is a disjunctions (ψ ∨ φ), the node is split: the resulting two nodes inherit the
Old, Next and Incoming sets, ψ is put in the New set of the first node, φ in that of
the second. Processing continues recursively on the resulting nodes.

26

• If ϕ is X ψ, ψ is put in the Next set.
• If ϕ is [ψ U φ] or [ψ R φ], it is reduced to disjunction, conjunction and the X operator

by the following recursive definitions:

– [ψ U φ] = φ ∨ (ψ ∧ X [ψ U φ])
– [ψ R φ] = (ψ ∧ φ) ∨ (φ ∧ X [ψ R φ])

When every node has been processed, a generalized Büchi automaton can be built based
on the structure of nodes.

• As usual, the alphabet is 2AP .
• States of the automaton are the set of finished nodes and the special init state.
• The only initial state is init.
• Transitions are obtained from the Incoming sets of the nodes. A transition (q, α, q′)
is in the transition relation iff the Incoming set of q′ contains q′ and α contains every
ponated atomic proposition inOld and does not contain negated atomic propositions.
• The automaton has an acceptance set corresponding to every subformula in the form

[ψ U φ], because eventually φ has to be true. A state is in the acceptance set of
subformula [ψ U φ], if the Old set of the corresponding node contains φ or it does
not contain [ψ U φ] (i. e., the subformula is satisfied by entering the state or it is
already satisfied and not considered anymore).

The size of the resulting automaton is exponential in the worst case, but experience shows
that it is usually small [19].

X a:

a

a

G a:

a

F a:

a

a

[a U b]:

b

a

a

b

[a R b]:

a ∧ b

b

b

a ∧ b

Figure 1.8. Automata constructed by the algorithm of [30] for simple LTL
formulae.

27

Example 10. Figure 1.8 shows automata corresponding to different operators of LTL con-
structed by this algorithm. These are not the simplest automata describing the formulae,
but they all possess a property that will be described and exploited in Section 3.1.1.

Other transformation algorithms have been proposed, a more complex and efficient one is
for example [29].

1.3.5 Language emptiness of Büchi automata

The language emptiness problem for Büchi automata asks if given a Büchi automaton A,
is there any word that is accepted by A, i. e., L(A) ?= ∅. The problem can be reduced to
finding strongly connected components (SCC) in the structure of the automaton [19].

In order for a Büchi automaton to accept a word, it has to have an accepting run, i. e.,
an infinite path in the automaton that passes accepting states infinitely often. Since the
size of a Büchi automaton is finite, infinite runs can occur only with eventually repeating
sequences. This implies that the path has to enter a strongly connected component and
never leave it.

An SCC is called accepting if it has at least one accepting state (from every acceptance
sets in case of GBAs). If such an SCC is reachable from an initial state of the Büchi
automaton, then there is an accepting run and a corresponding word that the automaton
accepts. If no accepting SCCs are reachable from the initial states, then the language is
empty.

Example 11. Consider the product automaton on Figure 1.6. The states (q1, r2, 1),
(q2, r1, 2), (q2, r2, 0) and (q2, r1, 0) constitute a reachable SCC, and (q2, r1, 2) is an ac-
cepting run, so the language of the automaton is nonempty. Indeed, it accepts the word
a(ba)ω.

1.4 Model Checking

Model checking [17] is an automatic formal verification technique that aims to exhaustively
analyze the possible behaviors of a model and check if they meet a given specification. A
specific class of the model checking problem that received particularly much attention is
the model checking of temporal logic properties. This class is also the focus of this thesis,
so model checking will refer to model checking of temporal logic properties.

Formally, the problem of model checking is deciding (M, s)
?
|= ϕ, where M is a Kripke

structure, s ∈ I is an initial state, and ϕ is a temporal logic formula [25].

An important problem related to model checking is state space generation. Models are
rarely given as Kripke structures, instead, various higher level formalisms are used to

28

compactly describe a system. As seen in the case of Petri nets, the semantics of these
models are usually defined in such a way that transformation to a Kripke structure is
possible. This process is called state space generation or state space exploration.

One of the biggest challenges of model checking arises here: the so-called “state space
explosion problem” denotes the usual combinatorial explosion in the size of the Kripke
structure compared to the size of high-level models. In other words, even small high
level models may result in huge Kripke structures, often exponential in size. There are
many techniques to handle a huge state space, usually exploiting symmetries of the Kripke
structure. Some of these will be presented in Section 1.6 and 2.1.

Depending on the class of temporal logic used in the specification, various algorithms have
been developed to solve this problem automatically, most of them reducing the problem
to graph algorithms.

1.4.1 CTL model checking

The first model checking algorithm was designed to check branching-time logic formulae
[18]. In fact, CTL was specifically defined for efficient model checking. An important
observation of Section 1.2.2 already noted that every possible CTL (sub)expression is a
state formula, providing a way to process the states of the model individually (and avoiding
the complexity of processing paths).

CTL model checking algorithms work by labeling the states of the system with subformulae
of the CTL property iteratively, until a fixed-point is reached. Given an expression tree of
the formula ϕ, nodes (operators) are processed starting from the leaves, which are atomic
propositions already assigned by the labeling function of the Kripke structure. Using
a minimal set of connectives, the subformulae are assigned to states with the following
strategy:

• > is assigned to every state.
• ¬φ is assigned to every state not labeled with φ.
• ψ ∧ φ is assigned to every state labeled with ψ and φ.
• EX φ is assigned to every state that is backwards reachable from states labeled with
φ in one step.
• EG φ is assigned to every state that is backwards reachable from a directed loop

through states labeled with φ (both in the loop and in the path from the loop).
• E[ψ U φ] is assigned to every state that is backwards reachable from states labeled
with φ though states labeled with ψ.

Whenever a subformula φ is processed, other (sub)formulae might be processed by treating
φ as a simple label. The algorithm ends when states are labeled with the whole formula
ϕ. If the initial state is labeled by ϕ, then the model meets the specification, otherwise

29

not. The complexity of the algorithm [49] is linear in the size of the Kripke structure |S|
and the size of the formula |ϕ| measured by the number of operators: O(|S| · |ϕ|). For
more details about the algorithm and common challenges and optimizations, the reader is
referred to [19].

1.4.2 LTL model checking

Model checking of linear temporal logic formulae (or linear temporal model checking) is
computationally harder than CTL model checking, because it has to process paths of the
Kripke structure. The essential idea of LTL model checking is using Büchi automata to
describe the property and the model and reducing the model checking problem to language
emptiness [19].

Given a Kripke structure M and an LTL formula ϕ using the same atomic propositions
AP, let L(M) and L(ϕ) denote the languages produced by the Kripke structure and
characterized by the formula. The language L(M) contains every observable behavior of
M in terms of AP (provided behaviors), while L(ϕ) contains valid behaviors. The model
checking problem can be rephrased to the following: is the set of provided behaviors fully
within the set of valid behaviors? This is called the language inclusion problem and is
denoted by L(M)

?
⊆ L(ϕ).

An equivalent formalization is L(M) ∩ L(ϕ) ?= ∅, where L(ϕ) is the complement of the
language of ϕ. Although both the language inclusion problem and the complementation
of Büchi automata is hard, in case of LTL model checking, the complementation can be
avoided. The key observation is that the complement of the language of an LTL formula
is the language of the negated formula: L(ϕ) ≡ L(¬ϕ). This way, the model checking
problem is reduced to language intersection and language emptiness, both of which can
be efficiently computed on Büchi automata.

LTL→BA

State space
generation

¬ϕ

Model

A×M

M

A

L(A×M) ?= ∅

Valid

Witness

True

False

Figure 1.9. Steps of ω-regular model checking.

This approach is called automata-theoretic model checking [56]. Given a high-level model
and a linear temporal logic specification, the following steps have to be realized (see Figure
1.9:

1. Compute the Kripke structure M of the high-level model (state space generation).

30

2. Transform the Kripke structure into a Büchi automaton AM (Proposition 1).
3. Transform the negated LTL formula into a Büchi automaton A¬ϕ (Section 1.3.4).
4. Compute the synchronous product AM ∩ A¬ϕ.
5. Check language emptiness of the product: L(AM ∩ A¬ϕ) ?= ∅.

If L(AM ∩A¬ϕ) = ∅ then the model meets the specification. Otherwise words of L(AM ∩
A¬ϕ) are counterexamples, i. e., provided behaviors that violate the specification. As seen
in Section 1.3.4, the size of the Büchi automata corresponding to ϕ is exponential in the
size of ϕ measured by the number of operators, while the size of the product is linear in
the size of the operands. Thus, the complexity of the algorithm [49] is linear in the size
of the Kripke structure |S| and exponential in the size of the LTL formula: O(|S| ∗ 2|ϕ|).

Sometimes, it is possible to design the algorithms such that some steps may overlap or
can be executed together. For example, many algorithms compute the product automaton
on-the-fly during state space generation, using the high-level model as an implicit repre-
sentation of the Kripke structure. Language emptiness may sometimes also be checked
continuously during the computation of the product. If both optimizations are present in
an algorithm, it is said to perform the LTL model checking on the fly (during state space
generation). For an example, see [30] that is the base of the SPIN explicit model checker.

1.4.3 Symbolic model checking

Symbolic model checking techniques have been devised to combat the state space explosion
problem [42, 8]. While traditional explicit-state model checkers employ graph algorithms
and enumerate states and transitions one-by-one, symbolic model checking algorithms use
a special encoding to efficiently represent the state space and try to process large numbers
of similar states together. The special encoding can be regarded as a compression of the
sets and relations, but unlike traditional data compression methods, the encoded data can
be manipulated without returning to the explicit representation.

In [16], where symbolic model checking was first introduced, states of hardware models
were determined by binary variables. Similarly, states of a Kripke structure can also
be encoded in k = dlog(|S|)e Boolean variables. Sets of states can then be represented
by Boolean functions fS : Bk → B, returning true when a state is in the set. The
transition relation can also be represented by functions mapping from 2k binary variables
to true or false, half of them encoding the source state, the other half encoding the target:
fR : B2k → B.

The functions are usually represented by Boolean formulae or binary decision diagrams.
In case of Boolean formulae, the model checking problem is reduced to the Boolean satis-
fiability problem (see Section 2.2), while in case of decision diagrams, efficient algorithms
are known to manipulate the sets directly in the encoded form [6].

31

1.5 Decision Diagrams

A common encoding for binary functions is based on binary decision trees. In such a tree,
every node corresponds to the evaluation of a variable, with arcs going to the next node
based on the possible values. Leaf nodes are called terminal nodes and they provide the
result of the function for a given input: the terminal one (denoted by 1) means the result
of the function is true, while the terminal zero (denoted by 0) represents the result false.
In other words, nodes mark if-then-else operations, and any input defines a path leading
from the root node to a terminal node through a series of decisions.

A binary decision diagram is a more compact representation of a binary decision tree,
where isomorphic subtrees are merged. Thus a decision diagram is a directed acyclic
graph with a root node and two terminal nodes.

1.5.1 Reduced ordered binary decision diagrams.

A decision tree can be reduced into a decision diagram by merging the isomorphic subtrees.
If in addition, the order of variable evaluation is fixed on every path from the root node to
the terminal nodes, the result is an ordered binary decision diagram. Further reductions
can be made by eliminating nodes that carry no information, that is, both arcs starting
from them lead to the same node. If both of these reductions and restrictions are applied
to a binary decision tree, we get a reduced ordered binary decision diagram (ROBDD) [6].
In the literature, the term binary decision diagram or BDD usually refers to an ROBDD.

2

1 1

1

0 1

0 0 1

0 1 1

1

(a) Ordered decision tree.

2

1 1

1

0 1

0 0 1

(b) OBDD.

2

1

1

0 1

0

(c) ROBDD.

Figure 1.10. From binary decision trees to ROBDDs.

Example 12. Figure 1.10 shows how an ordered decision tree can be reduced to
an ROBDD. All of the graphs encode the binary function b1 ∨ ¬b2, i. e., the set
{(0, 0), (1, 0), (1, 1)}.

The size of an ROBDD depends both on the function (or set of elements) it encodes and
the chosen variable ordering. In the best case, BDDs can achieve exponential compression

32

of certain sets with the proper ordering. However, there are some functions for which
the size of the smallest BDD is linear in the size of the encoded set. All in all, the
ordering alone can cause an exponential difference, so it is crucial to carefully choose
it. Unfortunately, the problem of finding the best variable ordering in NP-hard [3], and
even any multiplicative approximation is known to be NP-hard [51]. Nevertheless, some
heuristics exist to tackle the problem [24, 10]

1.5.2 Multi-valued decision diagrams.

A multi-valued decision diagram (MDD) is an extension of an (ordered) binary decision
diagram in the sense that the domain of input variables to the encoded function can
be any finite set [13]. The domains of the variables can be different. The result of the
function is still true or false. Nodes in the diagram can be interpreted as switch-case
evaluations, so each arc starting from a node denotes a valuation of the corresponding
variable. Reductions and ordering can also be applied to MDDs.

Relations and functions

As it is well-known, relations are sets of k-tuples, or equivalently, functions assigning
truth values to k-tuples. Formally, given k sets D1, . . . , Dk, a relation over these
domains is R ⊆ D1× . . .×Dk. In this thesis, mainly binary (R ⊆ D1×D2) or ternary
(R ⊆ D1 ×D2 ×D3) relations are used.

An important and common subclass of binary relations is endorelations, where R =
D × D, i. e., the domains of components are the same. There are some interesting
properties that such relations can have:

• reflexive, i. e., for all x ∈ D, (x, x) ∈ R;
• symmetric, i. e., for all x, y ∈ D, if (x, y) ∈ R then (y, x) ∈ R.
• transitive, i. e., for all x, y, z ∈ D, if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

There are some basic and more complicated operations over relations that yield other
relations. Let R and S be binary relations over D1 and D2. Let P be another relation
over D2 and D3. Finally, let Q be an endorelation over D.

• R ∪ S = {(x, y) | (x, y) ∈ R ∨ (x, y) ∈ S} is the union of the relations.
• R ∩ S = {(x, y) | (x, y) ∈ R ∧ (x, y) ∈ S} is the intersection of the relations.
• R ◦ P = {(x, z) | ∃y ∈ D2, (x, y) ∈ R ∧ (y, z) ∈ P} is the composition of the

relations (similar to relational join).
• R−1 = {(y, x) | (x, y) ∈ R} is the inverse of a relation (yielding a relation over
D2 and D1).
• Q= = I ∪ Q is the reflexive closure, where I = {(x, x) | x ∈ D} is the identity
relation. The reflexive closure of Q is the smallest reflexive relation that contains
Q.

33

• Q+ = Q ∪ (Q ◦ Q) ∪ ((Q ◦ Q) ◦ Q) ∪ . . . is the transitive closure of Q, i. e., the
smallest transitive relation that contains Q.
• Q∗ = I ∪ Q+ is the reflexive transitive closure of Q, i. e., the smallest reflexive
and transitive relation that contains Q.

A relation R is called functional if it can be described with a function fR : D1 × . . .×
Di ×Di+1 × . . .→ Dk, i. e., if (x, . . . , y, z1 . . . , w1) ∈ R and (x, . . . , y, z2, . . . , w2) ∈ R,
then (z1 = z2) ∧ . . . ∧ (w1 = w2) also holds (assume without loss of generality that
D1 . . . Dk is a permutation of the domains of R). For a simpler example, the binary
relation R ⊆ D1 × D2 is functional if it is equivalent to the function fR : D1 → D2,
i. e., if (x, y) ∈ R and (x, z) ∈ R then y = z.

Any relations can be interpreted as functions mapping from some domains to the power
set of the Cartesian product of the remaining domains. Again, a simple example can
be the binary relation R ⊆ D1 ×D2 that is not functional, but describes the function
fR : D1 → 2D2 . With the common notation of using the symbol of the relation itself as
the symbol of the function, R(x) = {y | (x, y) ∈ R}. This definition can be extended
to map from the power sets of D1 as well (i. e., the parameter of the function is a set of
elements): R(X) = {y | ∃x ∈ X, (x, y) ∈ R}. This definition is identical to that of the
relational product X ◦ R. As a well-known analogy, one can consider linear algebra,
where matrices are relations over the set of vectors, and vector-matrix multiplication
is similar to the relational product, while matrix-matrix multiplication is analogous to
relation composition.

1.5.3 Operations and notations

From a more abstract point of view, decision diagrams can represent sets: encode a func-
tion that returns true if the given element is in the set and false otherwise. Input variables
can be obtained by logarithmic (binary) encoding, or by representing the elements natu-
rally by vectors. In this context, it is very useful to define operations on decision diagrams
to manipulate the encoded data.

Common operations include the union and the intersection of two sets represented by
decision diagrams, complementation, and relational product. The latter is defined for a
set A and a relation R ⊆ A × B as follows: A ◦ R = {y | ∃x ∈ B, (x, y) ∈ R}. For
the description of recursive algorithms realizing union, intersection and complementation
with decision diagrams, the reader is referred to [6]. Efficient computation of the relational
product is discussed in Section 1.6. A common property of these algorithms is aggressive
caching. Since decision diagrams are obtained by merging isomorphic subtrees of decision
trees, many paths in the diagram run into the same subdiagram. Recursive algorithms
can cache the results of processing subdiagrams to reuse them when the subdiagram is
reached again.

34

Throughout this thesis, decision diagrams will be at least ordered (but often not reduced).
For this reason, nodes of the diagram will be grouped by their levels, which in turn
correspond to one of the input variables (or vector components). Terminal nodes are on
level 0, while the root node is on level K. A node on level k is denoted by nk. The
domain of the input variable corresponding to level k is denoted by Dk. The child of nk
corresponding to valuation i ∈ Dk is nk[i].

A single node nk of a decision diagram inherently represents a part of the encoded set.
Every path starting in nk and going to terminal 1 represents a partial assignment of some
input variables (or vector components). The set of all these subelements is denoted by
B(nk) ⊆ D1×. . . Dk [13]. Paths starting from the root node and ending in nk also represent
a set of subelements denoted by A(nk) ⊆ Dk+1× . . .×DK . The subset of elements that a
node nk encodes in a decision diagram is then S(nk) = B(nk) ×A(nk), corresponding to
the set of paths going through nk and ending in the terminal 1. Using the above notations,
it is possible to define B(nk) recursively:

B(nk) =

{i | nk[i] = 1} if k = 1⋃
i∈Dk

B(nk[i])× {i} otherwise.

For the sake of convenience, the notation B[i](nk) = B(nk[i])×{i} is introduced to reason
about sets of subelements constituting B(nk).

1.6 Saturation

Saturation [11] is a symbolic iteration strategy specifically designed to work with decision
diagrams. It was originally used as a state space generation algorithm [14] to answer reach-
ability queries on concurrent systems, but applications in branching-time model checking
[59] and SCC computation [60] also proved to be successful.

1.6.1 Input model

Saturation works best if it can exploit the structure of high-level models. Therefore, it de-
fines the input model on a finer level of granularity, introducing the concept of components
and events into traditional transition systems.

A component is a part of the model that has its own local state. A global state is the
combination of the local states of every component in the system. In practice, each
component i may define a state variable si containing its local state, while global states
are tuples or vectors of these values denoted by s = (s1, . . . , sK) (where K is the number
of components). A straightforward example for a component in Petri nets can be a single
place, with its local state being the number of tokens on it. The global state – the marking
of the Petri net – is the combination of all token counts.

35

An event is a set of transitions somehow related in the high-level model. These transitions
typically rely on and change the state of the same components. Again, a transition of a
Petri net is a good example of an event. Petri net transitions have well-defined input and
output places and they don’t rely on or affect any other parts of the net. Depending on the
current marking, a Petri net transition can represent various transitions of the underlying
Kripke structure.

Definition 16 (The input model of saturation). Given a system with K compo-
nents, the input model of saturation is a 4-tuple M = 〈S, I, E ,N〉, where:

• S ⊆ S1 × . . .× SK is the set of global states with Sk being the set of possible local
states of the kth component;
• I ⊆ S is the set of initial states;
• E is the set of events;
• N ⊆ S × S is the next-state relation, partitioned by events: N =

⋃
ε∈E Nε. �

The following constructs will often be used throughout the thesis: the inverse of the next-
state relation N−1, the next-state function in the forms N (s) : S → 2S and N (S) :
2S → 2S , and the reflexive transitive closure of the next-state relation N ∗. The next-
state function is the function representation of the next-state relation. Considering the
next-state relation as a function is often closer to reality, because it is usually given only
implicitly by the higher-level model.

1.6.2 Symbolic encoding

Saturation works directly on ordered decision diagrams. It is therefore necessary to define
an ordering for the components of the model. Without loss of generality, assume that
component k is the kth component in the ordering (i. e., components are identified by
their indices).

By introducing components and events, saturation is able to build on a common property
of concurrent systems. Locality is the empirical assumption that high-level transitions of a
concurrent model usually affect only a small number of components. Locality is exploited
both in building a more compact symbolic encoding and in an efficient iteration strategy.

An event ε ∈ E is independent from component k if 1) its firing does not change the state
of the component, and 2) it is enabled independently of the state of the component. If
ε depends on component k, then k is called a supporting component: k ∈ supp(ε). Let
Top(ε) = k denote the supporting component of ε with the highest index. Along the
value of Top, events can be grouped by the highest supporting component: Ek = {ε ∈
E|Top(ε) = k}. For the sake of convenience, Nk =

⋃
ε∈E Nε is used to represent the next-

state relation of all such events. The self-explanatory notations E≤k and E<k will also be
used as well as the corresponding next-state relations N≤k and N<k.

36

Due to the locality property, the next-state relations of events can be decomposed into
two parts: 1) the actual description of local state changes for the supporting variables
and 2) the identity relation for independent variables. Saturation employs a more re-
laxed decomposition, splitting the relation by the Top value: for an event ε ∈ Ek, the
next state function is Nε(s1, . . . , sk, sk+1, . . . , sK) ≡ Nε(s1, . . . , sk)×(sk+1, . . . , sK), where
Nε(s1, . . . , sk) is the projection of the next-state function to components 1 . . . k. Thus, it
is sufficient to encode the first part, since the event only depends on components lower
than the Top value.

1.6.3 Iteration strategy

The goal of saturation as a state space generation algorithm is to compute the set of
reachable states Srch = N ∗(I) of model M . In other words, the goal is to compute the
least fixed point of the next-state function Srch = N (Srch) that contains the initial states I.
There are many strategies to do this, from simple depth-first or breadth-first explorations
to complex iteration strategies such as that of saturation.

The basic idea of the iteration strategy of saturation is also built on the locality property.
Instead of computing the fixed point by repeatedly applying the whole next-state function
starting from the initial states, the computation is divided into smaller parts. First, only
events with the lowest Top value are considered, and a local fixed point is computed.
After that, events with the lowest and the second lowest Top values are applied to obtain
another fixed point. This process goes on until the global fixed point is reached. Using
the notations introduced so far, the difference between classic breadth-first style fixed
point computation and saturation’s decomposed strategy is shown by the following two
(informal) schemes, respectively:

Breadth-first style: Srch = I ◦ N ∗

Saturation: Srch = ((. . . ((I ◦ N ∗≤1) ◦ N ∗≤2) ◦ . . .) ◦ N ∗≤K)

Saturation performs these operations on decision diagrams, a fact that allows the defini-
tion of the fixed points in terms of decision diagram nodes. A node nk is saturated iff it
represents a least fixed point of N≤k, that is, B(nk) = N≤k(B(nk)). An equivalent, recur-
sive definition requires the node to represent the fixed point of Nk and all of its children
be saturated.

The iteration strategy follows from the recursive definition: to saturate a node nk, first
saturate all of its children, then apply the next-state function Nk (i. e., compute the
relational product B(nk) ◦ Nk) iteratively until the fixed point is reached. If new children
are created during the latter step, saturate them immediately. The process starts with
the root node of the decision diagram representing the set of initial states and recursively
calls saturation until it reaches the bottom. Terminal nodes are saturated by definition,

37

Algorithm 1.1: Saturate
input : sk : node

1 //sk: node to be saturated,
output : node

2 n2k ← Nk as decision diagram;
3 Return result from cache if possible;
4 tk ← new node;
5 foreach i ∈ Sk : sk[i] 6= 0 do
6 tk[i]← Saturate(sk[i]);
7 repeat
8 foreach sk[i] 6= 0 ∧ n2k[i][i′] 6= 0 do
9 tk ← (tk[i′] ∪ RelProd(tk[i], n2k[i][i′]));

10 until tk unchanged;
11 tk = CheckUnique(tk);
12 Put inputs and results in cache;
13 return tk

Algorithm 1.2: RelProd
input : sk, n2k : node

1 //sk: node to be saturated,
2 //n2k: next state node,

output : node
3 if sk = 1 ∧ n2k = 1 then
4 return 1;
5 Return result from cache if possible;
6 tk ← new node;
7 foreach sk[i] 6= 0 ∧ n2k[i][i′] 6= 0 do
8 tk[i′]← (tk[i′] ∪ RelProd(sk[i], n2k[i][i′]);
9 tk ← Saturate(CheckUnique(tk));

10 Put inputs and results in cache;
11 return tk;

so the recursion stops at level 1. By the time the root node is saturated, it represents the
set of reachable states.

The power of saturation comes from two sources. First, the algorithm works with smaller
next-state relations and decision diagrams, making the local fixed point computations
lightweight compared to breadth-first style global fixed point computations. Secondly,
like in any decision diagram algorithms, results of the individual computations can be
cached to avoid redundant operations.

The detailed pseudocode of saturation along with the implementation of the relational
product operator can be seen in Algorithms 1.1 and 1.2.

1.6.4 Constrained saturation

Constrained saturation is a variation of the saturation iteration strategy introduced in
[59]. For a motivation, recall CTL model checking, where operators EG and EU required
checking backwards reachability through a certain type of states. To formalize the problem,
consider a set of states called the constraint: C ⊆ S. The goal of constrained saturation
is to compute the states of C that are reachable from I (where I ∩ C 6= ∅) through states
of C.

The solution is not trivial, since S ∩C may contain states that are reachable only through
paths not entirely in C. For this reason, the steps of the exploration have to be modified to
consider only those target states that are allowed by the constraint: N (S)∩C. Performing
an intersection after each step is expensive, so constrained saturation employs a pre-
checking phase, elements of the next-state relation are sorted out based on whether the
target state is in C or not. Formally, the idea is based on the following equivalence:
N (S) ∩ C = {s′ | s′ ∈ N (S), s′ ∈ C}.

By using another decision diagram to encode the constraint, the algorithm can locally
decide if a single target local state is allowed or not. This can be regarded as the evaluation

38

Algorithm 1.3: ConsSaturate
input : sk, c : node

1 //sk: node to be saturated,
2 //cl: constraint node

output : node
3 n2k ← Nk as decision diagram;
4 Return result from cache if possible;
5 tk ← new node;
6 foreach i ∈ Sk : sk[i] 6= 0 do
7∗ c′ ← c[i];
8 if c′ 6= 0 then
9 tk[i]← ConsSaturate(sk[i], c′);

10 else
11 tk[i]← sk[i]; //no steps allowed
12 repeat
13 foreach sk[i] 6= 0 ∧ n2k[i][i′] 6= 0 do
14∗ c′ ← c[i′];
15 if c′ 6= 0 then
16 tk ←

(tk[i′]∪ConsRelProd(tk[i], c′, n2k[i][i′]));
17 until tk unchanged;
18 tk = CheckUnique(tk);
19 Put inputs and results in cache;
20 return tk

Algorithm 1.4: ConsRelProd
input : sk, c, n2k : node

1 //sk: node to be saturated,
2 //c: constraint node,
3 //n2k: next state node,

output : node
4 if sk = 1 ∧ n2k = 1 then
5 return 1;
6 Return result from cache if possible;
7 tk ← new node;
8 foreach sk[i] 6= 0 ∧ n2k[i][i′] 6= 0 do
9∗ c′ ← c[i′];

10 if c′ 6= 0 then
11 tk[i′]←

(tk[i′] ∪ ConsRelProd(sk[i], c′, n2k[i][i′]);
12 tk ← ConsSaturate(CheckUnique(tk), c);
13 Put inputs and results in cache;
14 return tk;

of of the binary function that the decision diagram encodes. The constraint is traversed
simultaneously with the decision diagram encoding the set of discovered states, and if it
does not contain a path corresponding to the target state, the recursion is stopped on that
branch. The pseudocode of the extended algorithm is shown on Algorithms 1.3 and 1.4.
Differences are marked with an asterisk.

In an abstract view, the constraint is a series of predicate evaluations on local states – this
is the original purpose of decision diagrams (or decision trees). It has a “memory” that
can keep track of previous results along the recursive call chain that led the algorithm
to the considered decision diagram node. This aspect will be exploited in algorithms of
Chapter 3.

39

Chapter 2

Related Work

This chapter briefly summarizes related results in the domain of model checking, escpe-
cially those related to LTL model checking, SCC computation, abstraction and saturation.
Section 2.1 will present some traditional explicit techniques and algorithms, including SCC
detection algorithms and partial order reduction. Section 2.2 introduces methods to re-
duce model checking to the Boolean satisfiability problem (SAT). Section 2.3 will show how
traditional BDD-based symbolic approaches can be used to perform LTL model checking.
Section 2.4 points the reader to some abstraction techniques that proved to be successful
in hybrid approaches. Finally, Section 2.5 will give some examples of using saturation in
model checking.

2.1 Explicit Techniques in Model Checking

Model checking (both CTL and LTL) can be fully realized by graph algorithms – these
solutions are called explicit model checkers. Implicit representation of transitions given by
the high-level source model can be used to generate the states of the system one by one.
State space generation can then use breadth-first search or depth-first search or some of
their variants to explore the full state graph.

On-the-fly exploration of the product automaton in LTL model checking is also easy to
implement, because transitions can be computed one by one as well. On-the-fly SCC
detection, however, requires some specialized algorithms.

2.1.1 Explicit on-the-fly SCC computation

One such algorithm is Tarjan’s algorithm [54], which works by exploiting the exploration
strategy of DFS. The algorithm uses an additional stack. Every time a node is explored, it
is put on the stack. Each node is assigned a number index in the order they are traversed,
and also another one lowlink (initially equals index) that keeps track of the node with the
lowest index reachable from the current node. This number is recursively calculated by

40

the time DFS backtracks to the node. If lowlink is smaller than index, the node is in a
strongly connected component and is left on the stack. If they are equal, the node is the
“root” of the SCC and every state left on the stack above it will be part of the same SCC
(they are all popped). Tarjan’s algorithm aims to compute every SCC of a directed graph.
Accepting SCCs can then be filtered by checking if the SCCs contain an accepting state
or not.

Another similar algorithm is nested depth-first search [36]. While Tarjan’s algorithm com-
putes every SCC, nested DFS will look for a single accepting loop in the graph (i. e., a
counterexample in LTL model checking). It employs two depth-first searches to do this.
The first DFS explores the graph, and every time it backtracks to an accepting state,
the second DFS will try to find a way back to a state in the stack of the first DFS. If it
manages to do so, the two stacks together give a counterexample.

2.1.2 Partial order reduction

Partial order reduction (POR) is a technique used to exploit the symmetries of a state
space usually caused by interleaving semantics in concurrent systems [55, 46, 31]. When
several processes can advance independently until a point of synchronization, the order in
which parallel local steps are interleaved may be irrelevant. These steps are only partially
ordered, but with interleaving semantics, every possible total orders will be explored by
the model checking algorithm. In such cases, it may be sufficient to choose a single total
order and aggregate the independent steps, greatly reducing the size of the state space.

There have been some attempts to combine partial order reduction and symbolic model
checking [1], but it is still an open problem that is not trivial to solve.

2.2 SAT-based Model Checking

SAT-based bounded model checking encodes an instance of the bounded model checking
problem as a SAT instance [2]. A path of length k is described in term of the Kripke
structure and the property, and SAT-solvers are used to find an assignment representing
a violating path.

Bounded model checking works by iteratively incrementing the depth value k, and is
only complete if k reaches the diameter of the state space. Nevertheless, due to the
boundedness of each iteration, this approach can be applied to infinite models as a semi-
decision procedure.

For safety properties, k-induction – a generalized form of mathematical induction – is
able to prove unreachability without exploring the full state space by providing inductive
proofs [50].

41

A major breakthrough in this area was the application of interpolants to over-approximate
the state space [41]. This allowed the algorithm to prove unsatisfiability much earlier than
traditional approaches.

A recent approach called IC3 [4] works by constructing a series of small intermediate
and inductive lemmas. Its novelty and power lies in focusing on small proofs instead of
constructing large monolithic interpolants. By dividing the proof into smaller subgoals,
SAT-solvers have to process smaller queries. As it turned out, proving more smaller
lemmas can be much easier than solving less, but large and monolithic ones.

IC3 was also applied to look for SCCs in the state space, making the approach able to
check liveness properties [5]. The approach identifies one-way walls in the state space to
divide it into SCC-closed sets (parts of the state space that can fully contain an SCC)
or prove the absence of SCCs. In this sense, one of the main contributions of this thesis
(presented in Section 4.3.2) is based on similar ideas.

2.3 Decision Diagram-based LTL Model Checking

Decision diagram-based model checking implements symbolic model checking (described
in Section 1.4.3) by encoding states and transitions in decision diagrams (see Section 1.5).
Symbolic steps are then reduced to set operations, which can be performed directly on the
digram representation providing an efficient way to handle large state spaces.

Different properties of the state space can be characterized using fixed points [26]. Sym-
bolic model checking works by computing these fixed points. In case of CTL and LTL
model checking, least and greatest fixed points are used to characterize the set of reachable
states and strongly connected components, respectively.

2.3.1 Fixed point algorithms on decision diagrams

Using the notations of Section 1.6.1, the set of reachable states is characterized by the
least fixed point of Srch = N (Srch) including the set of initial states (I ⊆ Srch).

SCCs are characterized by greatest fixed points of some functions where the fixed point
is part of the reachable states or transitions. The selected function greatly affects the
performance of the algorithm and the exact meaning of the fixed point.

Instead of computing SCCs, it is common to compute SCC-hulls, parts of the state space
that are sure to contain at least one SCC. A family of algorithms implementing this
approach are instances of the Generalized SCC-hull (GSH) algorithm [52]. The most
famous one is the algorithm of Emerson and Lei, which have optimal complexity.

As an illustration, a simple function f : S → S that characterizes an SCC-hull is one that
removes “dead-end” states:

42

f(S) = {s | ∃s′, (s, s′) ∈ N}

The greatest fixed point of f contained in the set of reachable states is a reachable SCC.
In LTL, such an SCC containing at least one accepting state indicates the presence of a
counterexample.

Another main contribution of this thesis presented in Section 4.2 is also a variant of the
SCC-hull algorithms.

2.4 Abstraction in LTL Model Checking

Approximation of a state space by abstraction is a widely used technique to prove prop-
erties without exploring the full state space (as also seen in Section 2.2). In LTL model
checking, SCC detection can sometimes be realized on (small) abstractions. With this
technique, it is possible to implement on-the-fly symbolic LTL model checking and effi-
cient SCC detection.

2.4.1 Abstraction based on the automaton

A common way of abstracting the state space based on the automaton describing the
desired property. Such techniques include symbolic observation graph (SOG) [32, 38],
its extension, symbolic observation product (SOP) [21] and self-loop aggregation product
(SLAP) [22].

Symbolic observation graphs are aggregated Kripke structures: each state of the SOG
is a set of states of the original model. Consecutive states are grouped by observable
atomic propositions. An improvement of symbolic observation product is based on the
observation that that as the automaton of the property progresses, the set of relevant
atomic propositions decreases, allowing a more aggressive grouping. Furthermore, SOP
can substitute the product, because it is in itself a tableau representing the system in
terms of the property. This approach, however, assumes a globally stuttering property
(i. e., operator X cannot be used).

Self-loop aggregation product works with every LTL formula. SLAP aggregates consecu-
tive states by observing self loops of the Büchi automaton: states are aggregated if their
labels satisfy the condition of self-loops, i. e., the automaton does not change its state
when the system does.

2.4.2 Abstraction based on components

An extensive approach to using abstraction in SCC computation has been proposed in
[58]. By defining a lattice of abstractions based on one or more components of the model,

43

the paper presents strategies of using some of the abstractions to discard uninteresting
parts of the state space and search in relevant components.

Each abstraction is obtained by projecting the state space to some of the components,
keeping only those transitions that does not affect other components (in this sense, they are
similar to the must abstraction of Section 4.3.2). Searching for SCCs in the abstract graphs
can prove that no SCCs exist within the selected components. If an SCC is found, the
algorithm also looks for accepting states, which offers another way of discarding irrelevant
components. Completeness is achieved by refining the abstraction until an SCC is found
or the full state space is searched.

2.5 Saturation in Model Checking

Saturation was first applied in CTL model checking in [12]. It was used to compute labels
of states according to the CTL operators. While this approach worked, the algorithm
became really efficient with the introduction of constrained saturation [59].

LTL model checking based on saturation was introduced in [34].

2.5.1 Fixed point algorithms using saturation

Saturation-based SCC computation has also been proposed by [60]. The two implemented
algorithms are that of Xie and Beerel (XB) and the Transitive Closure (TC) algorithm.
Both of them differ from SCC-hull algorithms, because they aim to compute exactly those
states that belong to an SCC.

The main idea of the XC algorithm is to compute the set of forward and backward reachable
states from a randomly picked seed state – their intersection gives an SCC. After removing
the states of this SCC, the procedure is repeated until no states are left.

The TC method works by building the relation of reachability between reachable states.
This relation can then be used to identify SCCs in a fully symbolic way.

While the XB algorithm is usually much faster, it does not scale well with the number of
SCCs in the state space. TC does not enumerate the strongly connected components, it
encodes them symbolically instead.

Due to the ability to reuse the caches of other runs of saturation, these algorithms can be
very efficient in computing an exact counterexample detected by the algorithm presented
in Section 4.2 algorithm.

44

Chapter 3

Symbolic Computation of the
Synchronous Product

As discussed in Section 1.4.2, a crucial point of optimization in LTL model checking is
the computation of the synchronous product on-the-fly during state space generation.
In this chapter, two new algorithms will be presented to efficiently perform the on-the-
fly computation symbolically. Both algorithms are based on saturation as a state space
generation method and exploit the properties of constrained saturation.

These algorithms are the base of the complex symbolic on-the-fly model checking algorithm
that is the main contribution of this thesis. Any of them can be used together with
algorithms of Chapter 4 depending on the representation of the specification.

Formally, given a model M defined in Definition 16 and a (generalized) Büchi automaton
A, the task is to compute AM ∩ A on-the-fly using saturation, where AM is the Büchi
automaton accepting the language produced by M as a Kripke structure (described in
Proposition 1). The result is not exactly an automaton, since inputs are omitted from the
representation – they are only used to synchronize the two automata, but are irrelevant
in the actual model checking process.

Although the following sections assume that the inputs are given as non-generalized Büchi
automata, the computation of the product is almost identical if a generalized Büchi au-
tomaton is used to represent the specification.

3.1 Tableau-based Product Computation

The first variant of the synchronous product computation algorithm directly uses con-
strained saturation. Exploiting a special form of Büchi automata, the main idea of the
algorithm is to constrain the set of states rather than to precisely encode the synchroniza-
tion in the transition relation.

45

To do this, Section 3.1.1 defines a special form of Büchi automata, then Section 3.1.2
presents the encoding of the product and the special constraint that drives saturation
to explore the product state space. Finally, Section 3.1.3 provides a formal view on the
correctness and efficiency of the algorithm.

Boolean functions and sets of Boolean variables

In this chapter, atomic propositions will play a key role. It is therefore necessary to
define the precise meaning of some terminology.

Given a set of atomic propositions or variables AP, a valuation is a function f assigning
truth values to every variable: µ : AP → B. Such a valuation can also be represented
by a subset of the atomic propositions α ⊆ AP, where each variable in α takes the
value true, while those not in α are false.

A set of possible valuations can be represented by a Boolean function, similarly to
the representation of sets of binary vectors discussed in Section 1.4.3. An equivalent
representation again using sets is a subset of 2AP , where 2AP is the set of all possible
valuations.

Sometimes an alternative representation will also be used if the set of valuations can
be described by fixed valuations of some variables. Two sets of atomic propositions
can describe which variables need to be true and false, the remaining propositions are
free variables. An equivalent Boolean formula can be written as the conjunction of
some ponated and negated atomic propositions.

3.1.1 Tableau automata

The first step in automata theoretic LTL model checking is the translation of the temporal
expression into a Büchi automaton. Observing the output automaton of widely used
tableau-based conversion algorithms (such as the one presented in Section 1.3.4 or those
of [37, 30, 29]) a common structural property can be observed that can be exploited to
efficiently encode and compute the product. Let these kinds of Büchi automata be called
tableau automata.

Definition 17 (Tableau automaton). Given a set of atomic propositions AP, a
tableau automaton is a tuple A = 〈Σ,Q, I,∆,F , L+, L−〉, where:

• Σ = 2AP is the set of all possible valuations of atomic propositions;
• Q is the set of states;
• I ⊆ Q is the set of initial states;
• ∆ ⊆ Q×Q is the transition relation;
• F ⊆ Q is the set of accepting states;
• L+ : Q → 2AP and L− : Q → 2AP are labeling functions, L+ assigning propositions

that must hold in the given state, while L− assigning those that must not. �

46

A run of a tableau automaton over an input word w – just like in the case of Büchi automata
– is an infinite sequence of states ρ ∈ Q∗ starting with an initial state ρ(0) ∈ I, but unlike
simple Büchi automata, there is an additional requirement beyond satisfying the (simpler)
transition relation. For every i, the input letter w(i) ∈ 2AP of the word representing a
valuation of the atomic propositions must contain every proposition assigned to ρw(i+ 1)
by L+ and must not contain any assigned by L−, formally: L+(ρw(i + 1)) ⊆ w(i) and
L−(ρw(i + 1)) ∩ w(i) = ∅. The acceptance condition of tableau automata is the same as
that of Büchi automata (defined in Definition 11).

An alternative notation of the labels is a binary formula ΦL(q) = p1∧. . .∧pm∧¬q1∧. . .∧¬qn
where pi ∈ L+(q) and qi ∈ L−(q), i. e., atomic propositions assigned by L+ are ponated in
the formula, while those assigned by L− are negated. The criterion of entering a state q is
then that the valuation p ∈ B|AP| of atomic propositions in the input letter must satisfy
ΦL(q), denoted by p |= ΦL.

It is important to emphasize that tableau automata are only a special form of Büchi au-
tomata, with the same expressive power. An equivalent Büchi automaton can be obtained
using the following proposition.

Proposition 3 (Equivalent Büchi automaton of tableau automaton). Given a
tableau automaton A = 〈Σ,Q, I,∆,F , L+, L−〉, an equivalent Büchi automaton is
A′ = 〈Σ,Q′, I ′,∆′,F ′〉, where:

• Q′ = Q, i. e., the states of the tableau automaton;
• I ′ = I, i. e., the initial states of the tableau automaton;
• F ′ = F , i. e., the accepting states of the tableau automaton;
• ∆′ = {(q, α, q′) | (q, q′) ∈ ∆, L+(q′) ⊆ α,L−(q′) ∩ α = ∅}, i. e., instances of the
transitions of the tableau automaton with every valuation of the atomic propositions
defined by L+ and L−. �

Because of this equivalence, a Büchi automaton that can be directly obtained from a
tableau automaton using the above transformation is said to be in tableau form. In Section
3.1.3, the proof of Theorem 2 will show a language preserving transformation of any Büchi
automata into tableau form.

It is interesting to note that automata obtained from a Kripke structure are also in tableau
form, since the labeling of a state is converted into the input of incoming transitions.

Example 13. Figure 3.1 shows different representations of the LTL expression [a R b].
On Figure 3.1(a), the corresponding Büchi automaton produced by the algorithm of Section
1.3.4 is shown exactly as it is described by the definition: each transition in the transition
relation gets an own arc. Labels of the arcs are the sets representing valuations of the
atomic propositions a and b. Figure 3.1(b) shows the same automaton in a more compact
graphical representation, merging arcs and characterizing their labels with a conjunctive
expression. This automaton is in tableau form, since all of the arcs targeting the same

47

{a}

{a}

{b} {a,b}

{0}

b a&b

¬ b

{b}{0} {a,b}

¬ b

a&b

 b

Ø

{b}{a,b}

{a}

{b}
{a,b}

Ø {a}

Ø {a} {b} {a,b}

Ø {a,b}

{a} {b}

b

¬ b

¬ b

b

¬b

b

0

2

3

1

{a,b}

{a,b}

{b}

{a,b}

{b}{a,b}

Ø {a} {b} {a,b}

0

2

3

1

Ø {a,b}

{a} {b}

aᴧb

b

b

aᴧb

0

2

3

1

b

aᴧb

(a) By definition

{a}

{a}

{b} {a,b}

{0}

b a&b

¬ b

{b}{0} {a,b}

¬ b

a&b

 b

Ø

{b}{a,b}

{a}

{b}
{a,b}

Ø {a}

Ø {a} {b} {a,b}

Ø {a,b}

{a} {b}

b

¬ b

¬ b

b

¬b

b

0

2

3

1

{a,b}

{a,b}

{b}

{a,b}

{b}{a,b}

Ø {a} {b} {a,b}

0

2

3

1

Ø {a,b}

{a} {b}

aᴧb

b

b

aᴧb

0

2

3

1

b

aᴧb

(b) Compact representation

{a}

{a}

{b} {a,b}

{0}

b a&b

¬ b

{b}{0} {a,b}

¬ b

a&b

 b

Ø

{b}{a,b}

{a}

{b}
{a,b}

Ø {a}

Ø {a} {b} {a,b}

Ø {a,b}

{a} {b}

b

¬ b

¬ b

b

¬b

b

0

2

3

1

{a,b}

{a,b}

{b}

{a,b}

{b}{a,b}

Ø {a} {b} {a,b}

0

2

3

1

Ø {a,b}

{a} {b}

aᴧb

b

b

aᴧb

0

2

3

1

b

aᴧb

(c) Tableau automaton

Figure 3.1. Three forms of a Büchi automaton corresponding to the LTL
property [a R b].

state are labeled by the same conjunction (see Section 3.1.3). Moving these labels to the
state itself results in a tableau automaton shown on Figure 3.1(c). Let φq denote the
conjunction on the arcs targeting q. Then the labeling functions L+ and L+ are defined
such that every atomic proposition that is positive in φq is in L+(q), while those that are
negative are returned by L−(q).

3.1.2 Encoding the product automaton

To use saturation, the product automaton has to be represented by a model acceptable
by saturation (introduced in Section 1.6.1). By the implicit definition of such a structure,
saturation can be driven to compute the set of reachable states in the product automaton.
Formally, a model MP has to be defined in the form MP = 〈SP , IP , EP ,NP〉. This section
discusses the opportunities in case the specification is given as a tableau automaton.

Saturation and variable ordering

Saturation is very sensitive to variable ordering, but the relation between the overall
performance (runtime and memory usage) and the ordering is very complex and hard
to determine.

It is usually advised to place related variables close to each other to enhance locality
in the structure of decision diagrams as well. This strategy usually reduces the size of
the decision diagram encoding of the set of states. In addition, the representation of
events also tend to be smaller.

Another thing to consider is the Top values of events. A great deal of the power of
saturation comes from the ability to apply the partitioned next-state relation locally,
thus dividing the fixed point computation into smaller parts. This ability is even more

48

enhanced by caching.

Although it is hard to say how much these values affect performance, one corner case is
certainly undesirable: Setting every Top value to the index of the highest component,
K. In this case, saturation would degrade to a somewhat breadth-first style iteration
strategy, trying to apply every event on the top level of the decision diagram, effectively
removing recursion and caching from the Saturate function.

States

Encoding of the states of the product is quite natural in the sense that they are pairs
(s, q), which can be represented as a vector, thus it is possible to encode them in a decision
diagram. The crucial part is the variable ordering.

Encoding the states of the tableau automaton can be done in any way from using a single
variable to binary encoding. For now, assume that the state of the tableau automaton
is encoded in a single variable sa (i. e., it behaves as an additional component in MP).
Also assume that the original model M had a “proper” variable ordering. To keep the
advantages of that ordering, the following heuristic is used.

Since state transitions ofM andA are synchronized inMP , sa will be a supporting variable
of every event. If the Top values of events are not to be raised at all (which is only the
most straightforward, but not necessarily the best heuristic), putting sa to the lowest level
is an ideal choice.

3

2 2

1 1 1

1

0
1

0 0 1

1 2 3 32

2

S

Q

Figure 3.2. Example of a decision diagram encoding of a product state space.

49

Transitions

A similar consideration can be done in the case of transitions. There are two types of
synchronization between steps of the model and steps of the automaton: 1) they have to
step together, and 2) they have to read the same letter. The latter synchronization can be
rephrased due to Proposition 1 (conversion of a Kripke structure to a Büchi automaton):
A has to read the labels of the target state of M . This, in turn, means that the whole
global state is required to decide if a transition of the automaton can be fired or not. Even
if atomic propositions are assigned to local states, every local state that is a subject of a
proposition must be known when the step of the automaton is selected. It is possible to
include the corresponding variables in the support of events, but that would again raise
the Top value of them.

The main idea of the algorithm is to omit the second synchronization constraint and fix
the transitions by constraining the states. This way, the relaxed next-state relation of the
product can be defined as the Cartesian product of the transition relations of M and A:
NP = N ×∆. To match the encoding of SP , NP is also reordered to have the signature
NP ⊆ (S × Q) × (S × Q). Events of the original system are kept, i. e., EP = E . The
individual next-state relation of an event ε is NP = Nε ×∆.

3
0

3’ 3’

1

2
1 2

2’

0

1

1

1’ 1’

1

0 1 2 3

1 2 3

N

∆

Figure 3.3. Example of a decision diagram encoding of relaxed synchronous
transitions.

50

Algorithm 3.1: StepConstraint
input : c : node i, l: index

1 //c: constraint node,
2 //i: index of local state
3 //k: level of local variable

output : node
4 if k = 1 then
5 return c[i];
6 foreach p ∈ AP, Subject(p) = k do
7 c← c[p(i)] ; //evaluate p on i
8 return c;

Constraint

To fix the synchronization omitted in the encoding of the transitions, tableau automata
provide a way to constrain the set of target states.

Definition 18 (Legal states of the product). A state (s, q) ∈ SP of the product of a
model M and a tableau automaton A is legal if the state of the automaton q can read the
label of the model state s, i. e., L+(q) ⊆ L(s) and L−(q) ∩ L(s) = ∅.

With the set of legal states CL = {(s, q) | L+(q) ⊆ L(s), L−(q)∩L(s) = ∅} as a constraint,
constrained saturation will explore the state space of the product (see Section 3.1.3 for a
proof).

The above construct assumed that the set of states of the model is known in advance. Even
this limitation can be overcome by on-the-fly evaluation of states. Recall that decision
diagrams are graphical representations of a series of decisions – this is exactly what is
necessary to evaluate a state. Where local states are used to traverse the constraint
in constrained saturation, an indirection layer can be included that 1) determines the
atomic proposition(s) assigned to the local state (except on the level of the automaton),
2) evaluates node(s) of the constraint decision diagram, then 3) returns the appropriate
node just like the child operator (nk[i]) would. This way, the constraint has to encode
the set {(p, q) | q ∈ Q,p ∈ B|AP|,p |= ΦL(q)}, i. e., pairs of a valuation of the atomic
propositions and an automaton state that can read it. The function that implements the
indirection layer can be seen on Algorithm 3.1. Its is important to note that the ordering
of atomic propositions in p has to be fixed and also has to match the order of components
that are subjects of propositions.

3.1.3 Investigation of correctness and efficiency

In order to prove the correctness of the algorithm, it is necessary to show that every
transition of the product can be simulated by the relaxed transitions and the constraint,
and no new transitions are introduced by the construct.

51

1

a ¬a

b ¬b b ¬b

300 1 2 3 0 2 3

Figure 3.4. Example of constraint corresponding to the tableau automaton of
Figure 3.1(c).

Theorem 1 (Correctness of tableau-based product computation). Given the
transition relation ∆∩ of the product automaton AM ∩ A and the relaxed next-state
relation NP with the set of legal states CL, every transition of ∆∩ can be simulated by a
transition allowed by constrained saturation with NP and CL and vice versa. �

Proof. Consider a transition of the product automaton ((s, q), α, (s′, q′)) ∈ ∆∩. An equiv-
alent transition in the relaxed next-state relation is ((s, q), (s′, q′)) ∈ NP (see Definition
12). The target state (s, q) is a legal state because α = L(s′) and q could read it according
to the product automaton (L+(q′) ⊆ L(s′) and L−(q′) ∩ L(s′) = ∅).

In the other direction, consider a relaxed transition that is allowed by the constraint:
((s, q), (s′, q′)) ∈ NP and (s′, q′) ∈ CL. A corresponding transition in the product automa-
ton is ((s, q), α, (s′, q′)) ∈ ∆∩ where α = L(s′). If (s′, q′) is a legal state, then every
transition of the automaton have to be able to read the labels of s′ (due to Definition 18
and Proposition 2). �

Although the algorithm takes tableau automata as input, it is possible to transform any
Büchi automata into tableau form. The following theorem gives an upper bound on the
size of the equivalent tableau automaton, with a constructive proof providing a way to
perform the transformation.

Theorem 2. Given a Büchi automaton A with a state count of |Q| = n over 2AP as an
alphabet, a tableau automaton accepting the same language can be constructed with a
state count of at most n · O

(
2|AP|

)
. �

Proof. Constructive proof. Let q′ be a state of A with incoming transitions δ ⊆ ∆. Denote
the set of letters appearing in these transitions by σ = {α | ∃(q, α, q′) ∈ δ}. Let φσ denote
a logical function in minimal disjunctive normal form that characterizes the letters in σ

(such an expression always exists). Finally, denote the conjunctive clauses of φσ by c(φσ).

52

If |c(φσ)| = 1, replace the parallel transitions of δ (i. e., those with the same source and
target states) with a single one of the tableau automaton, then label q′ according to φσ (i. e.,
ponated propositions go into L+, negated ones to L−). Otherwise, split q′ into |c(φσ)| states
{q′i} according to the conjunctive clauses, each of them with the same outgoing transitions
and input transitions whose α satisfies the corresponding clause. Repeat the step until
every (potentially new) state is processed, then the result is a tableau automaton.

To examine the number of resulting states, consider that every state will be split only once.
The number of states created when a state is split depends on the disjunction φσ, since
every conjunctive clause in it will yield a new state. It is well known that the upper limit
on the number of conjunctive clauses in a minimal disjunctive normal form of any Boolean
formula over b binary variables is O

(
2b
)
. As a result, every state will be split into at most

O
(
2|AP|

)
new states. �

Although this exponential blowup may sound very disappointing, the emphasis is on that
every automata built with widely-used tableau-based LTL translation algorithms are in-
herently tableau automata. The only restriction that this approach implies is a lesser
ability to simplify the automata. Many simplification methods keep the tableau form, but
the more powerful approaches will not be applicable (for an example, see [28] where every
approach is applicable except simulation-based optimizations).

3.2 Decompositions-based Product Computation

This section presents a more general approach to compute the synchronous productAM∩A
with any kind of Büchi automata. Although the restrictions implied by using a tableau
automaton are not too grave, saving a preprocessing step or achieving better optimiza-
tion motivates the design of an improved algorithm. While the former approach used
constrained saturation as is, the algorithm presented here uses a slightly modified version.

The main idea is the decomposition of the synchronous steps and the modification of
constrained saturation to compute the possible combinations. The constraint will serve
as a function instead of a set of allowed states, and mechanisms of constrained saturation
will be used to evaluate it on states on the model. This approach is presented in Section
3.2.1), then Section 3.2.2 will investigate correctness from a formal point of view.

3.2.1 Composing the transition relation of the product automaton

Decomposing the synchronized transitions means that instead of building a single next-
state relation encoding the state changes of both M and A, transitions of the model and
the automaton are stored and handled separately. The synchronization will be handled by
the state space traversal algorithm, this is why constrained saturation has to be modified.

53

The encoding of states is the same as in the previous algorithm, the discussion about
preserving the Top values also applies here.

To understand the motivation of the following construct, recall that constrained saturation
evaluates a binary function on the states of the system and allows only those that make
the function true. Also recall that relations can be interpreted as functions, and they can
also be encoded in decision diagrams.

The next-state relation of M and the transition relation of A are kept separately, the only
specific part of their encoding is that the transition relation of A is reordered to have the
signature ∆ ⊆ 2AP ×Q×Q, and elements of 2AP are represented by binary vectors like in
the previous algorithm. Transitions of the model will serve as one half of the synchronous
transitions, while ∆ : 2AP → Q×Q as a function will compute the other half. The input
of the function will come from the same indirection layer that computed the labeling of
global states in Section 3.1.2. Constrained saturation will be used to evaluate the function,
and the resulting slice of the transition relation (denoted by Nα) will be used for stepping
the automaton.

More precisely, as saturation is recursively calling itself and traverses the decision diagram,
one of the following can happen. Assume that n is the number of levels in the decision
diagram, while k is the highest of those that encode the automaton.

• If the current level belongs to M , i. e., it is above k, the next local transition of N
is used and the constraint evaluates the atomic propositions corresponding to the
target local state.
• If the current level is the kth, the current constraint node encodes Nα, the result of
the function ∆. For this level and others below it, this relation is used instead of N
to determine the next local transition. The constraint is not considered under this
level.
• If the current level is below k (so it belongs to A), the relation Nα determined on
level k is used to get the next local transition.

This evaluation step has to be included in both Saturate and RelProd. The modified
version of these functions can be seen on Algorithms 3.2 and 3.3.

Formally, the algorithm applies the following set of transitions: {((s, q), (s′, q′)) | (s, s′) ∈
N , (q, q′) ∈ ∆ (L(s′))}, i. e., the part of the transition affecting the model takes it into a
state whose labeling is read by the transition of the automaton. ∆ (L(s′)) can be seen as
a partitioning of the transition relation based on the letters they read.

3.2.2 Investigation of correctness and efficiency

The correctness of the algorithm can be characterized in the same way as in Section 3.1.3.

54

Algorithm 3.2: ProdSaturate
input : sk, c : node

1 //sk: node to be saturated,
2 //cl: constraint node

output : node
3∗ if k = 1 then
4 n2k ← c; //transitions of automaton
5 else
6 n2k ← Nk as decision diagram;
7 Return result from cache if possible;
8 tk ← new node;
9 foreach i ∈ Sk : sk[i] 6= 0 do

10 c′ ← c[i];
11∗ if c′ 6= 0 ∨ k = 1 then
12 tk[i]← ProdSaturate(sk[i], c′);
13 else
14 tk[i]← sk[i]; //no steps allowed
15 repeat
16 foreach sk[i] 6= 0 ∧ n2k[i][i′] 6= 0 do
17 c′ ← c[i′];
18∗ if c′ 6= 0 ∨ k = 1 then
19 tk ←

(tk[i′] ∪ ProdRelProd(tk[i], c′, n2k[i][i′]));
20 until tk unchanged;
21 tk = CheckUnique(tk);
22 Put inputs and results in cache;
23 return tk

Algorithm 3.3: ProdRelProd
input : sk, c, n2k : node

1 //sk: node to be saturated,
2 //c: constraint node,
3 //n2k: next state node,

output : node
4 if sk = 1 ∧ n2k = 1 then
5 return 1;
6 Return result from cache if possible;
7 tk ← new node;
8 foreach sk[i] 6= 0 ∧ n2k[i][i′] 6= 0 do
9∗ c′ ← c[i′];

10 if c′ 6= 0 then
11 tk[i′]←

(tk[i′] ∪ ProdRelProd(sk[i], c′, n2k[i][i′]);
12 tk ← ProdSaturate(CheckUnique(tk), c);
13 Put inputs and results in cache;
14 return tk;

Theorem 3 (Correctness of decomposition-based product computation).
Given the transition relation ∆∩ of the product automaton AM ∩ A, the next-state
relation N of M and the transition relation ∆ of A, every transition of ∆∩ can be
simulated by the decomposition-based product computation algorithm and vice versa. �

Proof. The definition of the transition relation of the product (without the input letters)
is ∆∩ = {((s, q), (s′, q′)) | (s, s′) ∈ N , (q, α, q′) ∈ ∆, α = L(s′)}. The modified constrained
saturation applies the transitions {((s, q), (s′, q′)) | (s, s′) ∈ N , (q, q′) ∈ ∆ (L(s′))}. These
sets are equivalent if (q, α, q′) ∈ ∆∧α = L(s′) and (q, q′) ∈ ∆ (L(s′)) are equivalent, which
follows from the interpretation of functions as relations. �

As the proof suggests, the algorithm directly computes the synchronous transitions on-the-
fly without actually storing them. This way, there is no limitation on the type of the Büchi
automaton used. Furthermore, no additional storage is required above the representation
of the separate relations, and the computational overhead is also negligible compared to
traditional constrained saturation.

55

0 a

b

1

(a) Büchi automaton
of [a U b].

a ¬a

b

¬b
b

¬b

0

0 2

1

10 1

0 0 1 1

(b) Constraint encoding the transition relation of
the automaton.

Figure 3.5. Minimal Büchi automaton for the LTL formula [a U b] and its
encoding as a constraint.

56

Chapter 4

Checking language emptiness

In this chapter, the most essential component of the contributed model checking algorithm
is presented: algorithms for the detection of strongly connected components (SCCs). As
seen in Section 1.3.5, the language emptiness problem can be solved by looking for SCCs
in the state space, as well as Section 1.4.2 discussed the reduction of LTL model checking
to language emptiness. This is why devising efficient algorithms is especially important
here.

There are simple and powerful algorithms for SCC detection in the explicit case, where
the state space is represented by a graph that can be traversed freely (see Section 2.1). In
a symbolic setting, set operations can be used to compute an SCC-hull as a greatest fixed
point in the state space (see Section 2.3.1). To introduce the advantage of on-the-fly SCC
detection and early termination of explicit techniques into symbolic algorithms, hybrid
approaches using abstraction have also spread (see Section 2.4). To further enhance the
power of the latter approach, both symbolic and explicit methods will be introduced in
this chapter, carefully designed to work together in a symbolic setting.

The symbolic algorithm will be a variant of traditional SCC-hull computation schemes, but
optimized to process the state space incrementally during the exploration. On the verge of
symbolic and explicit, saturation will be enhanced to collect recurring states, states that
are visited more than once during the exploration and thus can indicate SCCs. Finally, a
cheap abstraction considering decision diagram nodes will also be employed to use explicit
algorithms to quickly reason about SCCs in the state space without actually trying to find
them. The last two techniques are capable of making the overhead of on-the-fly model
checking to almost disappear.

Algorithms of this chapter are orthogonal to algorithms of Chapter 3. Every one of them
assumes that a model is given in the input format of saturation, no matter if it is a product
automaton or anything else. Consequently, the devised methods can be used in settings
other than LTL model checking, although in the thesis, the focus is on this particular
application.

57

A conference paper [43] presenting the content of this chapter is accepted to be published
in the TACAS (Tools and Algorithms for the Construction and Analysis of Systems)
proceedings in 2015.

4.1 Lemma of Saturated State Spaces

Before presenting the algorithms, a seemingly trivial but fundamental lemma has to be de-
clared. This observation will serve as the basis of the incremental symbolic SCC detection
algorithm as well as the explicit and abstraction techniques.

Lemma 1 (Lemma of saturated state spaces). Given a saturated decision diagram
node nk, any path of 〈B(nk),N≤k〉 that is not present in the subspaces 〈B[i](nk),N<k〉
(encoded by the children of nk) contains at least one transition from Nk.

Proof. The lemma trivially follows from the definition of saturation. A set of states
represented by a saturated node nk is closed with regard to N≤k, even if an additional
component is appended to each state as B[i](nk) is defined. �

An implication of the lemma is that there is no way to traverse the boundaries of B[i](nk)
without using at least one transition from Nk, since the state spaces 〈B[i](nk),N<k〉 are
disjoint (they differ in the local state of component k).

4.2 Incremental Symbolic SCC Computation

In the presented model checking algorithm, on-the-fly SCC detection is intended to be
achieved by running SCC computations frequently during the state space generation. Cer-
tainly, this strategy would mean a massive overhead if repetition of work would not be
addressed, so the main requirement towards the design of this algorithm was incremental-
ity.

The context of the algorithm is the following. When saturation processes the state space
(see Chapter 3), SCC detection phases will be inserted whenever a node nk becomes
saturated. Processing saturated nodes has the advantage of handling a set of (sub)states
B(nk) that is closed with regard to events independent from higher levels (N≤k). This
means that the set will not change anymore during the exploration, i. e., each closed set
has to be processed only once.

Even though a set with its related events will be processed only once, the recursive defini-
tion of saturation will cause such sets to appear again as part of larger sets encoded by the
parent node in the decision diagram (see Section 1.5.3). This means that the algorithm
has to be able to distinguish parts of the state space already processed (B[i](nk) and N<k)
and focus only on new opportunities gained by considering new events. This is exactly
the base idea of the algorithm: in each run, look for only those SCCs that contain at least
one transition form Nk.

58

Elementary steps of the fixed point computation

The idea can be implemented by discarding transitions from a set of “new” transitions
Nnew that cannot be closed to form a loop. In other words, a transition is discarded if
its source state cannot be reached from its target state. In SCC-hull algorithms, sets of
states are processed iteratively to eventually get rid of “bad” states (dead-end states, for
example) by computing a greatest fixed point of some function in the original set. Now, a
set of transitions have to be processed, and the function is the following (N is the set of
all transitions, i. e., both “old” and “new” transitions):

f(N) = {(s1, s′1) | (s1, s′1) ∈ N, ∃(s2, s′2), s1 ∈ N ∗(s′2)}

Function f in words

The function returns a subset of N . Transitions of this subset can be characterized by
a few equivalent descriptions.
• The source state of the returned transitions can be reached through transitions
of N from the target state of at least one transition in N .
• There is at least one transition in N after which a returned transition can become

enabled on some path consisting of transitions in N .
• The returned transitions start from a set of states reachable through N from

target states of transitions in N .

The formal goal of the proposed SCC detection algorithm is to compute the greatest fixed
point of f as NΘ = f(NΘ) where NΘ ⊆ Nnew. The following lemma justifies the definition
of function f and will prove the correctness and completeness of the incremental SCC
detection algorithm.

Lemma 2 (Correctness and completeness). Given a transition system 〈S,N〉 and a
set of “new” transitions Nnew ⊆ N , the fixed point NΘ is empty iff 〈S,N〉 does not contain
any SCC with transitions from Nnew.

Proof. The two directions are proven separately.

(←): Indirect proof. Suppose there is a strongly connected component Θ in the transitions
system that contains at least one transition from Nnew, let this be (s, s′). Also suppose
that the fixed point NΘ is empty. Consider f({(s, s′)}). By the definition of a strongly
connected component, every state of Θ is reachable from every other state of Θ, so s is
also reachable from s′. Reachability in terms of N is defined by inclusion in the set of
states N ∗(s′), so (s, s′) ∈ f({(s, s′)} can be concluded that contradicts the assumption of
NΘ being empty. Note that because of the transition (s, s′), Θ is a real (but not necessarily
nontrivial) SCC even if s = s′ because of the self-loop.

59

(→): The other direction is also proved indirectly. Suppose there is no strongly connected
component in the transitions system that contains at least one transition from Nnew. Also
suppose that the fixed point is nonempty. Take a transition ν1 = (s1, s′1) from NΘ. Since it
is in the fixed point, its source state must be reachable from the target state of some other
transition ν2 = (s2, s′2). Now consider this transition and repeat the process. Since NΘ is
finite, at some point, the transition νi will be the same as some transition before: νi = νj,
where j < i. However, since si is reachable from s′j and sj is reachable from s′i, they must
be in an SCC, which leads to a contradiction. �

Incremental steps of the fixed point computation

An incremental step has to compute the fixed point NΘ. This is implemented by the
function DetectSCC that can be seen on Algorithm 4.1. Checking reachability is performed
using saturation. The main advantage of this is that caches can be reused in the SCC
detection phase as well, just like the decision diagram structures built during the state
space exploration.

Compared to the definition of f , the implementation is slightly different. Instead of
handling a set of transitions, the implementation reduces the problem to sets of states
by considering the source states and target states of every transition in Nnew. The sets
of source and target states are denoted by S− and S+ respectively. Furthermore, a set
of states S (typically the set of states discovered so far) is also input to DetectSCC to
constrain SCCs – during the state space generation (especially when saturation is used),
N may contain transitions that are not in S × S.

The core of DetectSCC is the filtering cycle, where function f is implemented and per-
formed iteratively until no more changes occur. In each iteration, the sets S− and S+ are
filtered:

• Elements of S− that are not reachable from S+ are removed.
• Elements of S+ that are not reachable from S− in one step through Nnew are re-
moved, ensuring that S− and S+ always contain exactly the source and target states
of the remaining transitions.

Lemma 2 still holds if NΘ is substituted by S− and S+. Note that these two will always
be both empty or both nonempty at the fixed point, because a transition has to have a
source and a target state. However, the iteration can be stopped one step before – if any
of them becomes empty, the next step will discard every state from the other one as well.

The number of iterations in the filtering cycled has an upper bound of O(|Nnew|), since in
every step, at least one transition is discarded from the set. Methods to make the initial
set of “new” transitions smaller and thus reduce the number of required steps are discussed
in Sections 4.4.1 and 4.4.3.

60

An incremental step will always assume that there is no SCC in the transition system that
does not contain a transition from Nnew (otherwise the on-the-fly model checking algo-
rithm would have already been terminated). With this, the completeness of the algorithm
depends on the strategy of applying the incremental steps.

S− S+

F

S

Figure 4.1. Illustration of Algorithm 4.1.

On-the-fly search using the incremental steps

The last design question is how and when to call DetectSCC . The chosen design is to
call DetectSCC whenever a node nk becomes saturated. The set of states to constrain
the search is B(nk), transitions are N≤k and new transitions are Nk (it is trivial that
Nk ⊆ N≤k).

In the general case (and in breadth-first style strategies), the whole next-state relation of a
model can be partitioned by the traversal strategy, for example, a breadth-first exploration
would partition the transitions into “layers” based on their distance from the initial state.
If DetectSCC is called on each partition as new transitions, Lemma 2 will imply that the
algorithm is correct and complete, i. e., it finds an SCC exactly if there exists one.

In saturation, however, the exploration is recursive, so calling DetectSCC after a node is
saturated does not fall into the above case. Proving that the algorithm is complete can
thus be performed inductively.

Theorem 4 (Completeness of incremental SCC detection). Calling DetectSCC
during state space generation every time after a node is saturated yields a complete
algorithm, i. e., in at least one call, the fixed point will not be empty iff there exists an
SCC in the state space.

Proof. Inductive proof. It is trivial that the terminal nodes do not encode any SCCs,
because no transitions are associated with level 0. Assume the children of a decision dia-
gram node nk together with their related transitions N<k (that is, 〈B(nk[i]),N<k〉) do not
contain SCCs either. Proving that the fixed point will be nonempty iff there exists an SCC

61

Algorithm 4.1: DetectSCC
input : S,N ,Nnew : set

1 //S: set of states,
2 //N ,Nnew: set of transitions

output : bool
3 S− ← N−1

new(S); S+ ← Nnew(S−);
4 if S+ = ∅ then return false;
5 repeat
6 S− ← S− ∩N ∗(S+);
7 S+ ← S+ ∩Nnew(S−);
8 until S+ and S− unchanged;
9 return S− 6= ∅ ∧ S+ 6= ∅

in 〈B(nk),N≤k〉 would imply that when the root node is saturated and the algorithm stops,
the statement of the theorem would hold. The inductive hypothesis directly follows from
Lemmas 1 and 2. If there exists an SCC, it must contain a path that is not present in
〈B(nk[i]),N<k〉 (otherwise 〈B(nk[i]),N<k〉 would also contain the SCC), so according to
Lemma 1 it will contain at least one transition from Nk. This would cause the fixed point
to be nonempty (Lemma 2). �

4.2.1 Extensions to support fair SCCs

When looking for fair SCCs, i. e., SCCs containing at least one state from a set of states
F , the algorithm can be extended to involve F as the third set in the filtering cycle.
Operations performed in the cycle are then the following:

• Elements of F that are not reachable from S+ are removed.
• Elements of S− that are not reachable from F are removed.
• Elements of S+ that are not reachable from S− in one step through Nnew are re-
moved, ensuring that S− and S+ always contain exactly the source and target states
of the remaining transitions.

The first two operations ensure that if a transition of Nnew is in an unfair SCC (i. e.,
does not contain any states from F), it is removed from the fixed point. Note that even
accepting trivial SCCs (a single state of F with a transitions of Nnew as a self loop) are
found this way, because a state is by definition reachable from itself (i. e., reachability as
a relation is reflexive).

When looking for accepting SCCs during LTL model checking, F is the set of accepting
states. Supporting multiple acceptance sets to directly use generalized Büchi automata in
the model checking algorithm is possible, but it is the subject of the author’s future work.

62

4.3 Indicators of SCCs in the Product Automaton

After presenting an incremental way to detect strongly connected components during state
space generation, this section will introduce methods to prove the absence of SCCs without
performing symbolic fixed-point computations. These methods will be used to decide if a
symbolic check should be performed when a node is saturated or it can be safely omitted.

When looking for accepting SCCs, checking the absence of accepting states is a usual
optimization in similar algorithms, for example in the abstraction refinement approach
presented in [58]. The contribution of this thesis goes two steps further. Section 4.3.1
introduces the use of recurring states and a specialized algorithm to compute them, while
Section 4.3.2 presents new abstraction techniques tailored to decision diagrams that allow
the use of explicit algorithms directly to reason about the presence or absence of SCCs.

4.3.1 Recurring states during state space exploration

Recurring states are those that have already been discovered before reaching them again
during state space exploration. To precisely define them, let a concrete exploration ε

of a fully reachable, connected state space 〈S,N〉 be a sequence of subsets of S, where
each element of the sequence contains states discovered in that step: ε ∈ (2S)∗ such that
ε(i + 1) ⊆ N (Si) for every 0 < i ≤ |ε|, where Si =

⋃
0≤j≤i ε(j). An exploration is full if

S|ε| = S and the exploration algorithm considered every enabled transition in N .

Definition 19 (Recurring states). Given an exploration ε ∈ (2S)∗, the set of recurring
states in each step is Ri = Si ∩ ε(i+ 1), where Si =

⋃
0≤j≤i ε(j). �

Many explicit algorithms rely on recurring states as indicators of SCCs (for example [54]
and [36]). Indeed, they are candidates of being in an SCC, since there are only two cases
in which they can appear: the exploration reached them again on a parallel path, or
a previous state of a path is reached again, i. e., a loop is found. Using the following
proposition, recurring states can be used to reason about SCCs.

Proposition 4. Given a state space containing an SCC, any full exploration will yield at
least one recurring state. �

According to the proposition, recurring states offer a cheap way to distinguish situations
where there is no chance of finding an SCC – situations that often arise during an on-the-fly
algorithm.

On-the-fly collection of recurring states

Since a basic step in saturation is performed by applying some Nε (i. e., computing the
relational product of a set of states and Nε), recurring states have to be collected in this

63

Algorithm 4.2: SaturateRec
input : c, s : node

1 //c: product constraint,
2 //s: node to be saturated

output : node
3 Return result from cache if possible;
4 l← s.level; r ← N−1

l ;
5 t← new Nodel; pc ← c;
6 foreach i ∈ Sl : s[i] 6= 0 do
7∗ pc ← StepConstraint(c, i, l);
8 if pc 6= 0 then
9 t[i]← SaturateRec(pc, s[i]);

10 else
11 t[i]← s[i]; //no steps allowed
12 repeat
13 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do
14∗ pc ← StepConstraint(c, i, l);
15 if pc 6= 0 then
16 u← RelProdRec(pc, t[i], r[i][i′]);
17 t[i′]← Union(t[i′], u);
18 until t unchanged;
19 t← PutInUniqueTable(l, t);
20 Put inputs and results in cache;
21 return t;

Algorithm 4.3: RelProdRec
input : c, s, r : node

1 //c: product constraint,
2 //s: node to be saturated,
3 //r: next state function

output : node
4 if s = 1 ∧ r = 1 then
5 return 1
6 Return result from cache if possible;
7 l← s.level;
8 t← 0;
9 pc ← c;

10 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do
11∗ pc ← StepConstraint(c, i, l);
12 if pc 6= 0 then
13 u← RelProdRec(pc, t[i], r[i][i′]);
14 if u 6= 0 then
15 if t = 0 then
16 t← new Nodel;
17 t[i′]← Union(t[i′], u);
18 t← SaturateRec(c, t);
19 t← PutInUniqueTable(l, t);
20 Put inputs and results in cache;
21 return t;

granularity as well. In this context, the desired output of the function RelProd would be
two sets of states: the result of the relational product and the set of recurring states.

Instead of performing the costly intersection at the end of the function, the collection of
recurring states can be done on the fly. In general, constrained saturation did exactly the
same, as it only allowed steps that stay in a certain set of states. This set is now the set
of “old” states, i. e., those that were passed to RelProd.

Algorithm 4.3 shows the implementation in RelProdRec. The function basically performs
a constrained and an unconstrained saturation simultaneously, gathering the results to
two separate sets (decision diagrams). An important note is that contrary to normal
constrained saturation, the recursion occurs even if the constraint won’t allow the step,
because the main functionality is the computation of the relational product.

In each SaturateRec(the version of Saturate seen on Algorithm 4.2), all recurring states
produced by transitions of Nk are collected separately as the union of sets returned by
RelProdRec– recurring states encountered by applying lower level events during recursive
SaturateReccalls are processed there. The arguments of RelProdRec are the original node,
the next-state node and the node that represents the relevant part of the old states (with
which the results of the relational product will be merged).

It is important to note that this mechanism is useful only if the inputs and results of
RelProdRec are cached. Otherwise, repeating a previous call would by definition recognize
every target state as a recurring state, since they have already been reached by the previous
call.

64

4.3.2 Using abstractions to reason about emptiness

Hybrid model checking algorithms usually use symbolic encoding to process huge state
spaces, while introducing clever abstraction techniques to produce an abstract model on
which explicit graph algorithms can be used. In this context, the goal of abstraction is
to reduce the size of a system’s state space while preserving certain properties, such as
the presence or absence of SCCs. The purpose of abstractions is no different is this thesis
wither, they are used to reason about SCCs. However, unlike in most approaches in this
domain, multiple abstractions are used, ordered in a hierarchy matching the structure
of the underlying decision diagram to build an inductive proof about strongly connected
components of the state space.

In a symbolic setting, components of the model provide a convenient basis for abstraction.
In LTL model checking, it is usual to use the Büchi automaton or its observable language to
group states and build an abstraction from these aggregates. The abstraction framework
presented in [58] goes beyond using only one kind of abstraction and explores strategies on
a tableau of possible abstractions based on one or more components. For a more detailed
summary of using abstraction in LTL model checking, refer to Section 2.4.

In addition to selecting the basis, there are multiple ways to define an abstraction in
terms of a component. To illustrate this, two simple abstractions are presented before
introducing a new approach of using the structure of a decision diagram to define a more
powerful abstraction.

Abstraction of graphs

Using abstraction on graphs (such as states spaces) is the process of obtaining a new
graph that is usually smaller, and nodes and arcs of the original graph can be mapped
into nodes and arcs of the abstract graph. The term abstraction is often used to name
the abstract graph as well as the process that constructs it.

Formally, given two graphs G = 〈V,E〉 and A = 〈VA, EA〉, A is an abstraction of G if
there is a surjective abstraction function that maps V onto VA and E onto EA. It is
usual to define A in terms of G – this way, the function is part of the definition.

If nodes of the graph are tuples, such as in the case of concurrent models, components
can be the basis of the abstraction. A selection of components can be omitted from
every state and identical states can be merged to obtain an abstraction based on a
few components only. The set of abstract transitions can be defined in many ways,
depending on the application of the abstraction.

Simple abstractions

Using abstractions to answer binary decisions has two potential goals. One can create
an over-approximating abstraction that can say a definite yes (these are called must ab-

65

stractions), or an under-approximating one that can say a definite no (these are may
abstractions). To construct an abstraction based on a single component of the system,
the definition of an abstraction function is required for both the states and the transitions
in the global state space. Abstracting states is straightforward, as the set of local states
Sk of component k can be used directly. Regarding may and must abstractions, different
transformations have to be defined for the transitions of the state space.

Definition 20 (May abstraction). May abstraction of state space 〈S,N〉 based on
component k is A∃k = 〈Sk,N ∃k 〉, where Sk is the set of reachable local states of com-
ponent k, and N ∃k = {(sk, s′k) | ∃ε ∈ E , supp(ε) = {k}, ∃((. . . , sk, . . .), (. . . , s′k, . . .)) ∈ Nε},
i. e., the projections of events to component k. �

Definition 21 (Must abstraction). Must abstraction of state space 〈S,N〉 based on
component k is A∀k = 〈Sk,N ∀k 〉, where Sk is the set of reachable local states of component
k, and N ∀k = {(sk, s′k) | ∃ε ∈ E , k ∈ supp(ε),∃((. . . , sk, . . .), (. . . , s′k, . . .)) ∈ Nε}, i. e.,
transitions that affect only component k. �

The must abstraction of transitions is defined to keep only those transitions that cor-
respond to events fully within the support of the chosen component. May abstraction
preserves every local transition, but omits the synchronization constraints (i. e., assumes
that if a transition is enabled in component k, it is globally enabled).

Due to this construction, it is sometimes possible to reason about the presence or absence of
global SCCs. If there is an SCC in a single must abstraction, it is the direct representation
of one or more SCCs of the global state space. Complementary, if there is no SCC in the
may abstraction of any component, then the global state space cannot contain any SCCs
either.

These abstractions usually yield small state graphs that can be represented explicitly.
Running linear-time explicit algorithms on them gives a very cheap opportunity to possibly
prove or refute the presence of SCCs before symbolic methods are used. Moreover, the
definition of may and must abstractions implies N ∀k ⊆ N ∃k , so running the explicit SCC
computation on a may abstraction and checking if every transition of a possible SCC is in
N ∀k effectively considers both cases at the same time.

Example 14. As an example, observe Figure 4.2 that illustrates the Petri net model of
a producer-consumer system, also showing the explicit state graph. Transitions of the
system are shown on Figure 4.3(a), with connected arcs representing a single transition
affecting multiple components. In this case, every transition belongs to a separate event
(events are related to transitions of the Petri net). Events affecting multiple components
can be regarded as synchronization constraints between local transitions. Abstractions can
be acquired by removing synchronizations and local transitions. Figure 4.3(c) and 4.3(b)
depict the transitions transformed by may and must abstractions. If the goal is to find
an SCC containing the state where only the places at the left of the Petri net are marked

66

(depicted as a black state on Figure 4.2(b)), none of the simple abstractions can give an
exact answer.

p
ro

d
u
c
e
r

b
u
ff
e
r

co
n
s
um

e
r

(a) Petri net model.

000
110

100

101

010

001
011 111

(b) State space.

Figure 4.2. Producer-consumer model with non-deterministic buffer.

0 1

0 1

0 1

(a) Original

0 1

0 1

0 1

(b) Must

0 1

0 1

0 1

(c) May

0 1

0 1

0 1

(d) Nodewise

Figure 4.3. The effect of the abstractions to the transitions

Node-wise abstraction.

Among the main algorithmic contributions of this thesis, the last one is a specialized
abstraction that fits saturation and the presented incremental symbolic SCC detection
algorithm, as well as it complements Proposition 4 (about recurring states) as a cheap
way to prove the absence of SCCs. The goal of the following construct is to match the
order in which events are processed during saturation, as well as the structure of the
underlying decision diagram.

Definition 22 (Node-wise abstraction). Node-wise abstraction of state space 〈S,N〉
with regard to node nk is A∃nk

= 〈Snk
,N ∃nk

〉, where Snk
= {i | nk[i] 6= 0}, i. e., local states

encoded by the arcs of nk, andN ∃nk
= {(sk, s′k) | sk, s′k ∈ Snk

, ∃((. . . , sk, . . .), (. . . , s′k, . . .)) ∈
Nk}, i. e., the projections of events Ek to component k.

Node-wise abstraction can be regarded as a may abstraction of the states space
〈B(nk),N≤k〉 based on component k. Just like may abstractions, a series of node-wise

67

abstractions can also be used to reason about global SCCs. Moreover, this can be done
inductively during the state space generation. The following theorem gives the basis for
this inductive method of using node-wise abstractions to prove the absence of SCCs.

Theorem 5 (Node-wise abstraction and SCCs). Given a node-wise abstractionA∃nk

with regard to a saturated node nk, the state space 〈B(nk),N≤k〉 does not contain any
SCCs if 1) neither A∃nk

2) nor the state spaces (B[i](nk),N<k) belonging to the children of
nk contain an SCC. �

Proof. Indirect proof. Suppose that 〈B(nk),N≤k〉 contains an SCC with a state in B[i](nk)
(i. e., , component k is in local state i). There are three possible cases to realize this. The
SCC:

1. is fully within B[i](nk) and contains transitions only from N<k;
2. is fully within B[i](nk) and contains transitions from Nk, but they do not change the

local state of component k;
3. contains a state from at least one other B[j](nk) (i 6= j) as well;

Case 1 contradicts assumption 2, while case 2 is also a contradiction with assumption 1,
since not changing the local state of component k would mean a self loop in A∃nk

constituting
a trivial SCC. Proving that case 3 also yields a contradiction is based on Lemma 1. To
reach the state in B[j](nk) from the state in B[i](nk), a path has to use at least one transition
from Nk. These transitions will also form a path in A∃nk

from i to j. To be in an SCC,
there has to be a path from the state in B[i](nk) to the state in B[j](nk) also using at least
one transition from Nk, which in turn also forms a path in A∃nk

from j to i. Since i and
j are reachable from each other, they are in an SCC of A∃nk

, which is a contradiction. �

Explanation of the proof

The main idea of the proof is that node-wise abstraction represents the effects of the
events Ek exactly on the level of their Top value. At the time a node nk becomes
saturated, the only transitions that can change the local states of component k are in
Nk. Node-wise abstractions contain the images of exactly these transitions, thus they
describe the possible transitions between sets of substates encoded by the children of
nk. This is why they can be used to identify one-way walls that separate the possible
spaces for SCCs.

Note that the theorem did not specify how to prove assumption 2, meaning that even if the
corresponding node-wise abstraction did contain an SCC (which only implies the possible
presence of a global SCC), the symbolic fixed point computation algorithm of Section 4.2
can check if the abstract SCC candidate is realizable in the global state space. This way,
the series of saturated nodes can inductively prove the absence of SCCs by the end of the
state space generation.

68

Example 15. Observing Figure 4.3 again, node-wise abstractions of the state space can
be seem on Figure 4.3(d). As Theorem 5 suggests, it is unnecessary to start symbolic SCC
detection until the top level becomes saturated.

By the time a node is saturated, its node-wise abstraction will not change anymore. This
way, a single abstraction has to be built and analyzed only once. The computation of
node-wise abstractions is very simple and cheap. It can be done on demand by projecting
the next-state relation of corresponding events to the Top component, or on-the-fly during
saturation by adding vertices and arcs each time a new local state is discovered or a new
transition of the corresponding events is fired, respectively. A simple must abstraction can
also be examined as part of computing SCCs of the node-wise abstraction by checking if
every local transitions used in the SCC belong to events having only the current component
as a supporting one. If this is the case, that SCC is inherently realizable and can be
returned as a counterexample.

4.4 On-the-fly Incremental Hybrid Model Checking of LTL Properties

In this section, the building blocks presented so far are assembled into an on-the-fly,
hybrid and incremental LTL model checking algorithm. Section 4.4.1 will show a way
to use recurring states and the modified relational product operator in the symbolic fixed
point computation algorithm. Section 4.4.2 shows how to consider recurring and accepting
states in the explicit search, while Section 4.4.3 will integrate the symbolic and explicit
searches. Section 4.4.4 will present the full hybrid SCC detection algorithm.

4.4.1 Recurring states in the fixed point computation

In addition to indicating the absence of SCCs, recurring states can also help in finding
them. Since each SaturateRecbuilds its own set of recurring states, the set of all gathered
recurring states on level k will be the actual target states of transitions in Nk (only these
transitions are fired on level k). This way, the subset of S+ actually reached is available
at the end of a SaturateReccall and DetectSCC can be initialized with the recurring states
instead of B(nk).

Corollary 1. (Accelerating the fixed point computation) During an SCC detection phase
after the saturation of node nk, restricting the set of “new” transitions Nk to those that
end in recurring states (that is, {(s, s′) | (s, s′) ∈ Nk, s′ ∈ R}) will still find any SCCs that
would be found otherwise.

The corollary follows from the fixed point computation strategy of saturation and its
caching mechanisms. It can be used to accelerate the fixed point computation by using a
smaller input set, since a smaller set of “new” transitions makes DetectSCC finish in fewer
iterations.

69

Another application of RelProdRec is the computation of the filtered sets in the filtering
cycle of DetectSCC . Since RelProdRec can be used to compute the intersection of the
relational product and any other set of states on the fly, it is suitable to substitute the
intersection used in the computation of reachable states.

4.4.2 Constraining the explicit search of abstractions

Recurring states together with accepting states (if any) are useful in the explicit search on
node-wise abstractions as well. According to Proposition 4, every SCC has to contain at
least one recurring state. If fair SCCs are sought, then at least one state of an acceptance
set F also have to be included in the SCC.

In a node-wise abstraction A∃nk
, every node i represents the set of states B[i](nk). If

the SCC candidate is realizable, it will contain some states from this set. A necessary
property of abstract SCC candidates is described by the following corollary that is a
direct consequence of the above considerations.

Corollary 2 (Necessary condition for abstract SCC realizability). An abstract
candidate SCC ΘA = 〈SΘ,NΘ〉 of a node-wise abstraction A∃nk

is not realizable if

•
(⋃

i∈SΘ
B[i](nk)

)
∩R = ∅, or

•
(⋃

i∈SΘ
B[i](nk)

)
∩ F = ∅ if a fair SCC is sought. �

Since every B[i](nk) as well as R, and even the set of accepting states (formally {(s, q) | q ∈
F}) is known by the time of the explicit search, candidate SCCs can be evaluated and
sorted out of the necessary condition does not hold. If no potentially realizable candidate
SCCs remain, the state space does not contain any global SCCs either.

4.4.3 SCC candidates in the fixed point computation

The incremental symbolic fixed point computation algorithm and node-wise abstraction
are strongly related. Node-wise abstraction contains exactly those transitions that are
considered “new” in the fixed point algorithm, so the latter can be regarded as a method
to check if a candidate SCC is realizable or not.

According to the definition of node-wise abstraction (Definition 22) and Theorem 5, arcs
of candidate SCCs represent the transitions that may be part of an SCC – if an arc is not
part of any candidate SCCs, its corresponding transitions will not be the part of a global
SCC either.

Corollary 3 (Realizing abstract SCCs). Given a node-wise abstraction A∃nk
and an

abstract SCC candidate Θ = 〈SΘ,NΘ〉, the only transitions of Nk that can be part of
the global SCC are those corresponding to abstract arcs NΘ, formally {(s, s′) | (s, s′) ⊆
Nk, (sk, s′k) ∈ NΘ}, where sk and s′k are the local states of component k in the global
states s and s′.

70

The corollary can be exploited in the symbolic fixed point algorithm by considering only
those transitions as “new” that are part of a candidate SCC instead of the full relation
Nk.

4.4.4 Assembling the pieces – the full SCC detection algorithm

After getting familiar with different aspects and components of the incremental hybrid SCC
detection algorithm presented in this chapter, the last section summarizes the algorithm
as a whole. The input model is assumed to be in any form saturation can process. SCC
detection relies only on a base algorithm employing the iteration strategy of saturation,
including, but not limited to traditional saturation, constrained saturation or any product
computation algorithm of Chapter 3.

Whenever a node nk becomes saturated, the following steps have to be executed:

1. The set of encoded states B[i](nk) and transitions Nk are checked against emptiness
– if any of them is empty, SCC detection reports no SCC.

2. The set of collected recurring states R and – if applicable – accepting states F are
checked against emptiness – if no recurring states were found, SCC detection reports
no SCC (see Proposition 4).

3. An explicit SCC computation algorithm is run on the current node-wise abstraction
A∃nk

to obtain an SCC candidate – if no candidate is found, SCC detection reports
no SCC (see Theorem 5).

4. Candidate SCCs are checked according to Corollary 2 – if none of them is realizable,
SCC detection reports no SCC.

5. A fixed point computation is started with S+ = R and transitions corresponding to
arcs of the candidate SCCs as “new” transitions – the result of the computation is
returned as a final answer (see Theorems 2 and 4 and Corollaries 1 and 3).

The algorithm terminates as soon as DetectSCC finds a nonempty fixed point, or if the
root node is saturated. If a nonempty fixed point is found, algorithms of Section 2.5.1
can be used to extract a counterexample (probably aided by the contents of the fixed
point). Otherwise there is no counterexample and the model M is valid in terms of the
specification ϕ.

Algorithms 4.4 and 4.5 show the pseudocodes of the modified Saturate and RelProd func-
tions.

71

Algorithm 4.4: Saturate
input : s : node //to be saturated
output : node

1 l← level(s); n← Nl;
t← new node on level l;

2 foreach i ∈ Sl : s[i] 6= 0 do
3 t[i]← Saturate(s[i]);
4∗ r ← new node on level l;
5 repeat
6 foreach s[i] 6= 0 ∧ n[i][i′] 6= 0 do
7∗ rc ← new node on level l − 1;
8 u← RelProd(t[i], n[i][i′], t[i′], rc);
9� if u 6= 0 then

add arc 〈i, i′〉 to A∃s ;
10 t[i′]← (t[i′] ∪ u);
11∗ r[i′]← (r[i′] ∪ rc);
12 until t unchanged;
13 t← CheckIn(l, t);
14∗ if r = 0 then return t;
15◦ if DetectSCC(t, r) then
16 terminate with counterexample;
17 return t;

Algorithm 4.5: RelProd
input : s, n, o, r : node

1 //s: node to be saturated,
2 //n: next state node,
3 //o: old node,
4 //r: recurrent states

output : node
5 if s = 1 ∧ n = 1 then
6∗ if u = 1 then r ← s;
7 return 1
8 l← level(s); t← 0;
9 foreach s[i] 6= 0 ∧ n[i][i′] 6= 0 do

10∗ rc ← new node on level l − 1;
11 u← RelProd(s[i], n[i][i′], o[i′], rc);
12 if u 6= 0 then
13 if t = 0 then

t← new node on level l;
14 t[i′]← (t[i′] ∪ u);
15∗ r[i′]← (r[i′] ∪ rc);
16 t← Saturate(CheckIn(l, t));
17 return t;

72

Chapter 5

Evaluation

To demonstrate the efficiency of the presented new algorithm (referred to as Hyb-MC),
models of the Model Checking Contest1 has been used to compare it to three competitive
tools. NuSMV2 [15] is a BDD-based model checker implementing traditional SCC-hull
algorithms and is well-established in the industrial and academical community. Its suc-
cessor, nuXmv [9] implements the IC3 algorithm for LTL model checking. ITS-LTL [22]
is a powerful tool based on saturation that implements various optimizations both for the
symbolic encoding and on-the-fly SCC detection.

5.1 Implementation

The algorithms presented in Chapters 3 and 4 were implemented in the PetriDotNet2

framework. PetriDotNet is a modeling and model checking tool written in C# supporting
(colored) Petri nets. It is developed by students of Fault Tolerant Systems Research Group
of Budapest University of Technology and Economics, including the author himself. Cur-
rently (in 2014), it supports basic analysis of Petri nets, and a handful of saturation-based
model checking techniques including state space generation and reachability analysis, CTL
model checking, bounded CTL model checking and on-the-fly LTL model checking (pre-
sented in this thesis).

The presented LTL model checking algorithm was implemented on top of existing algo-
rithms and data structures in order to reuse the results of previous research and develop-
ment. It also reuses tools of the SPOT toolset [23] to parse LTL formulae and transform
them to Büchi automata.

5.2 Benchmark Cases

The Model Checking Contest offers Petri net models of various artificial and real-world
problems. The models are given in PNML format [35], usually both as colored Petri nets

1http://mcc.lip6.fr/
2http://petridotnet.inf.mit.bme.hu/en/

73

http://mcc.lip6.fr/
http://petridotnet.inf.mit.bme.hu/en/

and unfolded P/T nets (described in Section 1.1.2) as well. Due to the supported input
formats of the selected tools, only P/T nets could be used.

Excluding the “surprise models” of the contest of 2014 (which were released after conduct-
ing the measurements), a total of 27 scalable models were used in the benchmark, with
instances of different size, resulting in 157 model instances. The majority of the models
expose concurrent and asynchronous behavior. Except the “planning” model, state spaces
of the nets are finite. Even the infinite model was kept in order to demonstrate that
on-the-fly LTL model checking can sometime bear with infinite models: if the product is
finite or a counterexample is found in a finite subspace.

As for the specifications, a tool of the SPOT toolset was used to generate true (i. e., no
pure Boolean) LTL formulae with predefined atomic propositions. Atomic propositions
were generated based on the models: for every place of the smallest instance (those that
appear in instances of any size) two propositions requiring zero and nonzero token counts
were defined. SPOT generated 50 properties for every model class – instances of every
size were checked against these properties.

All in all, the 157 model instances and 50-50 properties gave a total of 7 850 benchmark
cases.

Generated LTL formulae

There are many categorizations of LTL formulae based on syntactic or semantic con-
siderations [40]. The generated LTL properties were also cathegorized by a tool of
SPOT. The following categories were used in the measurements.
• Safety properties (1 466 formulae): Specifies that something “bad” never happens.

In general, counterexamples of these properties consists of a finite prefix that
cannot be “fixed” with any suffix, i. e., the violation occurs in the prefix itself.
In LTL, they are usually in the form G ϕ.
• Guarantee properties (2 112 formulae): Specifies that something “good” is guar-
anteed to happen. Counterexamples for guarantees are “lasso” shaped, since they
have to describe an infinite behavior that fails to expose the desired property. In
LTL, they are usually in the form F ϕ.
• Obligation properties (4 975 formulae): Combination of safety and guarantee
properties. In LTL, they are usually in the form G ϕ1 ∨ F ϕ2.
• Pure eventuality formulae (1 620 formulae): If ϕ is a pure eventuality formula
and the path ρ models ϕ, then µρ also models ϕ, where µ ∈ S∗ is any finite
prefix. In other words, pure eventualities describe left-append closed languages.
• Pure universality formulae (1 620 formulae): If ϕ is a pure universality formula

and the path µρ models ϕ, then ρ also models ϕ, where µ ∈ S∗ is any finite
prefix. In other words, pure universalities describe suffix closed languages.

There some more complex and interesting categories that cannot be automatically
recognized by SPOT. For this reason, the category “not obligation” (2 875 formulae)

74

is used for such properties, including the following categories.

• Progress properties: Specifies that something “good” will keep happening again
and again. In LTL, they are usually in the form G F ϕ.
• Response properties: Specifies that a response will eventually be given to a certain
event whenever it occurs. In LTL, they are usually in the form G ϕ1 ⇒ F ϕ2.
• Stability properties: Specifies that a certain property will stabilize eventually. In
LTL, they are usually in the form F G ϕ.

As it turned out, the presented algorithm is not sensitive to the category of the checked
LTL property.

5.2.1 Tools and Inputs

The model checking algorithm presented in this thesis will be referred to as Hyb-MC. Due
to the optimized automata produced by SPOT, decomposition-based product computation
was used for the comparison.

As mentioned, the tools selected for comparison are NuSMV, nuXmv and ITS-LTL.
NuSMV is a traditional and well-established tool that has been used in the industry
for a long time. It has many options – in this evaluation, BDD-based symbolic model
checking were used (see Section 2.3 for algorithms). Although NuSMV tends to be better
for synchronous models, it has been heavily used in various domains, hence its impor-
tance. Its successor, nuXmv came out in early 2014 and has even more features. The
one used here is based on the IC3 algorithm (see Section 2.2). ITS-LTL is part of the
ITS toolset and uses saturation-based on-the-fly algorithms together with hierarchical set
decision diagrams (see Section 2.4.1 and [20]).

Unfortunately, PNML is not supported in any of the tools. Both NuSMV and nuXmv
consume models in their native SMV format, while ITS supports many types of models
and formats other than PNML. In case of NuSMV and nuXmv, PNML models were
translated to SMV by PetriDotNet, similarly to the approach discussed in [53]. Since ITS
accepts models in CAMI format (the native format of the tool CPN-AMI) and there exists
a standardized tool to convert between PNML and CAMI, this tool was used to generate
the input files to ITS.

In terms of the properties, both Hyb-MC and ITS-LTL uses SPOT to parse the formula
and transform it into a Büchi automaton. A small tool was implemented to transform
these formulae into the format of NuSMV and nuXmv.

75

5.2.2 Benchmark settings

Measurements were done on identical server machines with Intel Xeon processors (4 cores,
2.2GHz) and 8 GB of RAM. Hyb-MC and ITS-LTL were run on Windows 7, while NuSMV
and nuXmv were run on CentOS 6.5.

Timeout was set to 600 seconds. Runtimes were measured internally by every tool. In
case of Hyb-MC, the runtime includes the processing time of SPOT (transformation to
automaton) and the total runtime of the algorithm including its initialization, but not the
loading time of PetriDotNet. ITS-LTL also measured its runtime internally, also including
the runtime of SPOT and the algorithm. NuSMV and nuXmv can measure time by placing
special command in the input script. In case of these tools, only the actual runtime of
model checking was measured, omitting the time of loading the model and constructing
the binary model from the SMV input.

The decision diagram based tools (Hyb-MC, NuSMV and ITS-LTL) used the same variable
ordering produced by heuristics of the ITS toolset. Script 11 was used to produce a flat
ordering with each place encoded in a separate variable – this produced orderings that
every tool could parse and use. This way, the hierarchical features of ITS might not have
been fully exploited, but saturation-based algorithms in PetriDotNet can also be faster if
a variable can encode multiple places.

Approximately 40 days of processing time was spent on the evaluation.

5.3 Results

The following sections present some aspects of the results of the evaluation. Overall, 5
megabytes of data was collected and analyzed. Out of the successfully checked cases,
properties were fulfilled 2 811 times, while 3 565 cases gave counterexamples. In 1 474
cases, all the tools exceeded the time limit.

The whole benchmark and the analyzed results can be downloaded from the website3 of
PetriDotNet dedicated to [43].

5.3.1 Comparison of runtime results

The main emphasis of preliminary analysis was on the runtime results of each tool. The
runtime of Hyb-MC was compared to the corresponding runtime of the other tools. In
addition, simple state space generation with saturation was also done for each model
instance to prove that saturation is not the single reason of high performance – on-the-fly
model checking can finish much earlier than a simple state space generation.

3http://inf.mit.bme.hu/en/tacas15.

76

http://inf.mit.bme.hu/en/tacas15

Figure 5.1. Scatter plots comparing the runtime of tools and state space gen-
eration on individual benchmark cases.

Results can be seen on Figure 5.1. The four scatter plots show the comparison of Hyb-
MC to simple state space generation (SSG) with saturation and the three chosen tool.
Each dot represents a benchmark case. The horizontal and vertical axes measure the
runtime of Hyb-MC and the other tool, respectively. A dot above the diagonal line is
a benchmark case that Hyb-MC solved faster than the competitor. The borders of the
diagrams represent cases where one of the tools did not finish under the time limit. Cases
in which neither of the tools finished are not shown on this diagram.

As the top-left plot suggest, model checking with Hyb-MC is usually faster than simple
state space generation. The main cause of this is the algorithm’s on-the-fly operation and
efficient incremental operation (i. e., , a low degree of redundancy). There are also some
cases where state space generation could be finished, but model checking was unsuccess-
ful. These cases show that incremental operation and the presented optimizations cannot

77

always compensate the overhead of model checking complex properties.

Figure 5.2. Bar charts showing the relative performance of the selected model
checking tools.

78

Comparing to the other model checking tools, the vast majority of cases show the com-
petitiveness of the presented algorithm. Since the scales of the axes are logarithmic, the
distance of a dot from the diagonal indicate an exponential difference in the runtime of
the tools. This difference is visualized on Figure 5.2. The bar chart shows the quantity
tA/tB with a logarithmic horizontal axis, where tA and tB are the runtime of the compared
algorithms.

Figure 5.2 is colored to show the distribution of valid and invalid properties. Hyb-MC
is better than the other tools more often in refuting an invalid property than in proving
valid ones. This shows the efficiency of SCC detection algorithm compared to the other
approaches, but even valid cases show a decent speedup compared to any of the other tools,
justifying the product computation algorithm and the use of abstraction and recurring
states as a means to prove the absence of counterexamples.

Figure 5.3. Cumulative frequency diagram of the runtime results of each tool.

Another diagram on Figure 5.3 show the cumulative frequency of runtime results for each
tool. A point of the diagram shows how many of the cases finished with runtime under the
value of the horizontal axis, i. e., how many cases would have finished if the timeout was
set to a specific value. This diagram indirectly suggests the scalability of the algorithms.
The initial delay of Hyb-MC and ITS-LTL is due to SPOT building the Büchi automaton
from the LTL property.

It is interesting to note some specialities of the tools. ITS-LTL performed the best among
the chosen competitors, but it could outperform Hyb-MC in very few cases only. Since
it is also based on saturation and uses abstraction to perform on-the-fly model checking,
these results are the most significant among all the others.

Although NuSMV performed the worst of all competitors, it could beat Hyb-MC in more
cases and also more significantly than ITS-LTL. NuSMV is the oldest of all the tools and
is supposed to be better with synchronous models, so these cases deserve future attention.

79

Results of nuXmv are very different from results of the other tools. This is not surprising,
since it uses a SAT-based algorithm with different techniques and strengths. It is also the
one that outperformed Hyb-MC most of the times, it even managed to finished with many
cases that caused a timeout in Hyb-MC. It is also interesting to note that nuXmv proved
to be the only tool sensitive to the category of the checked property.

Analysis of runtime results measured on model families showed other interesting differences
in the scalability of the tools. NuSMV and nuXmv performed significantly better on models
where instances of the model scaled in the domain of state variables. On the other hand,
saturation-based tools Hyb-MC and ITS-LTL were much better on models that scaled in
the number of variables (components).

5.3.2 Efficiency of the presented techniques

During the measurements, Hyb-MC spent only 17% of the time computing SCCs. Overall,
359 084 symbolic fixed point computations were started, while abstraction and explicit
algorithms prevented 1.22 · 108 runs of symbolic SCC computation, 99.7% of all the cases.
90% of these cases were prevented by the absence of recurring states (as a first check),
while the remaining 10% were the cases where explicit runs on node-wise abstractions
managed to find even more evidence.

Cases
Time spent with Prevented Prevented by
SCC detection symbolic runs Recurring Abstraction

All 16.9% 99.7% 89.7% 10.3%
Valid 13.5% 99.7% 89.0% 11.0%
Invalid 19.6% 99.7% 91.3% 8.7%

Obligation 13.7% 99.7% 86.3% 13.7%
Not obligation 23.2% 99.7% 93.0% 7.0%
Echo (2D) 2.7% 100.0% 100.0% 0.0%

Erathostenes 65.9% 62.9% 19.0% 81.0%

Table 5.1. SCC detection statistics in different groups of cases.

Table 5.1 shows the discussed statistics in some interesting subsets of the benchmark cases.
Not surprisingly, Hyb-MC spends more time looking for SCCs in case of invalid properties.
The efficiency of recurring states and explicit search slightly varies, but not significantly.
The difference is greater between obligation and more complex formulae: complex prop-
erties (such as progress properties) require more time spent on SCC detection. The share
of recurring states and explicit search also varies a bit more.

Echo (2-dimensional instances) and Erathostenes are two extreme models in terms of time
spent on SCC detection. Echo was one of the hardest model for Hyb-MC, only 26% of all
the cases were solved in the 2-dimensional family, all of which were valid. The fact that

80

symbolic SCC detection was never called in these cases suggests that Hyb-MC fails here
in SCC detection. Erathosthenes, on the other hand, had all of its cases solved, and they
also were valid properties. In spite of this, almost two thirds of the time was spent on
computing SCCs. Explicit search also shows extremely high efficiency here, although the
percentage of prevented symbolic runs is the only value among the models that is under
90%.

81

Chapter 6

Summary

LTL model checking of asynchronous systems is a computationally difficult problem. Var-
ious techniques and algorithms were developed in the history to tackle the state space
explosion problem which is inherent in these systems, and to combat the complexity of
LTL model checking. This is also the context of this work: in this thesis, a new approach
for LTL model checking of asynchronous systems was presented. The new approach com-
bines recent advances from this field as saturation is used for traversing the possible states
of the system, while a modified version of the constrained saturation algorithm constructs
the synchronous product on the fly. A new incremental fixed-point algorithm computes
local model checking results from which the algorithm is able to decide the model checking
question. In order to decrease the number of symbolic fixed point computations, the thesis
introduces a scalable abstraction framework, which efficiently filters SCC computations
by using local model checking runs.

The thesis presented the following new algorithms:

• Two efficient on-the-fly synchronous product generation algorithms based on satu-
ration;

• An incremental fixed point computation algorithm for SCC detection;

• An abstraction technique to support inductive reasoning on the absence of SCCs;

• A unique hybrid model checking algorithm combining explicit state traversal with
symbolic state space representation.

As a theoretical result, the thesis also contains the proofs for the correctness of the pre-
sented algorithms.

The new algorithms were implemented in the PetriDotNet framework and extensive mea-
surements were conducted to examine efficiency. The tool was compared to industrial and
academic model checking tools. Although the implementation is only in the prototype

82

phase, it turned to be quite competitive and could solve more of the benchmarks cases
than any of its competitors.

The presented algorithm has a huge potential for future development. Following the
idea of driving the symbolic algorithm with explicit runs, a promising direction is to
combine partial order reduction with symbolic model checking. In addition, advanced
representations of the properties can also be used to further improve the speed of model
checking.

83

List of Figures

1.1 A simple finite Kripke structure with a left-total transition relation. 11

1.2 Petri net modeling the chemical reaction of hydrogen and oxygen. 12

1.3 Illustration of CTL operators. 15

1.4 Illustration of LTL operators. 17

1.5 A finite automaton. 21

1.6 Two automata and their synchronous product. 24

1.7 A generalized Büchi automaton with two acceptance sets. 25

1.8 Automata constructed by the algorithm of [30] for simple LTL formulae. . . 27

1.9 Steps of ω-regular model checking. 30

1.10 From binary decision trees to ROBDDs. 32

3.1 Three forms of a Büchi automaton corresponding to the LTL property [a R b]. 48

3.2 Example of a decision diagram encoding of a product state space. 49

3.3 Example of a decision diagram encoding of relaxed synchronous transitions. 50

3.4 Example of constraint corresponding to the tableau automaton of Figure
3.1(c). 52

3.5 Minimal Büchi automaton for the LTL formula [a U b] and its encoding as
a constraint. 56

4.1 Illustration of Algorithm 4.1. 61

4.2 Producer-consumer model with non-deterministic buffer. 67

4.3 The effect of the abstractions to the transitions 67

5.1 Scatter plots comparing the runtime of tools and state space generation on
individual benchmark cases. 77

84

5.2 Bar charts showing the relative performance of the selected model checking
tools. 78

5.3 Cumulative frequency diagram of the runtime results of each tool. 79

85

List of Algorithms

1.1 Saturate . 38

1.2 RelProd . 38

1.3 ConsSaturate . 39

1.4 ConsRelProd . 39

3.1 StepConstraint . 51

3.2 ProdSaturate . 55

3.3 ProdRelProd . 55

4.1 DetectSCC . 62

4.2 SaturateRec . 64

4.3 RelProdRec . 64

4.4 Saturate . 72

4.5 RelProd . 72

86

Bibliography

[1] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani. Partial-order
reduction in symbolic state-space exploration. Formal Methods in System Design,
18(2):97–116, 2001.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Proceedings of the 5th International Conference on
Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99, pages
193–207, London, UK, UK, 1999. Springer-Verlag.

[3] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is np-
complete. IEEE Trans. Comput., 45(9):993–1002, September 1996.

[4] Aaron Bradley. Understanding IC3. In Theory and Applications of Satisfiability
Testing – SAT 2012, number 7317 in LNCS, pages 1–14. Springer, 2012.

[5] Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An incremental
approach to model checking progress properties. In Proc. of the International Con-
ference on Formal Methods in Computer-Aided Design, pages 144–153, Austin, Texas,
2011. FMCAD Inc.

[6] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

[7] J. Richard Büchi. On a decision method in restricted second order arithmetic. In
Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr .), pages
1–11. Stanford Univ. Press, Stanford, Calif., 1962.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

[9] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alessandro Mariotti, Andrea
Micheli, Sergio Mover, Alberto Griggio, Marco Roveri, and Stefano Tonetta. The
nuXmv symbolic model checker. Technical report, Fondazione Bruno Kessler, 2014.

[10] G. Ciardo, G. Lüttgen, and A. Yu. Improving static variable orders via invariants. In
Jetty Kleijn and Alex Yakovlev, editors, Petri Nets and Other Models of Concurrency

87

– ICATPN 2007, volume 4546 of Lecture Notes in Computer Science, pages 83–103.
Springer, 2007.

[11] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 2619 of LNCS,
pages 379–393. Springer, 2003.

[12] G. Ciardo and R. Siminiceanu. Structural symbolic CTL model checking of asyn-
chronous systems. In Computer Aided Verification, volume 2725 of LNCS, pages
40–53. Springer-Verlag, 2003.

[13] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An effi-
cient iteration strategy for symbolic state space generation. In Tiziana Margaria and
Wang Yi, editors, Tools and Algorithms for the Construction and Analysis of Systems,
number 2031 in Lecture Notes in Computer Science, pages 328–342. Springer Berlin
Heidelberg, January 2001.

[14] Gianfranco Ciardo, Robert Marmorstein, and Radu Siminiceanu. The saturation
algorithm for symbolic state-space exploration. Int. J. on Softw. Tools for Technology
Transfer, 8(1):4–25, February 2006.

[15] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An
OpenSource tool for symbolic model checking. In Ed Brinksma and KimGuldstrand
Larsen, editors, Computer Aided Verification, volume 2404 of Lecture Notes in Com-
puter Science, pages 359–364. Springer, 2002.

[16] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic model
checking. In Computer Aided Verification, volume 1102 of LNCS. Springer Berlin,
1996.

[17] Edmund M. Clarke. The birth of model checking. In Orna Grumberg and Helmut
Veith, editors, 25 Years of Model Checking: History, Achievements, Perspectives,
pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2008.

[18] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop, pages
52–71, London, UK, UK, 1982. Springer-Verlag.

[19] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, Cambridge, MA, USA, 1999.

[20] Jean-Michel Couvreur and Yann Thierry-Mieg. Hierarchical decision diagrams to
exploit model structure. In Farn Wang, editor, Formal Techniques for Networked
and Distributed Systems - FORTE 2005, number 3731 in Lecture Notes in Computer
Science, pages 443–457. Springer Berlin Heidelberg, January 2005.

88

[21] Alexandre Duret-Lutz, Kaïs Klai, Denis Poitrenaud, and Yann Thierry-Mieg. Com-
bining explicit and symbolic approaches for better on-the-fly LTL model checking.
arXiv:1106.5700 [cs], June 2011. arXiv: 1106.5700.

[22] Alexandre Duret-Lutz, Kaïs Klai, Denis Poitrenaud, and Yann Thierry-Mieg. Self-
loop aggregation product – a new hybrid approach to on-the-fly LTL model checking.
In Automated Technology for Verification and Analysis, volume 6996 of Lecture Notes
in Computer Science, pages 336–350. Springer, 2011.

[23] Alexandre Duret-Lutz and Denis Poitrenaud. SPOT: An extensible model checking
library using transition-based generalized Büchi automata. In Proc. of the IEEE Int.
Symp. on Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems, pages 76–83, 2004.

[24] Rüdiger Ebendt, Görschwin Fey, and Rolf Drechsler. Advanced BDD optimization,
volume 282. Springer, 2005.

[25] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In Jaco de Bakker and Jan van Leeuwen, editors,
Automata, Languages and Programming, number 85 in Lecture Notes in Computer
Science, pages 169–181. Springer Berlin Heidelberg, January 1980.

[26] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In Proceedings of the 7th Colloquium on Automata,
Languages and Programming, pages 169–181, London, UK, UK, 1980. Springer-
Verlag.

[27] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited: On
branching versus linear time temporal logic. J. ACM, 33(1):151–178, January 1986.

[28] Kousha Etessami and Gerard J. Holzmann. Optimizing büchi automata. In CONCUR
2000 – Concurrency Theory, volume 1877 of Lecture Notes in Computer Science,
pages 153–168. Springer, 2000.

[29] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In Pro-
ceedings of the 13th International Conference on Computer Aided Verification, CAV
’01, pages 53–65, London, UK, UK, 2001. Springer-Verlag.

[30] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Proc. of the Int. Symp. on Protocol
Specification, Testing and Verification, pages 3–18. Chapman & Hall, Ltd., 1995.

[31] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996.

89

[32] Serge Haddad, Jean-Michel Ilié, and Kaïs Klai. Design and evaluation of a symbolic
and abstraction-based model checker. In Farn Wang, editor, Automated Technology
for Verification and Analysis, number 3299 in Lecture Notes in Computer Science,
pages 196–210. Springer Berlin Heidelberg, January 2004.

[33] Thilo Hafer andWolfgang Thomas. Computation tree logic CTL* and path quantifiers
in the monadic theory of the binary tree. In Thomas Ottmann, editor, Automata,
Languages and Programming, volume 267 of Lecture Notes in Computer Science,
pages 269–279. Springer Berlin Heidelberg, 1987.

[34] Alexandre Hamez, Yann Thierry-Mieg, and Fabrice Kordon. Hierarchical set decision
diagrams and automatic saturation. In Kees M. van Hee and Rüdiger Valk, editors,
Applications and Theory of Petri Nets, number 5062 in Lecture Notes in Computer
Science, pages 211–230. Springer Berlin Heidelberg, January 2008.

[35] Lom M. Hillah, Ekkart Kindler, Fabrice Kordon, Laure Petrucci, and Nicolas Treves.
A primer on the Petri Net Markup Language and ISO/IEC 15909-2. Petri Net
Newsletter, 76:9–28, 2009.

[36] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In
Proceedings of the Second SPIN Workshop, DIMACS Ser. in Discrete Mathematics
and Theoretical Computer Science, pages 81–89. AMS, 1997.

[37] Yonit Kesten, Zohar Manna, Hugh McGuire, and Amir Pnueli. A decision algorithm
for full propositional temporal logic. In Computer Aided Verification, volume 697 of
Lecture Notes in Computer Science, pages 97–109. Springer, 1993.

[38] Kaïs Klai and Denis Poitrenaud. MC-SOG: An LTL model checker based on symbolic
observation graphs. In Applications and Theory of Petri Nets, volume 5062 of LNCS,
pages 288–306. Springer, 2008.

[39] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16(1963):83–94, 1963.

[40] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[41] K. L. McMillan. Interpolation and SAT-based model checking. In Lecture Notes in
Computer Science, volume 2725, pages 1–13, 2003.

[42] Kenneth Lauchlin McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
1992. UMI Order No. GAX92-24209.

[43] Vince Molnár, Dániel Darvas, András Vörös, and Tamás Bartha. Saturation-based
incremental LTL model checking with inductive proofs. In Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer Science. To be
published, 2015.

90

[44] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[45] Peter Naur and Brian Randell, editors. Software engineering: report on a conference
sponsored by the NATO Science Committee, Garmish, Germany, 7th to 11th October
1968. Scientific Affairs Division, NATO, Brussels, Belgium, 1969.

[46] Doron Peled. All from one, one for all: On model checking using representatives.
In Proceedings of the 5th International Conference on Computer Aided Verification,
CAV ’93, pages 409–423, London, UK, UK, 1993. Springer-Verlag.

[47] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington,
DC, USA, 1977. IEEE Computer Society.

[48] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in CE-
SAR. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, International
Symposium on Programming, number 137 in Lecture Notes in Computer Science,
pages 337–351. Springer Berlin Heidelberg, January 1982.

[49] Philippe Schnoebelen. The complexity of temporal logic model checking. In Advances
in Modal Logic, volume 4, pages 1–44. King’s College Publications, 2003.

[50] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties
using induction and a sat-solver. In Proceedings of the Third International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’00, pages 108–125, London,
UK, UK, 2000. Springer-Verlag.

[51] Detlef Sieling. The nonapproximability of OBDD minimization. Inf. Comput.,
172(2):103–138, February 2002.

[52] Fabio Somenzi, Kavita Ravi, and Roderick Bloem. Analysis of symbolic SCC hull
algorithms. In Mark D. Aagaard and John W. O’Leary, editors, Formal Methods in
Computer-Aided Design, number 2517 in Lecture Notes in Computer Science, pages
88–105. Springer Berlin Heidelberg, January 2002.

[53] Marcin Szpyrka, Agnieszka Biernacka, and Jerzy Biernacki. Methods of translation
of petri nets to nusmv language. In CS&P, pages 245–256, 2014.

[54] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[55] Antti Valmari. Stubborn sets for reduced state space generation. In Proceedings of the
10th International Conference on Applications and Theory of Petri Nets: Advances
in Petri Nets 1990, pages 491–515, London, UK, UK, 1991. Springer-Verlag.

[56] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Faron
Moller and Graham Birtwistle, editors, Logics for Concurrency, volume 1043 of Lec-
ture Notes in Computer Science, pages 238–266. Springer Berlin Heidelberg, 1996.

91

[57] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2001, pages 1–22, London, UK, UK, 2001. Springer-Verlag.

[58] Chao Wang, Roderick Bloem, Gary D. Hachtel, Kavita Ravi, and Fabio Somenzi.
Compositional SCC analysis for language emptiness. Formal Methods in System
Design, 28(1):5–36, 2006.

[59] Yang Zhao and Gianfranco Ciardo. Symbolic CTL model checking of asynchronous
systems using constrained saturation. In Zhiming Liu and Anders P. Ravn, editors,
Automated Technology for Verification and Analysis, number 5799 in Lecture Notes
in Computer Science, pages 368–381. Springer Berlin Heidelberg, January 2009.

[60] Yang Zhao and Gianfranco Ciardo. Symbolic computation of strongly connected
components and fair cycles using saturation. Innovations in Systems and Software
Engineering, 7(2):141–150, 2011.

92

	Kivonat
	Abstract
	Introduction
	Background
	Modeling Formalisms
	Kripke structures
	Petri nets

	Temporal Logics
	CTL*
	CTL
	LTL

	Automata Theory
	Büchi automata
	Synchronous product of Büchi automata
	Generalized Büchi automata
	Transforming LTL expressions
	Language emptiness of Büchi automata

	Model Checking
	CTL model checking
	LTL model checking
	Symbolic model checking

	Decision Diagrams
	Reduced ordered binary decision diagrams.
	Multi-valued decision diagrams.
	Operations and notations

	Saturation
	Input model
	Symbolic encoding
	Iteration strategy
	Constrained saturation

	Related Work
	Explicit Techniques in Model Checking
	Explicit on-the-fly SCC computation
	Partial order reduction

	SAT-based Model Checking
	Decision Diagram-based LTL Model Checking
	Fixed point algorithms on decision diagrams

	Abstraction in LTL Model Checking
	Abstraction based on the automaton
	Abstraction based on components

	Saturation in Model Checking
	Fixed point algorithms using saturation

	Symbolic Computation of the Synchronous Product
	Tableau-based Product Computation
	Tableau automata
	Encoding the product automaton
	Investigation of correctness and efficiency

	Decompositions-based Product Computation
	Composing the transition relation of the product automaton
	Investigation of correctness and efficiency

	Checking language emptiness
	Lemma of Saturated State Spaces
	Incremental Symbolic SCC Computation
	Extensions to support fair SCCs

	Indicators of SCCs in the Product Automaton
	Recurring states during state space exploration
	Using abstractions to reason about emptiness

	On-the-fly Incremental Hybrid Model Checking of LTL Properties
	Recurring states in the fixed point computation
	Constraining the explicit search of abstractions
	SCC candidates in the fixed point computation
	Assembling the pieces – the full SCC detection algorithm

	Evaluation
	Implementation
	Benchmark Cases
	Tools and Inputs
	Benchmark settings

	Results
	Comparison of runtime results
	Efficiency of the presented techniques

	Summary
	List of figures
	List of algorithms
	Bibliography

