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Kivonat

Napjainkban a biztonságkritikus alkalmazásoknál és azokon kívül is egyre elterjedtebb a
formális módszerek, mint például a modellellenőrzés használata a minőség és megbízható-
ság növelése érdekében. Azonban a komplex rendszerek vizsgálata az erőforrások korlátos-
sága miatt nehéz feladatnak bizonyul. Emiatt számos új modellellenőrző algoritmus látott
napvilágot. Közülük egy a szaturációs algoritmus, amely kompakt adatreprezentációjának
és speciális iterációs stratégiájának köszönhetően igen hatékonynak bizonyult, különösen
aszinkron rendszerek vizsgálata esetén.

A szaturációs algoritmusnak létezik korlátos állapottér-felderítést megvalósító variánsa,
amely az ún. sekély problémák vizsgálata esetén ideális. Azonban az eddigi, ezen alapuló
korlátos modellellenőrző algoritmus csak neminkrementális módon (minden iterációban a
folyamatot teljesen újrakezdve) képes működni.

Diplomatervemben megvizsgálom a Petri-hálókon alapuló modellellenőrzés valamint a sza-
turációs algoritmusok elméleti alapjait. Áttekintem az ide vonatkozó szakirodalmat és
ez alapján a diplomatervemhez szükséges alapismeretek kivonatát, amely bemutatja a
modellellenőrzés, a Petri-hálók, a döntési diagramok és a szaturációalapú algoritmusok
alapjait.

Megvizsgálom továbbá a korábban publikált főbb szaturációalapú korlátos és nemkorlátos
állapottér-felderítő algoritmusokat, illetve modellellenőrzési megoldásokat. Áttekintem a
szaturációalapú algoritmusok közös vonásait, közös alapelveit, illetve a megvalósítás kihí-
vásait. Megvizsgálom ezeken kívül a különböző szaturációalapú megoldások újdonságait,
illetve olyan vonásait, amelyek segítségével a korlátos inkrementális modellellenőrző algo-
ritmusok megtervezhetők.

Munkám során két új, inkrementális modellellenőrző algoritmust terveztem meg (a „foly-
tató” és „kompaktáló” algoritmusokat), amelyek különböző módon képesek inkrementális
modellellenőrzést végezni. A megtervezett algoritmusokat implementáltam, majd méré-
sekkel hasonlítottam össze teljesítményüket különböző esetekre.
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Abstract

Nowadays, in safety critical and other applications the usage of formal methods, like
model checking is more and more common in order to increase the quality. However, the
analysis of complex systems is a difficult task due to the existing resource limitations. This
problem inspired many new model checking algorithms. One of them is the saturation-
based algorithm which used to be efficient, especially for asynchronous systems, thanks to
its compact data representation and special iteration strategy.

There exists a variant of the saturation-based algorithm that performs bounded state
space exploration, which can be efficiently used to detect shallow problems. Nevertheless,
the existing bounded model checker algorithm cannot run incrementally (therefore every
iteration will be restarted completely).

In my thesis, I examine the theoretical background of Petri-net-based model checking
and saturation-based algorithms: like model checking, Petri nets, decision diagrams and
saturation-based algorithms.

I examine the previously published saturation-based bounded and unbounded state space
exploration algorithms and model checking methods. I analyse the similarities and the
challenges of the saturation-based algorithms. Moreover, I examine the new ideas of the
algorithms and the properties that can be reused to be able to develop bounded incremental
model checking algorithms.

In my work I designed two incremental model checking algorithms (the “continuing” and
the “compacting” algorithms) which are two different ways to perform incremental model
checking. I have also implemented these algorithms and compared their performance by
measurements.
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Résumé

De nos jours, l’application des méthodes formelles, tel que le model checking, est de plus
en plus de courant dans le domaine de systèmes critiques, mais les ressources de calcul
limitées font l’analyse des systèmes complexes une tâche difficile. Ce problème a inspiré
de nombreux nouveaux algorithmes de model checking. L’un d’entre eux est l’algorithme
dit « saturation » qui est efficace, notamment pour les systèmes asynchrones grâce à sa
représentation compacte des données et sa stratégie d’itération particulière.

Il existe une variante de l’algorithme saturation qui effectue l’exploration de l’espace d’état
bornée qui peut être utilisée efficacement afin de détecter des problèmes à faible profon-
deur. Néanmoins, cet algorithme ne peut pas fonctionner de façon incrémentale, conduisant
toutes les itérations à être redémarrées complètement. Dans ce mémoire, j’étudie la théorie
du model checking des réseaux de Petri et des algorithmes saturation, comme le model
checking, les réseaux de Petri, les diagrammes de décision et les algorithmes basés sur la
saturation.

J’étudie les algorithmes bornés et non bornés déjà publiés pour explorer et vérifier les
espaces d’état basée sur la saturation. J’analyse les similitudes et les problèmes des al-
gorithmes basés sur la saturation. Puis, j’examine les idées nouvelles et les particularités
de ces algorithmes qui peuvent être réutilisées dans le développement des algorithmes du
model checking bornées incrémentielles.

Dans mon travail, j’ai conçu deux algorithmes de model checking (les algorithmes « conti-
nu/continuing » et « compactage/compacting ») qui sont deux manières différentes pour
effectuer du model checking incrémental. Également j’ai mis en œuvre ces algorithmes et
j’ai comparé leurs performances en terme de temps et de mémoire vive utilisée.
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Introduction

“Clearly, the need for reliable hardware and software systems is critical. As
the involvement of such systems in our lives increases, so too does the burden
for ensuring their correctness. Unfortunately, it is no longer feasible to shut
down a malfunctioning system in order to restore safety. We are very much
dependent on such systems for continuous operation; in fact, in some cases,
devices are less safe when they are shut down.” [20]

First cars had completely mechanic steering systems. Then power steering was introduced
to help the driver steer the vehicle. The new power steering systems are smarter and
smarter and nowadays computer-controlled electrical power steering systems are assembled
to the high quality cars. Also, there are working concept cars for the “steer-by-wire”
solutions, where the mechanic connection is eliminated between the steering wheel and
the wheels. And recently, Google (among others) introduced self-driving cars running
automatically in the traffic, without any human interaction.

Road transportation is not the only area where this trend can be observed. The focus from
human controlling and mechanic connections moves to computer controlling and electric
connections. Therefore the computers provide more and more critical functions and for
that reason, the need for high quality, error free systems is bigger than ever.

The quality of the hardware and software systems can be risen using various solutions.
One of the most spread of these solutions is the usage of formal methods, for example the
application of model checking formal verification method. (As the success of the formal
methods is the main motivation of my thesis, a longer introduction can be read below.)

My thesis focuses on a family of model checking algorithms, on the so-called saturation-
based algorithms. The saturation-based algorithms are model checking algorithms provid-
ing formal methods to verify the correctness of systems. These algorithms have already
proved their efficiency but that does not mean that they cannot be improved. The goal of
my thesis is to improve the bounded variants of saturation-based algorithms by enabling
them to work incrementally.
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Formal methods, formal verification – introduction and motivation

Formal methods are mathematical-based methods that can help to improve the quality of
the result of development.

A possible way to define formal methods is the following (quoted from the Encyclopedia
of Software Engineering [38]):

Definition 1 (Formal methods). Formal methods used in developing com-
puter systems are mathematically based techniques for describing system prop-
erties. [. . . ] A method is formal if it has a sound mathematical basis, typically
given by a formal specification language. This basis provides a means of pre-
cisely defining notions like consistency and completeness, and, more relevant,
specification, implementation, and correctness. �

We can view formal methods as a branch of mathematics that may have real world ap-
plications, but also we can think about it as a software or hardware engineering method
which aims to create better systems [36].

Formal methods are mainly used in the development of safety-critical systems (e. g., in
medical systems, transportation, nuclear power plants, etc.). In the case of systems which
can cause injury or death, the proof of correctness is extremely important. However,
formal methods are useful in other cases too. According to A. Hall [33], “Formal methods
should be used wherever the cost of failure is high.”. This includes safety-critical systems,
embedded systems (where the cost of software update is high), and systems used in large
quantity.

While Hall’s mentioned idea was written in 1990, we still cannot see in 2013 that formal
methods are used in every case when “the cost of failure is high”. A recent survey of J.
Woodcock et al. [52] shows an increasing usage of formal methods, but it is still not a
common part of the software or hardware development processes.

The field of formal methods is a controversial topic. There are plenty of common myths
about it and many people still do not believe in its usefulness [36]. While it is true that
formal methods do not solve all problems related to software and hardware engineering
and they have serious limitations, formal methods have proved their usability in many
cases.

Hall has written in [33] about the myth that formal methods are not usable in real, large
scale informatics projects. As the myth still stands in 2013, I would like to mention some
real world projects that used formal methods successfully.

Formal methods were used in the following projects:

• Météor metro line Météor (line 14) is a driverless automatic subway line (in Paris,
France) opened in 1998. The safety critical parts (the automatic pilot and signalling
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subsystem, called PA-SIG) were developed using B Method. No bugs were found
after the proof of the models during the integration tests, on-site tests or in operation
– even if no unit tests were performed. [4, 1] The B Method was used in other projects
related to the Paris subway as well. [37]

• ERTMS The safety logic (Logica Di Sicurezza, LDS) of the worldwide-used Level
2 European Railways Train Management System (ERTMS) was verified and vali-
dated using formal methods. This is a highly safety-critical system as it controls
the train spacing in the ERTMS, therefore it is responsible for keeping a secure dis-
tance between the trains. They used various verification techniques: bounded model
checking, temporal induction, CEGAR, and software model checkers [17]. Similar
problem has been verified by model checking in [39].

• Remote Agent The Remote Agent spacecraft control system was used by NASA
on the Deep Space 1 mission (launched in 1998, ended in 2001). This controller was
able to control the spacecraft without human supervision. A part of the controller
was modelled and verified by model checking.

Soon after the launching, a deadlock occurred in a non-verified component. Later, it
turned out that with the same model checking techniques they used for other parts,
this error could have been found before launching. [34]

• Intel processors Intel started to use formal verification in 1995. They started with
proving selected areas of CPUs that are new and providing complex functionality.
Since then, parts of the microcode are also verified. According to the reports of lead
CPU teams, “high quality bugs” can be found using formal methods [31]. And the
evolution of formal verification of CPUs is still going on: during the development
of the CoreTM i7 processors, the engineers of Intel used formal verification instead
of testing to check the execution engine of the CPU. This method proved that even
complex hardware systems can be handled by formal verification. Some bugs were
missed due to the incorrect formal specification or too late verification, but this is a
small amount compared to the former results [35].

• Nuclear power plants Formal methods were also involved in the development of
nuclear power plants. For instance, Rolls-Royce and Associates have applied formal
methods as early as 1988. After the formal verification, there was a testing phase,
but the majority of the new bugs were mistakes in the testing code. [8]

As it can be seen, there are multiple fields where formal methods can be applied success-
fully. The reader can find other examples in [8, 52].

One of the most spread formal verification method is the model checking. Model checking
enables us to determine whether given formalized requirements are fulfilled by a given
formalized model or not.

While in theory, model checking is a handful tool for system verification, in practice,
it faces a big problem: the scalability. Even the verification of relatively small systems
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can require enormous amount of time and memory, and the computation needs can grow
exponentially. This problem induces the development of newer and newer model checking
methods and this is the motivation of this thesis too: to improve the existing model
checking algorithms, to enlarge the set of analysable problems.

Structure of the thesis

This thesis is structured as follows. Chapter 1 overviews the necessary background, like
model checking, the used modelling languages and data structures. After, the saturation-
based techniques and former saturation algorithms are presented in Chapter 2. The main
contribution of my thesis starts from Chapter 3 where the new, incremental algorithms are
discussed. Chapter 4 is dedicated to the realization and implementation of the algorithms.
Finally, Chapter 5 shows measurements and evaluates the presented algorithms. Chapter 6
summarizes my work.

In the Appendix, the reader finds a table of symbols and abbreviations, the definition of
the models used for benchmarking, and the pseudocodes of the mentioned algorithms.

12



Chapter 1

Background

This chapter provides an introduction on the background of my thesis. As the goal of this
work is to improve the former saturation-based model checking methods, first I introduce
and overview the model checking as a technique (Section 1.1). Then, Section 1.2 describes
the Petri nets, the modelling method I used to formalize the input of the model checking.
Section 1.3 introduces several types of decision diagrams that are used as main data
structures and that have key roles in my algorithms.

This chapter contains translations from my earlier works written in Hungarian [21, 24, 25].

1.1 Model checking

Model checking is a formal verification technique for verifying finite state systems. This
method was first described by Edmund Clarke and Allen Emerson in [19], also in parallel
by Joseph Sifakis [46].

They combined the state space exploration and the temporal logic in order to be able to
verify concurrent programs against the given specification. In this method, a requirement
is checked on a given model, and the result is whether the model fulfils the requirement
or not.

Formally, the definition of model checking problem is as follows (from [18]):

Definition 2 (Model checking problem). Let M be a Kripke structure
(i. e., state-transition graph). Let f be a formula of temporal logic (i. e., the
specification or property to be checked). Find all states s of M such that
M, s � f . �

So basically, the goal is to find the {s ∈ S|M, s � f} set (where S is the set of possible
states in M , and the meaning of M, s � f is “the behaviour of the model M starting from
state s (as an initial state) satisfies the property f”).

13



Usually, the model checking problem is more specific, as the goal is to decide whether
f is true for the initial state s0 of the model M or not [20]. Therefore the question is:
s0

?
∈ {s ∈ S|M, s � f}1.

Formalisms. There are multiple formalism to express the model and the requirement.
In this thesis, I will use Petri nets (see Section 1.2) to express the models and CTL
(Computation Tree Logic, see Section 1.1.3) to express the requirements, as my goal is to
improve the existing Petri net-based CTL model checking methods.

Advantages and disadvantages. Model checking has some advantages and disadvan-
tages. The main advantages are the following [20]:

• This is an automatic method, the user does not need to have deep domain knowledge.

• If a requirement fails, it is often possible to find a counterexample which is a huge
help to identify and correct the problems.

However, there are some challenges in model checking, of which the most important is the
so-called state space explosion. This occurs when the analysed model is complex and its
state space contains enormous number of states. Edmund Clarke, one of the founders of
model checking has written in [18]:

“State explosion is a major problem. This is absolutely true. The number of
global system states of a concurrent system with many processes or complicated
data structures can be enormous. All Model Checkers suffer from this problem.
In fact, the state explosion problem has been the driving force behind much of
the research in Model Checking and the development of new Model Checkers.”

This high memory and computational need led to more and more sophisticated model
checking algorithms. There are multiple possible directions to create algorithms that
can handle more complex verification problems. Two of them will be introduced in the
following: symbolic model checking and bounded model checking. Basically, symbolic
model checking tries to lower the memory usage (and also the computational need) by
using compact data structures, while bounded model checking tries to reduce the size of
the explored part of the state space. These approaches can be combined: in my thesis,
my goal is to develop better bounded symbolic model checking algorithms.

1If multiple initial states exist, the question is more precisely the following: s0 ∩ {s ∈ S|M, s � f}
?
6= ∅.

14



1.1.1 Bounded model checking

A traditional approach for model checking consists of two phases: a state space exploration
phase and a temporal logic expression checking phase. In many cases, the exploration of
the full state space is not needed or not possible. Consider a reachability problem, in
other words, check the truth of the following: at least one state is reachable from the
initial state where p is true (in CTL: EF p). If p holds for a state which is reachable
within few intermediate states, it is unnecessary to explore the whole state space, as only
a small part of the state space (near to the initial state) is enough to decide the truth of
the formula.

The bounded model checking method allows us to check properties on a k-bounded part
of the state space. The k-bounded part of a state space is Sb,k = {s ∈ S|δ(s) ≤ k}, where
S is the set of states in the model and δ(s)− 1 is the least number of intermediate states
between state s and the (nearest) initial state s0 (or with other words, δ(s) is the minimal
distance from s0).

Within a given bound k, it is not sure that the given formula f can be evaluated. For
instance, if EF p is false for a given bound k, it means that there are no states within the
given bound that satisfies p. But we cannot answer, if there is such state outside bound
k or not. Therefore the bounded model checking has to be continued with a greater k
parameter until it will be true or the full state space will be explored, i.e. Sb,k = S. This
iterative workflow can be seen in Figure 1.1

k:=0
Check requirement

within bound k

Is result valid 

for the whole state 

space or is k ≥ the 

diameter of the full 

state space?

result

yes

k:=k+1
no

output:

result

input:

model,

requirement

Figure 1.1: Workflow of bounded model checking

1.1.2 Symbolic model checking

First model checking methods handled and stored each state individually. These are the
so-called explicit model checking methods. The main problem is their scalability: even
with modern computers, it is impossible to store large number (> 1010) of states in the
memory.
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In 1987, Ken McMillan “realized that by using a symbolic representation for the state
transition graphs, much larger systems could be verified” [18]. It led to the birth of
symbolic model checking. With symbolic techniques, it is possible to manipulate entire set
of states together, not just individual states.

First attempts used Binary Decision Diagrams (BDDs, cf. Section 1.3) to encode the
state space. With the help of decision diagrams, state spaces with the size of 1020 states
have become analysable by model checking [10]. (At that time, the explicit model checking
methods were not able to deal with state spaces containing more than 106 reachable states.)
As the BDD represents the state space symbolically, it can be much more compact than
the explicit representation.

Since then, multiple new approaches are invented. One of them is the saturation-based
algorithm, that will be discussed later in detail, in Chapter 2.

1.1.3 Computation Tree Logic

With atomic state propositions and Boolean operators, various properties of static models
can be expressed. But if the model is dynamic (e. g., in a Petri net, transitions can be
fired which modifies the current state of the model), in most cases the logical time (the
order of events) has to be expressed too. Using a temporal logic formalism, we can express
and examine the truth of logical expressions and their change during the time.

There are multiple existing temporal logic formalisms. Here, I will focus on the Compu-
tation Tree Logic (CTL) formalism. CTL was first introduced by Clarke and Emerson in
[27]. Later, it was influenced by the syntax of UB (Unified Branching Time logic, presented
in [5]). The final version of the CTL formalism can be found in [19].

CTL is a branching time logic, and it is interpreted over a computation tree which comes
from the branching semantics of the system. The definition of the computation tree is as
follows (based on [19]):

Definition 3 (Computation tree). Let M be a model with the set of states S and let
N be the set of possible state-state transitions in the model. A state path is a sequence of
states (s0, s1, . . . ) such that ∀i : (si, si+1) ∈ N . For any state s0 ∈ S, a computation tree
is a tree rooted at s0, where the nodes are representing states, and s→ t is an arc in the
tree iff (s, t) ∈ N . (Because computation tree is a tree, no cycles are allowed, therefore
multiple nodes can represent the same state. Moreover, the computation tree is often
infinite.) �

Informally, the computation tree with root s0 is the most compact tree that has the same
paths from root as the possible state paths starting from state s0 in the model.

The temporal expressions interpreted on the computation tree are the CTL formulas (or
state formulas). The formal definition of a CTL formula is the following (based on the
definition in [20]):
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Definition 4 (CTL formula). A CTL formula (state formula) can be defined by the
following rules:

• Every P atomic proposition is a state formula.

• If p and q are state formulas, then ¬p, p ∨ q, and p ∧ q are state formulas too.

• If p and q are state formulas, then X p, F p, G p, and p U q are path formulas.

• If s is path formula, then E s and A s are state formulas. �

The definition gives us the syntax of the CTL formulas, but the semantics need to be
defined too.

Semantics of CTL formula. The given definition permits eight possible operator pairs:
EX, EF, EU, EG, AX, AF, AU, AG. These are the “building stones” of the CTL formulas.
The intuitive semantics of these operator pairs are the following:

• EF p: p is true for at least one state on some (at least one) path,

• EG p: p is true for all states on some path,

• EX p: p is true for some next state,

• E[p U q]: p is true for a state on some path and for all intermediate states on those
path q is true,

• AF p: p is true for at least one state on all path,

• AG p: p is true for all states on all path,

• AX p: p is true for all next state,

• A[p U q]: p is true for a state on all path and for all intermediate states in all path
q is true.

Example 1. For example, M, s0 � EX p is true (formally: s0 ∈ {M, s0 � EX p}), iff there
is at least one successor state s1 of s0 in M such that s1 � p. Similarly, M, s0 � AX p is
true, iff for every successor states s1, s2, . . . of s0 holds: s1, s2, · · · � p.

The semantics can be intuitively visualized on computation trees as it can be seen in Fig-
ure 1.2. (Every subfigure shows a computation tree where the given CTL formula is true.)
The circles represent nodes in computation tree (which represent states). Black circles are
states where property p holds, grey circles are states where property q holds.
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AX p

E[pUq]

AF p

EX p EF p

Figure 1.2: Examples for CTL operators

For my current work, the informal definition of the CTL semantics is enough. Formal
definitions of Computation Tree Logic can be read for example in [16, 2].

The eight possible operator pairs are not independent from each other. All eight operator
pairs can be expressed from a well chosen set of three operator pairs. For instance, we can
express all operators using {EX,EU,EG} in the following way [15]:

• AX p ≡ ¬EX ¬p,

• AG p ≡ ¬EF ¬p,

• AF p ≡ ¬EG ¬p,

• A[p U q] ≡ ¬E[¬q U (¬p ∧ ¬q)] ∧ ¬EG ¬q,

• EF p ≡ E[true U p].

1.2 Petri nets

Petri net is a common modelling tool for system modelling and system analysis. Petri nets
have both graphical and mathematical representation, so they are useful for visualization
and analysis too.

Definition 5 (Petri net). An ordinary Petri net is a 5-tuple PN = (P, T,E,w,M0),
where:

• P = {p1, p2, . . . , pn} is a finite set of places,

• T = {t1, t2, . . . , tm} is a finite set of transitions (P ∩ T = ∅),
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Figure 1.3: Example Petri net

• E ⊆ (P × T ) ∪ (T × P ) is a finite set of edges,

• w : E → Z+ is the weight function assigning weights to edges,

• M0 : P → N is the initial token distribution (initial marking) [41]. �

Dynamic behaviour. The dynamic behaviour of the Petri net is determined by the
firing of transitions. The rules of firing are the following [41]:

• A transition t ∈ T is enabled, iff ∀p ∈ {p′|∃(p′, t) ∈ E} : M(p) ≥ w(p, t) (where
M(p) is the current marking of place p). In other words: a transition t ∈ T is
enabled, iff for every input place there are at least as many tokens as the weight of
the corresponding incoming edge.

• The firing of an enabled transition t is nondeterministic.

• If the enabled transition t fires, it decreases the number of tokens for every incoming
place p′ by w(p′, t) and increases the number of tokens for every outgoing place p′′

by w(t, p′′).

Graphical representation. Graphically, a Petri net is a directed, weighted bigraph,
where the two vertex sets are T (transitions) and P (places). Transitions are represented
by rectangles, places are represented by circles. The tokens are shown as dots inside the
places.

Example 2. Figure 1.3 shows a Petri net that models a simple chemical process [41].
There are two transitions (t1 and t2) and three places (H2, O2, and H2O) in the Petri
net. In Figure 1.3(a), only the transition t1 is enabled. Firing the transition t1 changes
the state of the net to the state in Figure 1.3(b). In this new state, both transitions t1 and
t2 are enabled.
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Extension with inhibitor edges. The ordinary Petri nets can be extended with in-
hibitor edges. An inhibitor edge is a special edge in a Petri net which can disable the firing
of a transition.

Definition 6 (Petri net extended with inhibitor edges). The Petri net extended
with inhibitor edges is a tuple PNI = (PN, I, wI), where:

• PN is an ordinary Petri net,

• I ⊆ (P × T ) is a finite set of inhibitor edges,

• wI : I → Z+ is the weight function assigning weights to inhibitor edges. �

The firing rule is also modified: ∀(p, t) ∈ I : if M(p) ≥ wI(p, t) then transition t is not
enabled. This extends the expressive power of Petri nets, but the analysis of these nets can
be much more difficult, therefore some analysis methods does not apply for these models
[11].

1.3 Decision diagrams

The usage of multivariable functions is common in many fields, thus finding a way to rep-
resent them well is widely needed. The easiest representation method is the application
of the binary decision trees providing a representation of Boolean functions. This repre-
sentation is quite straightforward but it is not compact enough for storing or representing
larger functions.

1.3.1 Binary Decision Diagrams

In 1986, Randal Bryant introduced an efficient representation for the binary functions
f(xn, . . . , x1) → {0, 1} (where x1, . . . , xn ∈ {0, 1}) [9] called binary decision diagram. Its
definition is the following:

Definition 7 (Binary Decision Diagram). A binary decision diagram (BDD) is a di-
rected acyclic graph (DAG). This graph has two types of nodes in the vertex set (V ):
terminal and nonterminal nodes. Every nonterminal node v ∈ V has two outgoing edges
pointing to two children nodes: to v[0] = low(v) ∈ V and to v[1] = high(v) ∈ V . Also,
every nonterminal v has a level number too: level(v) ∈ Z+. For every nonterminal v,
level(low(v)) < level(v) and level(high(v)) < level(v). There are also exactly two termi-
nal nodes, 0 = w0 ∈ V and 1 = w1 ∈ V . Similarly to nonterminal nodes, the terminal
nodes have level numbers: level(w0) = level(w1) = 0. The terminal nodes have binary
values too: value(w0) = 0, value(w1) = 1. We call w0 = 0 as terminal zero and w1 = 1
as terminal one.

Every BDD has a root node which is on the highest level (top level). On this level, the
root node is the only node. �
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(a) Decision tree (b) Binary decision diagram

Figure 1.4: Encoding a binary function

The BDD formalism has several advantages: it is efficient (can be a compact representa-
tion), easy to handle and general (not tied particularly to one model checking method)
[6].

Semantics of BDDs. A v-rooted BDD represents the following fv function [9]:

• If node v is terminal, fv = value(v).

• If node v is nonterminal,

fv(xn, . . . , x1) = xlevel(v) · flow(v)(xn, . . . , x1) + xlevel(v) · fhigh(v)(xn, . . . , x1)

Graphical representation of BDDs. The nonterminal nodes of BDDs are represented
by circles, and the terminal nodes with squares. The squares of terminal nodes contain
the value of the terminal nodes. Edges from v ∈ V to low(v) are drawn with dotted lines,
edges from v ∈ V to high(v) are drawn with solid lines.

Example 3. In Figure 1.4(b), we can see a binary decision diagram (BDD) encoding
function f(x3, x2, x1) which is true (formally: which assigns 1) for the following 3-tuples:
(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1). For instance, f(0, 1, 1) = 1, but f(0, 0, 0) = 0.
(Note: this BDD is not in a canonical format, therefore it is not in its most compact
form.)

The binary decision tree in Figure 1.4(a) encodes the same function f . In this case, it can
be seen that the BDD representation is more compact than the decision tree.

1.3.2 Multivalued Decision Diagrams

The multivalued (or multiway) decision diagram (MDD) is an extension of the previously
introduced BDD. In the case of MDDs, the variable xi of the encoded f(xn, . . . , x1) →
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{0, 1} function can have values from a finite domain Di, not only from the binary
domain ({0, 1}) as in a BDD. In other words, for every variable xi, xi ∈ Di =
{di,0, di,1, . . . , di,|Di|−1}. Without loss of generality, we can use integer domains, thus
for every xi, I will use domains Di = {0, 1, . . . , |Di| − 1}.

Structure. In MDDs —analogous to BDDs— , there are terminal and nonterminal
nodes. The terminal nodes are the same in MDDs: terminal zero and terminal one.
Contrarily, the nonterminal nodes are different. Every nonterminal v ∈ V has |Dlevel(v)|
outgoing edges pointing to nodes v[0], . . . , v[|Dlevel(v)| − 1].

Obviously, every BDD is a special MDD, where Di = {0, 1} for every i ∈ {1, . . . , n}.

The semantics of MDDs are also similar to BDDs. I will discuss it in details after the
introduction of canonical MDDs.

Graphical representation. As in the case of BDDs, we represent the nonterminal
nodes of MDDs with circles, and the terminal nodes with squares. The squares of terminal
nodes contain the value of the terminal nodes. The edge from v ∈ V to v[i] is drawn with
solid line and labelled with the number i.

Canonical MDDs. For easier handling and representation, there are some canonical
forms of MDDs.

• In a canonical MDD, there are no duplicated nodes on the same level. If for v, w ∈ V ,
level(v) = level(w) and ∀i ∈ Dlevel(v): v[i] = w[i], then v = w.

• A quasi-reduced MDD (QMDD) is a canonical MDD, where is no level skipping. In
other words, level(v)−1 = level(v[i]) for every i ∈ Dlevel(v) and for every nonterminal
node v.

• In a fully-reduced MDD, there are no duplicated nodes (but level skipping is possible,
thus it is possible to be true for some v and i: level(v[i]) < level(v) − 1). If ∀i ∈
Dlevel(v) ∪Dlevel(w): v[i] = w[i], then v = w.

The definition of the semantics of the general MDDs would be complex. As the algorithms
in this thesis only use QMDDs, only the semantics of this subclass will be defined here.

Semantics of QMDDs. First —for shorter representation— let v[ik, ik−1, . . . , i1] de-
note (· · · ((v[ik])[ik−1]) · · · )[i1] = v[ik][ik−1] . . . [i1].

The v-rooted quasi-reduced MDD representing function fv has the following meaning:

fv(xn, . . . , x1)
∣∣
xn=in,...,x1=i1 = fv(in, . . . , i1) = 1⇔ value(v[in, . . . , i1]) = 1
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Figure 1.5: Multivalued decision diagram

Below and above operators. The set of tuples encoded by lower subgraph of node v
is marked with B(v) (“below”). Formally: for a node v on level k, (ik, . . . , i1) ∈ B(v) ⇔
v[ik, . . . , i1] = 1.

Similarly the “above” operator can be introduced: in a decision diagram rooted at r (on
level K), for a node v on level k: (iK , . . . , ik+1) ∈ A(v)⇔ r[iK , . . . , ik+1] = v [13].

It is trivial that B(r) = A(1) for a decision diagram rooted at r. In addition, for any node
p on a path from the root r to the terminal node 1, the set encoded by p is A(p)× B(p).

Example 4. In Figure 1.5, we can see an MDD encoding function f(x3, x2, x1) which is
true for the following 3-tuples: {(0, 2, 1), (1, 0, 0), (1, 1, 1), (1, 2, 0)} = A(1) = B(r) (where
r is the root node of the MDD).

Operations on QMDDs. As a node in an MDD (with its subgraph) encodes a set,
we can define operations on MDDs similarly to the common set operations. The result of
the MDD operations are the same as the result of the corresponding set operations on the
encoded sets.

The union of nodes v and w (taking place on the same level: level(v) = level(w)) is the
following:

v ∪ w =
{
v ∨ w if level(v) = level(w) = 0
z else, where z[i] = v[i] ∪ w[i] for all i ∈ Dlevel(v)

Similarly to the traditional Boolean logic, if v and w are terminal nodes, v ∨ w = 0 ⇔
value(v) = value(w) = 0.
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The intersection of nodes v and w (taking place on the same level: level(v) = level(w))
is the following:

v ∩ w =
{
v ∧ w if level(v) = level(w) = 0
z else, where z[i] = v[i] ∩ w[i] for all i ∈ Dlevel(v)

Similarly to the common Boolean logic, if v and w are terminal nodes, v ∧ w = 1 ⇔
value(v) = value(w) = 1.

The union/intersection of two QMDDs is the same as the union/intersection of their root
nodes.

1.3.3 Edge-valued Decision Diagrams

This section is based on [14]. The edge-valued decision diagrams (EDDs) are extended
MDDs, introduced in [14]. (Note: the authors of [14] call this decision diagram type
as EV+MDD. I will use the simpler name EDD instead.) With the help of the EDDs,
functions f(xn, . . . , x1) → N ∪ {∞} can be represented. For that reason, we assign labels
to every edge in the EDD. Therefore the ith children of a node v is a v[i] = 〈s, w〉 tuple,
where w is a node, and s ∈ N ∪ {∞} is a label assigned to the corresponding edge.

Definition 8 (Edge-valued decision diagram). An EDD is a (V,E) directed graph,
where:

• V = V ′ ∪ {⊥}, where ⊥ is the only terminal node, every other v ∈ V ′ nodes are
nonterminal nodes. (⊥ /∈ V ′)

• Every node v has a level number denoted by level(v). The level of the terminal node
is zero: level(⊥) = 0. For all v ∈ V ′ : level(v) > 0.

• Every nonterminal node v on level l has |Dl| outgoing edges, pointing to
v[0].node, . . . , v[l − 1].node.

• Every edge has a label s ∈ N ∪ {∞}. The label of the ith edge of node v is denoted
by v[i].label.

• The EDD has a root node r on the top level. On this level, there are no other nodes.

• The root node r has a “virtual” ingoing edge with a label ρ assigned to it. This ρ
value is the so-called dangling edge weight. [14] �

Note: if v[i].node = w and v[i].label = s, we can also denote it as v[i] = 〈s, w〉.

Definition 9 (Canonical EDD). An EDD is canonical if for every v ∈ V ′ there is at
least one edge labelled with zero [14]. �
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Definition 10 (Quasi-reduced EDD). An EDD is quasi-reduced if it is canonical, there
are no duplicates on a level (If level(v) = level(w) and ∀i ∈ Dlevel(v): v[i] = w[i], then
v = w.), and for every v ∈ V ′ every outgoing edge points to node on level level(v)− 1 [14]
(there is no level skipping). �

Semantics of EDDs. The r-rooted EDD represents the following f(xn, . . . , x1) func-
tion:

f(in, . . . , i1) = s⇔ r[in] = 〈sn−1, vn−1〉,

vn−1[in−1] = 〈sn−2, vn−2〉,

. . . ,

v1[i1] = 〈s1,⊥〉,

s = s1 + . . .+ sn−1 + ρ

Graphical representation. A node of an EDD is often visualized as a rectangle with
k slots, if the node has k outgoing edges. For each node, the ith outgoing edge starts from
the ith slot of the node. The label of this ith edge is shown in the ith slot of the node.
The zero-valued dangling edges and the edges with ∞ labels are omitted.

Example 5. The Figure 1.6 shows an EDD encoding the function f(x2, x1). For this
function, f(0, 0) = 0 + 0 = 0, f(0, 1) = 0 + 3 = 3, f(1, 0) = 1 + 1 = 2, etc.

0 1 2 4

1⊥

0 3 1 0

Figure 1.6: Edge-valued decision diagram
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Chapter 2

Saturation

This chapter introduces the basic idea of the saturation techniques and the former
saturation-based algorithms. First, a brief overview of the saturation techniques can be
found in Section 2.1. The common base of all saturation-based algorithms is discussed
in Section 2.2. Section 2.3 is dedicated to the challenges common for all the saturation
algorithms. Then the main, specific saturation-based algorithms are introduced: the un-
bounded state space exploration algorithms (Section 2.4), the unbounded CTL model
checking algorithms (Section 2.5), the bounded state space exploration algorithms (Sec-
tion 2.6), and the bounded CTL model checking algorithms (Section 2.7). It has to be
noted that we implemented all presented algorithms in our PetriDotNet analysis frame-
work [55]1.

2.1 Overview of the saturation-based algorithms

This section provides a general overview of the saturation algorithm (its definition, data
structures and advantages). There are multiple saturation algorithms for different pur-
poses, they will be introduced later in this chapter.

Saturation is a symbolic model checking method introduced in [12] by G. Ciardo et al.
The former symbolic methods were typically efficient for synchronous systems. The aim
of saturation is to provide a symbolic model checking solution which works well for asyn-
chronous systems.

This algorithm can be efficient thanks to its special iteration strategy and to the applied
data structures that decrease the small peak memory consumption and it represents the
state space in a compact form.

1All the presented algorithms are implemented by Attila Jámbor and myself.
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2.1.1 Definitions of model and states

Saturation works on an abstract discrete-state model, defined as follows. (The following
definitions are from [15, 12, 54, 47].)

Definition 11 (Discrete-state model). A discrete-state model is a (Ŝ,S init, E ,N ) tu-
ple, where:

• Ŝ is the potential state space,

• S init ⊆ Ŝ is the set of initial states (usually |S init| = 1 for Petri nets),

• E is the set of events,

• N : Ŝ → 2Ŝ is the next-state function, describing which states can be reached from
a given state in a single step. �

Dynamic behaviour of the model. A model has a current state s in every moment.
Initially, s ∈ S init. The current state can be modified by the firing of events. Next-state
function N describes which state-state transitions are allowed in the model.

Decomposition. The saturation algorithm works on a decomposed model. The model
must be decomposed into K submodels. Each submodel has local states encoded by
integers. The local state space of the ith submodel is marked with Si. Therefore, the
potential state space of the model is Ŝ = SK×· · ·×S1. A global state in the discrete-state
model is a K-tuple of local states, i. e., i = (iK , . . . , i1).

The next-state function can be decomposed to: N =
⋃
α∈E Nα, where Nα is the next-state

function of the event α. This is common in the analysis of asynchronous systems [13].

Reachable state space. The (reachable) state space S of a model is the set of reachable
states from the initial states. Formally: S = S init∪N (S init)∪N (N (S init))∪· · · = N ∗(S init).
(Note that S ⊆ Ŝ, because Ŝ = SK×· · ·×S1 and for every global state i = (iK , . . . , i1) ∈ S,
∀k : ik ∈ Sk.)

2.1.2 Data structures

It is important to store the parts of the discrete-state model efficiently. Nearly all variants
of the saturation method use decision diagrams to store the state space S and the next-
state function N . This section shows, how the different necessary elements encoded and
stored.
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Encoding state spaces. As the state space is a set of global states, and the global
states are K-tuples, it is possible to use Multivalued Decision Diagrams (MDDs) to store
the state space.

To store the state space of a model decomposed into K submodels, we need an MDD with
K + 1 levels (K nonterminal levels and 1 terminal level). For the sake of simplicity, the
saturation algorithms use quasi-reduced MDDs to store the state space. Each level in the
MDD is assigned to a submodel. If the ith submodel has local state space Si, the MDD
nodes on level i have |Si| outgoing edges towards level i− 1 (i. e., |Di| = |Si|).

After encoding, the (reachable) state space S contains the global state i = (iK , . . . , i1) if
and only if for the v-rooted MDD representing S: value(v[iK , . . . , i1]) = 1.

Example 6. This example shows the state space of the model in Figure 1.3 encoded by de-
cision diagram. First, Figure 2.1(a) shows the partitioning of the model: the first submodel
contains places H2 and O2, the second submodel contains the place H2O.

Figure 2.1(b) and 2.1(c) shows the local states of the submodels. In the tables, ij represents
a local state of the jth submodel. The order of the local states is not important, the only
restriction is that the initial state is always the local state 0.

After the partitioning and encoding of local states, the set of reachable states (S) can be
expressed by an MDD as it can be seen in Figure 2.1(d). The following global states (i2, i1)
are reachable: {(0, 0), (1, 2), (2, 1)}.

Encoding next-state functions. As can be read earlier, the next-state function is a
function N : Ŝ → 2Ŝ . But also it can be interpreted as a set too: j ∈ N (i) ⇔ (i, j) ∈ N .
Therefore, the next-state function can also be stored as an MDD. Because the items of
this “set” contains pairs of K-tuples, the representing MDD has to have 2K+1 levels (2K
nonterminal and 1 terminal level).

To be able to exploit the locality of events, it is common to assign MDD levels to submodels
in an interleaved way. Let be the levels of the MDD numbered with K,K ′, . . . , 1, 1′, 0,
where K, . . . , 1 levels correspond to “from” states and K ′, . . . , 1′ correspond to “to” states.
In this way, for the v-rooted MDD encodingN : (i, j) ∈ N ⇔ value(v[iK , jK , . . . , i1, j1]) = 1
(assuming that i = (iK , . . . , i1), j = (jK , . . . , j1)).

The next-state function can be split into multiple partitions to optimize the storage. For
instance, we can store the next-state functions of each event separately (Nα for each
α event). In this way, the global function N can be produced using the union MDD
operation: N =

⋃
α∈E Nα. (These are the disjunctive partitions of the function.)

Note: some saturation methods use matrices (so-called Kronecker-matrices) instead of
decision diagrams to store the next-state function [13]. In this thesis, I will only use
decision diagrams to encode next-state functions, as our former experiments showed better
results with MDDs, furthermore it is a more general way to represent the next-state
functions [25].

28



H2

O2

H2O

2
2

t1

2
2

t2

Submodel 1 Submodel 2
(a) The partitioned model

i1 M(H2) M(O2)
0 4 2
1 2 1
2 0 0

(b) Local state encoding in
submodel 1

i2 M(H2O)
0 0
1 4
2 2

(c) Local state encoding
in submodel 2

0 1

1

2

20

level 2

level 1

terminal level

(d) Set of reachable states, encoded by MDD
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Relational product. If the next-state function is encoded by an MDD, it is useful to
introduce a new operator: the relational product operator. Formally this operator is the
following [16]:

Definition 12 (Relational product operator). Let X be a set of (i, j) pairs and let
Y be a set. RelProd(X ,Y) = {j : (∃i)(i, j) ∈ X ∧ i ∈ Y}. �

This operator is used to compute the successor states of a given set of states. Let S ′ be
a set of states encoded by an MDD (with K nonterminal levels) and N the next-state
function encoded by an MDD with 2K nonterminal levels. The successors of states in S ′

are RelProd(N ,S ′).

Events. Events are the concepts of the higher level modelling formalisms and we use
them to exploit locality.

Definition 13 (Independent event). An event α is independent of the submodel k, if
for every state i = (iK , . . . , i1) the enabling of α does not depend on ik and its firing will
not modify ik. Formally: ∀i = (iK , . . . , i1) : ∃j = (jK , . . . , j1) ∈ Nα(i)⇒ jk = ik. �

The submodel k belongs to the support set of event α (denoted by supp(α)), if α is
not independent of submodel k. Top(α) = max supp(α) denotes the maximal numbered
submodel in supp(α) and Bot(α) = min supp(α) denotes the minimal numbered submodel
in supp(α) (i. e., Top(α) is the highest and Bot(α) is the lowest level on which the event α
depends). Evidently, 1 ≤ Bot(α) ≤ Top(α) ≤ K. In the following, Ek depicts the events
with Top = k (formally, Ek = {α ∈ E|Top(α) = k}).

Connection between Petri nets and global states. The introduced discrete-state
model is a high-level view of a model. Petri nets can be regarded as discrete-state models
too. Let P be the set of places in a Petri net. This set can be partitioned into K disjoint
subsets: P1, . . . , PK . Each set Pi with the connected edges and transitions represent
a submodel in the discrete-state model. The local states spaces (Si) are the possible
combination of markings, encoded by integers.

Note that the contents and the ordering of the Pi subsets can have a huge effect on the
run time and memory consumption of the saturation algorithm.

The transitions of a Petri net can be regarded as the events of the discrete-state model
(E = T ).

The initial state (S init) is the global state of the net with the initial marking assigned. For
Petri nets, |S init| = 1 as there is only one single initial state.

Regarding this, it is easy to see that saturation-based methods working on discrete-state
model can be applied to Petri nets. Also, it justifies, why Petri nets can be used as models
for model checking.
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2.1.3 Advantages of saturation

In this section, the main advantages of saturation are introduced.

• Symbolic technique As saturation is a symbolic technique, it benefits from the
advantages of symbolic techniques: the compact state space representation and the
ability to operate on large set of states together.

• Minimizing peak memory consumption Generally, the symbolic methods can store
the state space in a compact form, but usually the peak memory consumption during
the exploration is higher than the final state space. The saturation iteration strategy
and its partitioned next-state function help to keep the peak memory consumption
low [13].

• Not required to know possible local state spaces (Sk) a priori One of the strength
of the saturation algorithm is that it does not need to know the local state spaces a
priori. Instead, it uses an on-the-fly local state space exploration, which extend the
applicability of the algorithm [13]. (This property of the saturation will be discussed
in details later.)

2.2 The background of saturation

As it was stated before, the saturation-based algorithms use decision diagrams to encode
the set of explored global states of the model. Therefore a node with its subgraph in the
state space decision diagram represents a set of states of some submodels. (The set of
states represented by node v and its subgraph is denoted by B(v), as stated earlier.)

The most important definition related to the saturation-based algorithms is the definition
of the saturated node:

Definition 14 (Saturated node). A decision diagram node v is saturated “if it encodes
a set of states that is a fixed point with respect to the firing of any event at its level or at
a lower level”, i. e., if B(v) = N ∗≤level(v)(v) holds [12]. �

There are two important consequences of this definition. First, if v is saturated, all node in
its subgraph have to be saturated too. Second, if the root node r of the decision diagram
is saturated, the diagram encodes B(r) = N ∗(r), therefore it encodes a fixed point of the
initial state(s), which is equivalent to the reachable state space S = B(r).

Therefore, the goal of saturation is to saturate the root node of the state space, and for
that reason, the lower nodes have to be saturated too recursively.
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Informal iteration order. Informally, the following tasks have to be done in order to
explore the state space [16]. (Reminder: Ei means the set of events e such that Top(e) = i,
i. e., Ei = {e ∈ E|Top(e) = i}.)

• Build the decision diagram encoding of initial state(s) S init of the model.

• Saturate nodes on level 1: fire all events in E1 on them.

• Saturate nodes on level 2: fire all events in E2 on them. If it creates new nodes on
level 1, saturate them immediately.

• . . .

• Saturate nodes on level k: fire all events in Ek on them. If it creates new nodes on
level i (1 ≤ i < k) , saturate them immediately.

• . . .

• Saturate the root node on level K: fire all events in EK on it. If it creates new nodes
on level i (1 ≤ i < K) , saturate them immediately.

This iteration order is implemented by multiple functions. Basically, all saturation-like
algorithm consists of four functions (methods), as follows (based on [13]).

SatRecFire This method fires a given event α on a given node p.

First, it computes the possible successor states of B(p) reachable in one step (by
calling SatRecFire recursively). Then, it saturates the built node. So basically this
method performs the RelProd(B(nα),B(p)) operation (where nα is the node of the
Nα relation corresponding to p) and saturates every new node.

After that, the result of this method will be a new decision diagram subgraph that
encodes the following: N ∗≤level(p)(Nα,≤level(p)(B(p))) which is a fixed point of the
possible successor states.

SatFire This method fires a given event α exhaustively on a given node p. It fires α
on all lower nodes by using SatRecFire. The SatFire function uses a method called
“chaining”: if the firing of α resulted a local state j from that α is still fireable, it
will be fired too using SatRecFire.

As a result of SatFire, node p will be updated to encode N ∗≤level(p)−1(N ∗α(B(p))), in
other words, the modified p will encode all states reachable from the given p by firing
α.

It is important to note that SatFire can find new reachable states by firing the
same event α again after invocation SatFire with other events on the same node p.
Therefore multiple SatFire calls might be needed to explore all reachable states with
the same event α on the same node p. (The function Saturate takes care of it.)
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Saturate The Saturate method saturates a node p by firing all events e such that
Top(e) = level(p). (It is not necessary to fire the events with Top(e) < level(p),
because they cannot affect p.) If firing of any event e resulted a new state, all events
e′ ∈ Elevel(p) will be fired once again, because other events can be enabled in the new
state (from the updated node p).

After Saturate method, the given node p will be saturated. In other words, this
method computes N ∗≤level(p)(B(p)).

Generate The Generate method builds the decision diagram encoding the initial state
(assuming that S init = {s0}) and saturates the nodes of initial state in bottom-up
order.

The result of Generate method will be a decision diagram that encodes the reachable
state space S, which is the goal of state space exploration.

2.3 Challenges

The basic idea of saturation was introduced in Section 2.2, but there are some further
challenges:

1. The decision diagram encoding the state space must be kept in a quasi-reduced form.

2. As the algorithm recursively calls SatRecFire methods on nodes of a decision dia-
gram, the method can be called on the same node several times. As the result will be
the same each time, this calculation is unnecessary. Furthermore, it can introduce
exponential number of redundant method calls.

3. This introduction assumed that the possible local states and the next-state functions
Nα of each event α are known a priori. However, in most cases it is not true. For
example, in a Petri net, the maximal amount of tokens that can be contained by
a specific place is not known trivially from the model itself without state space
exploration.

The solutions given to these problems can be read in the following. Note that the solutions
are not my own work, they were introduced by Ciardo et al. [12, 13] as they are necessary
to implement every saturation-based method.

Keeping the decision diagram in quasi-reduced form. The first problem can be
solved easily. To ensure the quasi-reduced form, before inserting a node v to the level k,
the uniqueness of v must be checked. For that reason, for every level k, the set of nodes
(“unique table” of nodes) are maintained. If there is a node v′ already inserted to the
unique table of this level, the node v will be substituted by v′ and it will not be inserted
again.
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Thus a method called CheckIn(v) is used to insert node v to the decision diagram. If
there is already a node v′ in the unique table such that B(v) = B(v′), the CheckIn method
returns v′. Otherwise, it inserts v to the unique table and returns the same v. [12, 13]

There is another problem connected to the quasi-reduced diagrams. If a node z encodes
empty set (B(z) = ∅) in a fully reduced decision diagram, it must be substituted by
terminal node 0. Therefore, it is easy to decide whether a subgraph of a node encodes any
state or not. Contrarily, in a quasi-reduced diagram, “level skipping” is not allowed, so
this substitution is not possible. For that reason, nodes are added to encode the empty set
for every level during the initialization of the decision diagram. These nodes have a flag
“zero node”, so it can be determined easily for a node, if it encodes any states or not: it
encodes some states iff it is not a “zero node” (because two identical nodes are not allowed
in quasi-reduced diagrams). In the pseudocodes, all zero nodes are marked with the same
symbol 0 as the terminal zero, as their semantics are the same and there is exactly one
“zero node” on each level.

Omitting unnecessary calls. To eliminate unnecessary SatRecFire calls, a “fire
cache” is maintained. As the SatRecFire method does not modify the given node (nor its
subgraph), two SatRecFire method on the same node will produce the same subgraph as
a result. Therefore the results of this method can be cached. This cache is checked at the
beginning of the SatRecFire method and if the current calculation is already done, the
cached value will be returned. Otherwise, it executes the calculation and puts the result
into the cache. [12, 13]

A similar problem occurs in the case of decision diagram operations. As the result of union
(or intersection) is the same for the same nodes, it can be cached too (in “union cache”
and “intersection cache”).

Caching is necessary for saturation-based methods, because it eliminates exponential num-
ber of unnecessary calls.

On-the-fly local state space exploration. Typically, only the initial states are known
before state space exploration, thus other local states cannot be encoded symbolically.
Furthermore, only a part of next-state relation can be built: the transitions from initial
states to other states (i. e., the states reachable with one transition firing from the initial
state s0: N (s0)).

How can we find new local states? We can check on the model (for example on a Petri
net), which new local states are reachable from the already known local states (without
regarding to other local states). These new local states can be added to the set of possible
states Ŝk in level k. However, it is not sure that these local states can be reached globally,
so we should not search local states from them. We call those states unconfirmed.

If it is found out that a previously unconfirmed local state i on level k is reachable globally
(not just locally), we mark it confirmed. It consist of the following operations:
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• Local state i will be added to the set of confirmed local states on level k (denoted
by Sk).

• New local states will be searched that are reachable from i by one single step. The
newly explored states will be marked as unconfirmed.

• The next-state functionsNα will be updated with possible transitions from i by firing
α. (Note that because the next-state function will be updated only by transitions
from confirmed states, the nodes on the “from” levels have outgoing edges labelled
only with confirmed states, but on “to” levels, both confirmed and unconfirmed
states are possible too as labels.)

The local states representing the initial state(s) are reachable trivially (without any firing),
therefore they are confirmed during the initialization phase. (If there is only one initial
state, the corresponding global state is usually encoded as s0 = (0, 0, . . . , 0).)

This idea was introduced in details in [13]. However, the authors used Kronecker matrices
instead of MDDs to store the next-state functions. In that case, the update of a next-state
function is a local operation (it does not affect levels other than the level of the newly
found local state). When we use MDDs to encode Nα, we have to find and update all
nodes on the actual level in the subgraph of the root node of Nα. While it is a bigger effort
to update N encoded by MDDs, its usage eliminates some limitations of the Kronecker
matrices2 [3].

2.4 Unbounded state space generation

After the introduced base of the saturation-based algorithms, the specific algorithms can
be discussed in details. In this section I overview two state space generation algorithms:
the classic state space exploration algorithm and its extended version, the constrained
state space exploration algorithm.

2.4.1 Classic method – the base algorithm

The “classic state space generation” method is the relatively straightforward implementa-
tion of the introduced principles. It was first presented by Ciardo et al. in [12], however
the following pseudocodes are modified, to be consistent with the other discussed methods.
Furthermore, the algorithm in [12] used a simpler next-state function representation (they
assumed that the decomposition of the model is Kronecker consistent).

The pseudocodes of the classic method can be seen in Section C.1 (in the Appendix).
2For interested readers: to use Kronecker matrices, a so-called Kronecker consistent decomposition has

to be used. In a Kronecker consistent decomposition Nα = Nα,K × . . .Nα,1 holds (where Nα,l stands for
the part of Nα which corresponds to level l)[13]. While it is true for all decomposition of ordinary Petri
nets, this method is not applicable for other models, like coloured Petri nets. The usage of MDDs is more
general and it can by directly applied to coloured Petri nets [25].
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2.4.2 Constrained method

In [54], Y. Zhao and G. Ciardo proposed a new variant of the saturation algorithm: the
constrained saturation. They used another MDD, the constraint MDD to encode the
allowed set of possible state space. In other words, it encodes which global states are
allowed to be visited. The constrained saturation cannot add global states to the state
space that are not included in the constraint MDD.

This method is based on the following observation [54]. Let s be an MDD node encoding
a state and let r be the node encoding the corresponding next-state function. Let cons be
the constraint corresponds to s.

B(t) = RelProd(s, r)∩B(cons)⇔ ∀i′ : B(t[i′]) =
⋃

i∈Slevel(s)

RelProd(s[i], r[i][i′])∩B(cons[i′])

Informally that means the saturation of a state set encoded by s is restricted to the given
constraint cons iff for every possible state transition the “to” state is restricted to the
corresponding descendant of the cons constraint.

For this reason, the constraint MDD is traversed along with the state space decision
diagram. If the SatRecFire (or the SatFire) method is called with the state space node
s and the constraint node c, and it recursively calls SatRecFire with parameter s[i] in
the case of a local state transition i → j, then c[j] will be given too as the constraint
parameter. Also, if the firing of the given event in a SatRecFire method leads to local
state j, but in the given constraint node c, c[j] = 0, then this firing will not be executed,
as it is not allowed by the constraint.

Why is it useful? Well, the idea of constraints does not help the unbounded state space
generation. In [54] it was used for model checking purposes (see in Section 2.5). The
constrained saturation algorithm showed its efficiency in CTL model checking. In addition,
it can be also a powerful method for bounded state space generation.

Although primarily it is not a state space exploration algorithm, it can be drawn up
as a state space generation algorithm. If we do so, we can see that the classic method
(described in Section 2.4.1) is a special case of the constrained saturation algorithm, where
all possible path ends in the terminal node 1.

The pseudocodes of the constrained saturation can be found in Appendix C.2.

2.5 Unbounded CTL model checking

Saturation is a powerful method to explore state spaces which is the first phase of the
model checking. In addition, saturation can be used in the second phase of the model
checking: in the formula evaluation phase. This section briefly introduces, how saturation
can be used to evaluate CTL expressions. However, in this thesis I have not improved
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the formula evaluation algorithms, I used my earlier implementations (partly presented in
[24]).

In [15], an attempt was presented to use saturation to evaluate CTL formulas. In that
work, the evaluation of EF, EG and EU operators are discussed. (It is easy to evaluate
EX operators, and with the set of {EX,EG,EU} operators, all other CTL operators can be
expressed.)

The results of [15] are the following:

• The EX operator does not need saturation as it is just a step back from a set of
states.

• A saturation-based method was proposed for EG operator, but according to the cited
paper, it was more efficient than the “traditional” EG method only in special cases.

• The proposed saturation-based algorithm for EU operators is complicated. In addi-
tion, this algorithm just partly exploits the saturation and it uses large amount of
MDD operations which are relatively expensive. (It explores more states than nec-
essary and the unwanted states are eliminated using a costly intersection operation.)

The proposed algorithms showed that saturation can partly be used to evaluate CTL ex-
pressions, and generally it was more efficient than non-saturation-based symbolic methods
[15].

The next milestone in saturation-based CTL model checking was the introduction of con-
strained saturation [54]. This method enables us to evaluate EU operators more efficiently,
omitting a large number of MDD intersection operations, only by constrained saturation.

In the following, I introduce briefly the saturation-based evaluation of each operator. The
exact pseudocodes can be found in the cited papers.

Evaluation of EF operator. It is not necessary to implement the EF operator as it can
be expressed using EU, but the EF operator is often used and its implementation is rather
straightforward.

To find the set {s ∈ S|M, s � EF R}, saturation can be used easily. The task is to find all
the states reachable from a given set of states (R). It can be done with the same algorithm
as the state space exploration, but with inverted next-state functions (N−1). The initial
set of states of this backward saturation is R. Note that the on-the-fly local state space
exploration is not needed in the case of the backward saturation, because the local state
spaces are already explored in the state space generation phase.

37



Evaluation of EU operator. To find the set {s ∈ S|M, s � E[R U Q]}, we have to find
all states from where a state q ∈ Q is reachable, but only through states r ∈ R. For this
purpose, the constrained saturation can be used with inverted next-state functions (N−1).
The saturation have to be started with initial states Q. The constraint is the state set R.

Note: it is possible that Q 6⊆ R, but it is not a problem, as constrained saturation only
checks the newly added states against the constraint. The initial state set Q is not checked
against the constraint.

Evaluation of EG operator. The EG operator differs from the EF and EU operators,
because EG needs a least fixed point, while the others (and saturation generally) compute
a greatest fixed point. Therefore the method proposed in [15] does not use saturation.
Instead, the computation of the set {s ∈ S|M, s � EG P} starts from the state set P , and
it computes the least fixed point of P ∩N−1(P ).

Common properties. As the CTL formula evaluation algorithms run after state space
exploration, the exploration of local state spaces and the building of next-state functions
are already done.

Also it is a common need of all algorithms above to calculate the inverted next-state
function N−1. Because inversion of N means the exchange of “from” and “to” levels,
it can be done without any MDD operations. In the introduced algorithms only the
LocalStateTransitionsToExplore(r) method uses the next-state functions. It have to
be modified to compute {(j, i) : r[i][j] 6= 0} instead of {(i, j) : r[i][j] 6= 0}, but this
modification is a simple swap of variables.

2.6 Bounded state space generation

Originally, saturation-based algorithms can efficiently explore the whole set of reachable
states (S). However, in some cases, not only the set of reachable states are interesting,
but their distance from the initial state(s) too, i.e. the minimum number of transition
firings to reach the state from an initial state. Shortly after the publication of the original
saturation algorithm, G. Ciardo and R. Siminiceanu introduced an extension to the original
saturation-based algorithm to be able to determine and store the distance information
along with the explored states [14]. Their first objective was the generation of shortest
path in the state space which can be easily done, if the distance information is known
for all states. Thus the algorithms introduced in [14] do full (unbounded) state space
exploration, but they store the distances of the states as well.

For that reason, they extended the former MDD-based data structures. The new data
structure is the Edge-valued Decision Diagram (EDD). To adapt the former algorithms to
EDDs, only a few modification was necessary:
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• EDD edges (node-label pairs) have to be used instead of MDD nodes.

• The Union operation has to be adapted to EDDs (UnionMinimum operation) to be
able to handle the weights on the edges.

• In SatFire method, the distance of the result of the firing has to be increased by 1.

• The saturated nodes have to be normalized, in order to ensure the canonicity of the
EDD. It means that every node that has outgoing edges with finite weights needs to
have at least one outgoing edge with weight 0.

The normalization of node p is quite simple, as it has to determine the minimal label
m on the outgoing edges. Then for all outgoing edge, their label have to be decreased
with m, and the ingoing edges of p have to be increased with m. (See the pseudocode of
normalization on Algorithm C.17.)

The UnionMinimum operation is simple too. On the terminal node level,
UnionMinimum(〈v,⊥〉, 〈w,⊥〉) returns 〈min(v, w),⊥〉. Otherwise, it recursively applies
UnionMinimum for all children nodes and normalizes the result.

Years later, A. J. Yu, G. Ciardo, and G. Lüttgen improved [53] the algorithm mentioned
above. Their goal was to be able to perform bounded reachability checking, i. e., to be
able to explore a bounded part of the state space. They examined multiple decision
diagram formalisms to store the state space, namely Algebraic Decision Diagrams (ADD)
and Edge-valued Decision Diagrams (EDD). In addition, they proposed a method that
uses ordinary MDDs. According to their measurements, in most cases the EDD-based
algorithm provided the best results (both in time and memory consumption).

The bounded EDD-based algorithm in [53] is similar to the former unbounded EDD-based
algorithm in [14]. The main difference between them is that the newer algorithm explores
only a bounded part of the state space, therefore the states out of bound have to be
eliminated from the state space. To achieve this, after every step in the state space (by
SatFire or SatRecFire methods), a truncation step is added that is introduced in detail
in the next part.

2.6.1 Truncating

The goal of the truncation operation is to prevent (or cut) states outside the given bound
to be added to the bounded state space. It is enforced by the Truncate method that gets
an EDD edge 〈v, p〉 as a parameter. If the represented subgraph is inside the bound, it
returns 〈v, p〉. If it is out of bound, it returns 〈∞,⊥〉 which is the symbolic representation
of the empty set.3 As the result of SatFire or SatRecFire will be substituted with their
truncated version, the out-of-bound results will not be added to the state space.

3On level k ≥ 1 it returns 〈∞, z〉, where z is a “zero node” with all edges pointing towards ⊥. It is
semantically equivalent to the edge 〈∞,⊥〉 but with regards to the quasi-reduced form.
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Yu et al. introduced two different strategies for truncating: approximate and exact strat-
egy.

Approximative truncation strategy. The approximative strategy (TruncateApprox)
does not enforce an exact bound. Using this strategy we will know, that for a model
partitioned into K submodels, all states inside the given bound B are presented in the
state space Sb,B and no states are presented outside the bound K · B. The advantage of
this method that it can be easily done, there is no need to check the subgraph of the given
p node, therefore this method is not recursive. Algorithm C.15 shows the implementation
of this strategy (the parameter B is marked as bound in the pseudocode).

Exact truncation strategy. Using the exact strategy (TruncateExact), the regular
bounded state space exploration can be done, i. e., a global state s is presented in the
state space iff its distance is less or equals to the given bound B (δ(s) ≤ B). This truncate
method is not local, it needs recursive computations (see Algorithm C.16).

The results of Yu et al. showed [53] that in most cases, the exact truncate strategy is
significantly (by 1–3 magnitudes) slower than the approximate strategy.

Cached exact truncation strategy. However, we (A. Vörös, T. Bartha, and myself)
found out that the exact truncation strategy can be competitive with caches introduced
[50, 51]. We have observed that the descendants of the result node of the truncation oper-
ation will not be modified after the truncation. Therefore the truncate method will return
the same truncated edge for the same given edge, thus the computation of TruncateExact

method can be cached. Our measurements [51] showed that cached exact truncate method
is competitive with the approximate method. Also, it can be even faster than the approx-
imate strategy, depending on the characteristics of the analysed model.

It is important to note, that the algorithms presented in [14, 53] assumed that the local
state spaces are known a priori. In [51] we showed that the on-the-fly local state space
exploration used in unbounded saturation can be used in this case as well.

2.6.2 Iterative bounded state space exploration

It is a natural need to be able to explore the state space with incremental bounds. This
is needed for bounded model checking, as during the bounded model checking the state
space is explored with bigger and bigger bounds, until the given formula will be evaluated
successfully. However, the traditional saturation-based methods are not really suitable to
continue the computation with an increased bound. For example, a node can be saturated
with a bound B, but using bound B + 1, there might be new enabled transitions and
reachable states, so it is unknown that the same node is saturated or not. Therefore, it is
not trivial, how saturation can be efficiently used in an iterative manner.
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Since this is the main topic of my thesis, I will discuss the different algorithms in detail
in Chapter 3.

2.7 Bounded CTL model checking

The analysis of bounded CTL model checking is our earlier contribution [51].

Generally, the saturation-based CTL formula evaluation algorithms cannot profit from
the additional information encoded in an EDD-based state space.4 Therefore, the same
algorithms can be used as in unbounded case (introduced in Section 2.5).

To use the same algorithms with the same implementations after bounded state space
generation, the state space EDD must be converted to MDD by dropping the encoded
distance information. Formally, if the EDD encodes function fE , the corresponding MDD
has to encode fM [21]:

fM (xn, . . . , x1) =

0, if fE(xn, . . . , x1) =∞

1, if fE(xn, . . . , x1) <∞

It has to be noticed that bounded model checking is a semi-decision procedure, thus in
several cases it can produce an unknown result about the examined CTL formula [51].
However, the unbounded CTL formula evaluation algorithms always provide true or false
answer. Earlier we showed that without introducing new saturation algorithms, their
result can be extended to use three-valued logic which is able to represent the unknown
value. It is not connected strongly to the subject of this thesis, but the interested reader
can read about this extension in [21, 51].

4While the introduced CTL formula evaluation algorithms cannot use this additional information, in
some cases it can be useful. For example, shortest path can be generated from initial state to a specific
state, which can provide a witness for reachability problems. [14]
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Chapter 3

Incremental bounded state space
exploration algorithms

This chapter introduces and compares the different methods that can be used to perform
incremental bounded states space exploration.1

In Section 3.2, I describe a simple approach that enables us to execute incremental bounded
state space generation and model checking. This method was developed by András Vörös,
Tamás Bartha and myself based on former saturation algorithms, introduced in [50, 51].
As I know, there is no other approach published before 2013.

The rest of this chapter introduces my contributions, the incremental iterative bounded
state space exploration algorithms. The Section 3.3 introduces an extended version of
the previous approach, named continuing saturation. Section 3.4 is dedicated to the main
contribution of this thesis, the so-called compacting saturation.

All the bounded state space exploration algorithms described here use the same data
structures, namely MDDs for storing next-state functions and EDDs to store state space
extended with distance information. All of the following algorithms are iterative algo-
rithms. It means that their goal is to explore bigger and bigger part of the state space
with an incrementing bound B. The base of all iterative algorithm is the fixed bound
algorithm presented in Section 2.6 which can explore a bounded part of the state space.

The difference between the algorithms is the amount of data that can be kept between
the iterations. Ideally all the results of iteration n should be kept and reused in iteration
n + 1. However, due to the optimized algorithms some data will be obsolete at the end
of the iteration and should be removed. The next section overviews the different data
structures that can be reused or dropped at the end of each iteration. After that the
different algorithms are introduced and discussed.

1The restarting algorithm in Section 3.2 is a joint work of A. Vörös, T. Bartha and myself. This was
a former work and it is not part of the new results in this thesis. The algorithms presented later in this
chapter are my own work and these are the contributions of this thesis. All algorithms presented here is
my own work with the help of my supervisors. In the following in this chapter, “we” indicates my thesis
supervisors and myself.
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3.1 What data can be kept?

As it was discussed, the main problem of incremental saturation-based algorithms is that
it is hard to determine, which data remains valid after an iteration.

Saturation data. The basic bounded saturation method extracts and uses the following
data:

• local state spaces (Sk for every level k),

• next-state functions for each event (Ne for every event e),

• reachable state space (encoded by EDD, denoted by S),

• caches

– cache of SatRecFire method,

– cache of Saturate method,

– cache of Truncate method,

– cache of MDD and EDD operations (union, intersect)

In the following, for every data above it has to be determined whether they can be kept
and reused in a next iteration or not.

3.2 Restarting algorithm

In 2011, we performed an experiment: can the bounded saturation-based state space
generation and the normal saturation-based CTL formula evaluation algorithms be used
together? The result of this experience is the restarting algorithm which iteratively uses
the bounded state space generation and the normal formula evaluation. To be able do
this, we had to do slight improvements and additions. Our first experiences are described
in [50].

The restarting algorithm is the “simplest” way to perform incremental state space explo-
ration based on the fixed bound algorithm. Basically, if the objective is to explore the
state space with an increment i, it will first the explores the [0; i] part (i. e., states s such
that δ(s) ∈ [0; i]), then the [0; 2 · i] part, etc. During the kth iteration, the [0; k · i] part
will be explored.
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Iteration 1

Iteration 2

Iteration 3

State space (S) Part encoded by S

[0; b]

[0; 2 · b]

[0; 3 · b]

Figure 3.1: Illustration of restarting algorithm

Data kept between iterations. A basic implementation of this algorithm drops every
saturation data after each iteration. However, it is not necessary to drop all of them,
some data will not be obsolete at the end of an iteration, thus they can be kept. In the
following, every data element will be discussed.

• The local state spaces can be reused. All local state i ∈ Sk that are reachable within
bound B are reachable using a bigger bound B′ > B. Furthermore, all confirmed
local states will be confirmed with an increased bound. The unconfirmed states of
bound B can be confirmed with bound B′ > B, and further states can be found and
confirmed.

• The partial next-state functions can be reused, but they might need to be extended
as new state transitions can be discovered.

Note that the next-state functions of saturation algorithms contains some state tran-
sitions that can never be fired. This is due to the on-the-fly local state space ex-
ploration. Because there can be state transitions with confirmed “from” state and
unconfirmed “to” state, the building of the next-state function has to be continued.

• The state space of the last iteration is dropped. As it is not known, which nodes
have to be saturated again, the simplest solution is to drop all of them and rebuild
the whole state space from the initial state.

• Because all of the state space nodes are dropped, all caches have to be cleared too.
(It is not necessary, but there will not be any cache hits, because the node identifiers
are unique. Therefore keeping the contents of caches is just waste of memory.)

An illustration of the restarting algorithm can be seen in Figure 3.1. The parts filled
with yellow (with thick border) means the initial state sets. The grey parts are the newly
explored states. As it can be seen, the state space exploration are restarted from the initial
state(s) in every iteration, and every state is explored newly in each iteration.
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Iteration 1

Iteration 2

Iteration 3

State space (S) Part encoded by S

[0; b]

[0; 2 · b]

[0; 3 · b]

Figure 3.2: Illustration of continuing algorithm

3.3 Continuing algorithm

At first try, the restarting algorithm showed that the former saturation-based algorithms
can be used together. However, this algorithm was not incremental. It was my motivation
to make improvements on it and the first step was the creation of the continuing algorithm.

The aim of the incremental algorithms is to reuse the data from the previous iterations.
It seems a big waste for first to restart the exploration of the state space from the initial
state. Even if the restarting method can provide a good performance (see for example
the search algorithms in the field of artificial intelligence, where the search algorithms
restarting every iteration from the initial state are common), it is worth to check whether
this restarting method can be improved or not.

The continuing algorithm is an advanced version of the restarting algorithm. Its goal is
to keep the explored state space between iterations. It is possible, because for all bounds
B < B′, Sb,B ⊆ Sb,B′ holds. (Not only the states of Sb,B are presented in Sb,B′ , but
obviously their stored shortest distances are the same too.)

The continuing algorithm represents the straightforward idea, when the initial state set
of the iteration n + 1 is the set of explored states in iteration n. An illustration of this
algorithm can be seen in Figure 3.2. The parts filled with yellow (with thick border) means
the initial state sets. The grey parts are the newly explored states.

However, it is not known, from which states are there any possible new states, in other
words which states have to be saturated again. But it has to be noticed that the “re-
saturation” of a previously saturated node is not a problem, it is just an unnecessary
operation (which does not modify the node). Therefore the continuing algorithm assumes
that all nodes from the last iteration are unsaturated and all of them will be saturated in
a bottom-up manner.

Generally, the saturation-based state space exploration algorithms working on ordinary
Petri nets assumes that there is only one initial state. While this is a valid assumption,
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the continuing algorithm needs to run from previous, partial state spaces. Therefore the
handling of multiple initial states had to be solved.

3.3.1 Handling set of initial states

To be able to handle a set of initial states, the previously discussed Saturate method
has to be modified. In the published saturation-based state space exploration algorithms,
the creation of the initial state and the saturation of the nodes were interleaved (see
Algorithm 3.1). In this way, the nodes can be easily saturated in the needed “bottom-up”
manner.

Algorithm 3.1: Interleaved initial state creation and saturation
1 last← ⊥; // terminal node
2 for k = 1 to K do
3 Confirm(k, 0); // confirms initial local state
4 MDDNode n← NewNode(k); // creates new node on the same level
5 n[0]← 〈0, last〉; // initialization of 0th child
6 Saturate(n); // saturation the new node n
7 n← CheckIn(k, n);
8 last← n;
9 return l;

Instead of this method, the initial state building (if needed, before the first iteration) and
its saturation have to be separated. The building of the decision diagram representation
of the initial state (which is an EDD storing only the global state s0 = (0, 0, . . . , 0) with
δ(s0) = 0) is the same as the former algorithm, but without the Saturation call (see
Algorithm 3.2).

Algorithm 3.2: Building of initial state
input : r : EDDNode

1 // r: root node of the initial state

2 EDDNode last← ⊥;
3 for k = 1 to K do
4 Confirm(k, 0); // confirms initial local state
5 EDDNode n← NewNode(k); // creates new node on the same level
6 n[0]← 〈0, last〉; // initialization of 0th child
7 n← CheckIn(k, n);
8 last← n;
9 return last;

After, if the initial state is created or it is given from the last iteration, it has to be
saturated in a bottom-up manner. Before saturating a node, the prerequisite is that all of
its children nodes should be saturated. Therefore the saturation has to be started at level
1. But typically the root node is given, thus the decision diagram has to be explored in a
depth-first manner (this is the “top-down” saturation).

However, a node can be reached on multiple paths from the root node. For performance
reason, every node (and their subgraph) has to be saturated only once. It can be ensured
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using a cache storing the already saturated nodes. As saturation (the Saturate method)
updates the nodes in-place, there is no need to store a reference to the result of the
saturation, therefore the cache needs to store only the identifiers of the already saturated
nodes and their incoming labels (as it is used for truncating states and the saturation of
the same node with different incoming labels can produce different subgraphs).

The pseudocode of the modified method can be seen on Algorithm C.11 in the Appendix.

Note: the idea of the above introduced “top-down” saturation instead of “bottom-up”
saturation was presented in [15] as it is needed for CTL formula checking too. However,
the “top-down” saturation was not previously written for state space exploration methods,
nor for state spaces extended with distance information.

Data kept between iterations. The advantage of this algorithm is that it can keep
more data between the iterations than the restarting algorithm can.

• The local state spaces can be reused (as in the case of the restarting algorithm).

• The partial next-state functions can be reused (as in the case of the restarting
algorithm).

• The state space of the last iteration is not dropped. Instead, all nodes are saturated
again.

• As the state space nodes are not dropped, it is not needed to clear all caches. The
operation caches (cache of union and intersect decision diagram operations) can be
kept, as their items have not expired. But the bound changed, thus the fire cache and
the truncation cache have to be cleared. (For performance reasons, the truncation
cache contains only the node-label pair to truncate and its result, but not the used
bound value.)

3.4 Compacting saturation

This section is dedicated to my new, iterative saturation-based algorithm, the so-called
compacting saturation.

Motivation. The two previously overviewed algorithms have different strengths and
according to the measurements: for a part of the models, the restarting strategy is better,
for other models, the continuing algorithm is the faster. But both algorithms have a
common weakness: these algorithms store the [0;B] part of the state space in one single
EDD (where B is the current bound). If the model checking can be finished in a few
iterations, it is not a crucial problem. However, if many iterations are needed to evaluate
the requirement, the decision diagram describing the state space can be huge. It is an even
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bigger problem for EDDs, as the EDD representation of a state space is always larger or
equally large as the same state space in MDD2. Therefore my goal was to develop a new
incremental algorithm that can reduce the size of the EDDs during the analysis.

3.4.1 Main idea of compacting saturation

The observation written above leads to the main idea of the compacting saturation. If we
partition the state space and we store the result of each iteration individually, it can result
smaller, easier-to-handle decision diagrams instead of building a single huge, complex EDD
representing the whole explored state space. This is just a hypothesis, it has to be verified.

So formally the idea is to store the state space explored in each iteration separately. The
state space explored in the first iteration will be stored in the EDD Siter=1, the new states
explored in the second iteration will be stored in a different EDD Siter=1, etc.

It is obvious that the EDD Siter=1 will store the states with distance in [0, i] (i. e., the [0, i]
part of the state space). But what will be stored in the next iteration? There are two
options: (i) the [i+ 1, 2 · i] part, or (ii) the [i, 2 · i].

The first option seems to be more memory efficient, as every reachable global state will
be stored exactly once. But as the former saturation methods gets the input from the
same EDD where the output will be placed, it is easier to implement the second option.
Furthermore, if the decision diagram implementation supports “EDD forests”, the different
EDDs can share subgraphs too, as a result, the overlapped part of the EDDs will not be
stored in the memory twice.

For that reason, during the kth iteration, the partial state space Siter=k created by com-
pacting saturation will contain the [(k − 1) · i; k · i] part.

3.4.2 Overview of the challenges

As the reader can see, the first iteration of the compacting saturation is exactly the same
as the first iteration of the restarting or the continuing algorithm. But the kth iteration
(k ≥ 2) is different. The challenges caused by this difference are introduced in this section.

Initial states set. For every saturation-based algorithm, the initial state has to be
defined. The first iterations of all bounded algorithm use the encoded form of the model’s
initial state. In the kth iteration (k ≥ 2), the restarting algorithm uses the initial state
again, while the continuing algorithm uses the state space of the previous iteration. In

2It can be proved easily. A (quasi-reduced) MDD can be transformed into a (quasi-reduced) EDD by
adding labels 0 to every edge. Therefore the size of MDD cannot be greater than the EDD representing
the same set. Contrarily, we can show EDDs, that are bigger than the MDDs representing the same set
(without distance information). Thus the size of the EDD is always greater or equals to the size of the
MDD representing the same set.
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the case of the compacting saturation, to ensure that the kth iteration explores the [(k −
1) · i; k · i] part of the states, it has to be started from the set of states whose distance is
exactly (k− 1) · i. All of these states are known from the previous iteration. It is obvious
that for every state s and for every s′ ∈ N (s), the δ(s′) ≤ δ(s) + 1 (informally: in one
single step the minimal distance from the initial state cannot grow by more than one).
As the saturation algorithm fires events exhaustively, after the [(k − 1) · i; k · i] part is
explored, there is no need for the [(k − 1) · i; k · i− 1] part, as all new possible states can
be reached from the states at exactly k · i distance.

Thus the first task of each (noninitial) iteration is to determine the set {s ∈ S|δ(s) =
(k − 1) · i} which will be the initial state set of the iteration.

Iterations. After that, the state space have to be explored with the bound k ·i. This can
be done with the previously mentioned fixed bound state space exploration algorithm, but
it introduces a problem. It might happen that previously explored states will be explored
again. It is inefficient and because a greater distance will be assigned to it (as all noninitial
states in iteration i will have greater assigned distance than states explored in iterations
1, . . . , i− 1), it can cause wrong results.

To summarize the description above, there are two main challenges in the development of
compacting saturation:

• Challenge 1: producing the subset of a state space encoded by EDD which contains
only states with distance δ = C (for a given C).

• Challenge 2: preventing the “reexploration” of states explored in previous iterations.

The Section 3.4.3 shows a solution for Challenge 1, and Section 3.4.4 introduces a possible
solution for Challenge 2.

An illustration of the compacting algorithm can be seen in Figure 3.3. The parts filled
with yellow (with thick border) mean the initial sets of states. The grey parts are the
newly explored states. The border of the state space in each iteration is represented by
blue colour. As it can be seen, the border of the state space will become the initial state set
of the next iteration. The rest of the state space will be also used (as negated constraint,
see later) to solve Challenge 2. It can be also seen in the figure that in each iteration, only
the newly explored states are stored in the state space.

3.4.3 Computing the border of the state space

To implement the idea presented before, it is necessary to be able to produce the set of
states at a given distance C, as the initial state set of the iteration n+1 will be the subset
of states in iteration n that are at maximal distance (i.e. the states that are on the “border
of the state space”).
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Iteration 1

Iteration 2

Iteration 3

State space (Siter=i) Part encoded by S

[0; b]

[b; 2 · b]

[2 · b; 3 · b]

Figure 3.3: Illustration of compacting algorithm

The problem discussed here is formally the following: Given a bounded state space Sb

(encoded in EDD, extended with distance information) and a distance C. Produce S ′b
which contains s ∈ Sb iff δ(s) = C.

As in this case, the given C is maximal distance encoded in Sb, we can say that the goal
is to get the border of the state space Sb.

How can we produce that EDD S ′b? Intuitively, it is not possible without the traversal of
the decision diagram. A previously described algorithm comes to mind that performs a
similar task: the TruncateExact method. Basically, it creates a subset of a given EDD
that contains only those states that are at distance ≤ B from the initial state (for a given
B). (Note: the TruncateExact method does not modify the given EDD, instead it builds
a new diagram.)

This method had to be modified in order to omit all encoded states that are not at distance
C. Therefore, if the terminal node is reached by the truncating algorithm and the sum of
labels on the path from the EDD root node to the terminal node does not equal to the
given distance C, the state must not be presented in the new EDD. Otherwise, the path
will be included in the new EDD. The Algorithm 3.3 shows the modified TruncateExactEq

method. The new lines added to the TruncateExact (Algorithm C.16) are marked with
asterisks (“∗”).

In this way, the TruncateExact(〈v, p〉, C) builds a new EDD that contains all global states
s presented in the subgraph of 〈v, p〉 such that δ(s) = C.

3.4.4 Avoiding the redundant computations

As it was mentioned in Section 3.4.1, it is desired to prevent the “reexploration” of states.
It means that it is forbidden to discover a global state s during the iteration i if it was
already discovered in a previous iteration j < i. It is needed both for efficiency and
correctness.
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Algorithm 3.3: TruncateExactEq
input : 〈v, p〉 : EDDEdge, C : int
output : EDDEdge

1 if v > C then
2 // It is impossible to find any states with δ = C in this subgraph.
3 return 〈∞,⊥〉;

∗ 4 if p.level = 0 ∧ v 6= C then
∗ 5 // This path encodes a global state and its distance 6= C.
∗ 6 return 〈∞,⊥〉;

7 if p.level = 0 ∧ v = C then
8 // This path encodes a global state but its distance = C.
9 return 〈v, p〉;

10 if CacheFind(TRUNCEQ, 〈v, p〉,out p′ then
11 return 〈v, p′〉;
12 n← NewNode(p.level);
13 foreach i ∈ Sp.level do
14 r ← TruncateExactEq(〈v + p[i].value, p[i].node〉);
15 n[i]← 〈r.value− v, r.node〉;
16 if p was checked in then n← CheckIn(p.level, n);
17 PutIntoCache(TRUNCEQ, 〈v, p〉, n);
18 return 〈v, n〉;

Example 7. To illustrate this problem, consider the Petri net in Figure 3.4. It has an
infinite state space which can be seen in Figure 3.5(a). The state si represents the state
when M(p1) = i.

p1t1 t2

Figure 3.4: Example Petri net to illustrate negated constrained saturation

The execution of the compacting saturation without negated constrained saturation is illus-
trated by Figure 3.5. During the first iteration, s1 and s2 are explored. (The states explored
during the current iteration are filled with grey. The initial states of each iteration are
marked with thick border.) Because s2 is on the border of the state space, this state will
be the initial state of iteration 2. But because s1 is reachable from s2 by one transition,
it will be reexplored in iteration 2 (with δ(s1) = 3 which is wrong). The same is true for
s0. Therefore after iteration 2, there will be two states on the border of the state space: s0

and s4. Thus the iteration 3 will start from s0 and s4 too, but exploring the state space
from s0 is useless and unwanted.

An obvious solution is to execute iteration i as usual, and after eliminate the “wrong”
states by subtracting them. It solves the problem of correctness but in a quite inefficient
way, as the intersection operation on EDDs is costly. Thus this solution could solve the
problem of correctness, but not the problem of efficiency.

This situation resembles the case of EU operator described in Section 2.5. Its first imple-
mentation explored more states than needed which were eliminated using an intersection
operator. Because it was inefficient, a new approach came into mind: the constrained
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s0 s1 s2 s3 s4 s5

...

(a) Example state space to explore

s0 s1 s2 s3 s4 s5

...

(b) Explored states after iteration 1

s0 s1 s2 s3 s4 s5

...

(c) Explored states after iteration 2

s0 s1 s2 s3 s4 s5

...

(d) Explored states after iteration 3

Figure 3.5: Example for compacting saturation without negated constrained
saturation

s0 s1 s2 s3 s4 s5

...

(a) Explored states after iteration 1

s0 s1 s2 s3 s4 s5

...

(b) Explored states after iteration 2

s0 s1 s2 s3 s4 s5

...

(c) Explored states after iteration 3

Figure 3.6: Example for compacting saturation with negated constrained sat-
uration
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saturation. Using this method, it was ensured during the exploration that no unnecessary
states were added to the state set.

The constrained saturation ensures that no states are explored out of a given state set.
However, to be able to implement compacting saturation, it has to be ensured that no
states are explored presented in a given state set (i. e., in the set of previously explored
states). So the original constrained saturation algorithm cannot be applied directly, but
the idea can be reused.

My modified constrained saturation algorithm is the negated constrained saturation. It
ensures that no states can be inserted to the explored state space that are present in a
given set (encoded by a decision diagram). The negated constrained saturation is based
on an observation similar to the described in [54]. Let s be an EDD edge encoding a state
and let r be the node encoding the corresponding next-state function. Let negCons be the
negated constraint corresponds to s. Then the observation formally the following:

B(t) = RelProd(s, r) \ B(negCons)⇔ B(t[i′]) = RelProd(s[i], r[i][i′]) \ B(negCons[i′])

It means that the subtraction operation can be applied during the state space exploration,
it is not necessary to perform it after the exploration, using an expensive decision diagram
operation. As it is similar to the key observation of constrained saturation, the same
methods can be applied here.

Therefore, along with the traversal of the state space EDD, the set of forbidden states
(the negated constraint) is traversed too. The negated constraint is encoded by an MDD.
Before inserting a new global state to the state space EDD, the negated constraint is
checked. If the new global state is present in the negated constraint, it will be filtered out
from the current EDD. This decision can be made only on the lowest nonterminal level
(level 1). If SatRecFire would set the current s node’s ith edge to ⊥ with a finite label,
but for the negated constraint node c that corresponds to s: c[i] = 1, then the new global
state is forbidden by the constraint and the edge s[i] will be set to 〈∞,⊥〉 (which means
the new state is not part of the set).

Because the decision that a global state is permitted or not can only be made at level
1, all SatRecFire calls have to recursively continue until it reaches level 1 (or the result
is available in the cache). It has to be noted that it exposes overhead compared to the
previous iterative algorithms.

The set of forbidden states in iteration i is the set of all states explored in the iterations
1, . . . , i− 1. Thus the negated constraint is N = Siter=1 ∪ · · · ∪ Siter=i−1. (Note: because
only the forbidden states are needed, their distance information is unnecessary, they can
be dropped by converting EDDs to MDDs.)

Example 8. If negated constrained saturation is used for the same model as in Example 7,
the already explored states cannot be included in the state space. The execution of the same
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state space exploration with negated constrained saturation can be observed in Figure 3.6.
It provides the wanted solution.

3.4.5 How does the compacting saturation work?

The first state space exploration iteration of the compacting saturation is the same as the
first iteration of the restarting or continuing saturation. After this state space exploration,
the necessary data for the next iteration is produced: the negated constraint and the new
initial state set.

The initial state space of the ith iteration consists of the states on the border of the
state space produced during the (i − 1)th iteration. The negated constraint is the MDD
representation of all previously explored state spaces.

The pseudocode of compacting saturation can be seen in the Appendix, on Algorithm C.20.

Data kept between iterations. The advantage of this algorithm is that it can keep
more data between the iterations than the restarting algorithm can. Also, it can reduce
the memory consumption.

• The local state spaces can be reused (as with the restarting and continuing algo-
rithm).

• The partial next-state functions can be reused (as with the restarting and continuing
algorithm).

• The state space of the last iteration is dropped, only the border of the state space
will be kept and saturated again. The remaining part of the state space will be
converted to MDD and stored (which can be more compact and which can be used
as constraint).

• The state space EDD nodes are dropped, therefore every cache has to be cleared (as
they contain expired/wrong or valueless information).

3.4.6 Possible improvement of the compacting saturation

The compacting saturation described above is ready to be implemented. However, there
is an easy-to-see alternative version that should be also analysed.

Above I stated that SatRecFire calls have to be called recursively until it reaches level
1, because the negated constraint cannot be evaluated above. While it is true, it can be
optimized, since the firing of event e does not modify the state space under level Bot(e).
Therefore the only purpose of SatRecFire calls on event e below Bot(e) is to ensure that
no forbidden states are reached by the upper level operations.
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v \ w w = 0 w = 1
v = 0 0 0
v = 1 1 0

Table 3.1: Truth table of terminal MDD node subtraction

It can be done in an easier way, by simply subtracting the set of forbidden states from
the state space under Bot(e). If SatRecFire is called with event e on node n with cor-
responding negate constraint node c and level(n) < Bot(e), then the result will be n \ c
intuitively.

This observation is formally the following: RelProd(s[i], re[i][i′]) = s[i], if level(s) < Bot(e),
because this subgraph of re encodes the identity next-state (sub)function. For that, the
subtraction operation have to be introduced.

The extended pseudocode is depicted in Algorithm C.14. (The extensions to the basic
compacting saturation is marked with different colour.) The subtraction operation itself
is discussed in the next section.

Subtract decision diagram operation

In the following, I formally define the subtraction operator for MDD nodes. As on the
terminal level, 0 represents ∅ and 1 represents some elements, defining the subtraction
operation for terminal MDD nodes is intuitive, as it can be seen in Table 3.1. The nodes
on the upper levels can be subtracted by recursively applying the subtraction operator.

Formally, the subtraction of MDD nodes v and w (taking place on the same level: level(v) =
level(w)) is the following:

v \ w =


v if level(v) = level(w) = 0 and w = 0
0 if level(v) = level(w) = 0 and w 6= 0
z else, where z[i] = v[i] \ w[i] for all i

The subtraction operator can be interpreted between EDD edges and MDD nodes too. In
this case, the distance information stored in EDD is not considered. The result of this
operation is an EDD subgraph.

Formally, the subtraction of MDD node w from EDD edge v = 〈a, p〉 (taking place on the
same level: level(p) = level(w)) is the following:

〈a, p〉 \ w =


〈a, p〉 if level(p) = level(w) = 0 and w = 0
〈∞,⊥〉 if level(p) = level(w) = 0 and w 6= 0
z else, where z[i] = 〈a, p〉[i] \ w[i] for all i

Using these definitions, the subtraction operations can be implemented easily.
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3.5 General problems of saturation-based iterative model checking

There are some further problems that concerns all presented iterative variants of
saturation-based model checking. This section briefly overviews these problems and the
given solutions.

Termination criterion. As I stated before, the iterative model checking explores bigger
and bigger parts of the state space. But when can this algorithm stop? There general
answer is simple: when the given requirement can be evaluated. It raises another question:
when can a requirement be evaluated? There are two main cases: (1) if the full state space
is explored (in this case, the result given by the model checker will be certainly valid),
or (2) if the model checker can give a certain answer based on a bounded state space
exploration.

For example, if the model checker evaluates EF p to true, it is a certain answer based on a
bounded state space exploration. If the EF p is true for a part of the state space, it will be
true for the full state space too. But if the model checker evaluates EF p to false based on
a bounded state space, this answer is not certainly true for the full state space, therefore
the examination have to be continued with bigger bound. In this case, it is easy to see,
what are the authoritative answers, but it is not true for every CTL operator.

A simple solution —that is used in the current implementations— is to ask the user, what
is his/her expected answer. Then the model checker tries to prove the expectation. If the
model checking algorithm gives the expected answer, the iterative method will stop.

However, in [21, 51] we proposed exact conditions, when the answer of the iterative
saturation-based model checker is authoritative. The drawback of this method is that
in certain cases the “authoritativeness check” needs the computation of other CTL ex-
pressions which increases the required evaluation time.

Detection of the full state space exploration. Another needed feature is the de-
tection whether the iterative state space exploration reached the full state space or not.
When the full state space is already explored, the iterative algorithms should be stopped.

This detection depends on the applied truncating method. If the exact truncating method
is used, it is easy to detect the exploration of the full state space. If no new states have
been found in the last iteration, there is no need to continue the exploration as there are
no unexplored states. But if the approximate method is used, it is hard to detect the
end of the exploration, because the fact that there were no new states using bound B + i

compared to the result with bound B does not imply that there will be no new states
using bound B + 2i. Therefore if the detection of full state space exploration is needed,
the exact truncating method has to be used.

Even for exact truncation method, there are three different possibilities for detecting the
end of the iterative state space exploration:
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1. Detect when the count of states in the state space did not grow during an iteration.
While this is straightforward, it needs the calculation of states encoded by the state
space decision diagram which can be expensive.

2. Detect when the root node of the state space is not modified. This method is easy
to check, but it is only applicable when the state space contains all previous states
(and if it is not restarted).

3. Detect when there are no states on the “border” of the state space (e.g. there are no
states in the state space of bound B (when δ = B), formally: {s ∈ Sb,B|δ(s) = B} =
∅). Using this method, the end of the iterative algorithm can be detected sooner as
it does not need another iteration with no additional states which would prove that
the state space is not modified, as in the previous method.

The presented iterative strategy uses different solutions. The third solution is the best,
but the most expensive of the three possibilities. However the border of the state space is
calculated for compacting saturation, therefore this solution can be used in this iterative
variant.

The restarting algorithm builds new decision diagrams for representing state spaces, there-
fore the second solution cannot be used. Thus, the first solution is implemented for this
algorithm. The continuing algorithm iteratively extends the same decision diagram, so
the second solution can be applied.
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Chapter 4

Realization of the compacting
saturation

All the algorithms presented in Chapter 2 and Chapter 3 are implemented in the Petri-
DotNet framework. This framework is briefly introduced in Section 4.1. The rest of this
chapter describes the main details of the implementation (Section 4.2).

4.1 PetriDotNet framework

The PetriDotNet framework [55] is a software for editing, simulating and analysing Petri
nets. It is developed at the Fault Tolerant Systems Research Group at the Department
of Measurement and Information Systems, Budapest University of Technology and Eco-
nomics, Budapest, Hungary. The developers are curious, talented students, working on
this project mostly in their free time1.

PetriDotNet supports multiple variant of Petri nets: ordinary Petri nets; ordinary Petri
nets extended with priorities, inhibitor edges, capacity limits; hierarchical Petri nets, well-
formed coloured Petri nets, etc.

Its goal is to provide an easy-to-use interface for the users, and also for the developers.
This framework can be easily extended with plugins. My current work is also developed
as a PetriDotNet plugin.

As an illustration, the main window of the PetriDotNet framework can be see in Figure 4.1.
1Here I would like to thank everybody who has participated in the PetriDotNet project during the

last 5 years, especially the following main contributors: Bertalan Szilvási, Attila Jámbor, Vince Molnár,
Attila Klenik. They helped me a lot with their implementations, suggestions, and bug reports to be able
to develop the algorithms presented here. My supervisors, Tamás Bartha and András Vörös also helped
the development of the framework a lot.
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Figure 4.1: The main window of the PetriDotNet framework

4.2 Details of the implementation

While my main contribution is the algorithmic and analysis part of this thesis, to be able
to measure the performance of the algorithms, I implemented them. In this section, I
overview some details of the implementation.

The implementation of the described algorithms itself are simple after their pseudocodes
are given. However, to be able to use them, I did a lot of supporting work. The PetriDot-
Net framework provides a graphical user interface, the handling of the models (loading
and saving the models), and an object model of the Petri nets. Thus the analysis plugins
do not have to parse or write directly model files. This part of the framework was already
developed by Bertalan Szilvási and myself when I started the current work, thus its imple-
mentation questions are out of the scope of this thesis. The reader can find details about
its initial conception in [48].

The presented analysis modules highly rely on decision diagrams. The used decision
diagram library is introduced in Section 4.2.1. Afterwards I present some deeper problems
affecting the performance of the implementation, which is crucial in the case of model
checking algorithms.
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4.2.1 Implementation of the decision diagrams

This subsection overviews the implementation of the decision diagrams. In 2010, when I
started to work with saturation-based algorithms, there were no publicly available .NET-
based decision diagram implementations. Therefore I developed my own implementation,
based on the experiences written in [49]. As it was an earlier work, the introduction here
is high-level, the deep implementation details are omitted.2

The two main classes for each diagram type are the Node and Forest classes (see Fig-
ure 4.2).

• A Node class (MDDNode, EDDNode) describes a decision diagram node, which contains
its identifier, level number, and its children nodes (or the outgoing edges in the case
of EDDNode). The node classes contains static methods for the node operations
and the CheckIn method as it was introduced in [40].

• A Forest class (MDDForest, EDDForest) represents a set of decision diagrams3. It
is true that to put each decision diagram into a separate object and handle them
as individual entities would respect more the encapsulation principle of the object
oriented programming. However, if multiple decision diagrams are stored in the same
container, their common, redundant subgraphs are stored only once. But there
is a common property of the decision diagrams stored in the same Forest object:
they have equal number of levels. Without this constraint, the decision diagrams
would have different semantics. The forest also stores the terminal nodes, which are
common for every decision diagram stored in the forest.

Note: the classes that can be seen on the diagrams are implemented as C# classes. The
C# properties are represented as public fields to be easily understandable. In reality, these
fields are private and they have public getter and setter methods.

4.2.2 Creating and destroying node objects

During our previous work we discovered that the saturation-based algorithms are highly
affected by the performance of the decision diagram implementation. One of the drawbacks
is that the saturation algorithms creates and destroys large amount of nodes. On the level
of the .NET framework, it means lots of constructor and destructor calls, and also bigger
work for the garbage collector.

However, instead of destroying an object with its destructor, it can be put into a container
(“stack” or “pool”) of nonused objects. When a new node is needed, a previously deleted

2For example, the real implementation uses abstract classes, inheritance, generic classes, multiple ab-
straction layers, reference counting, automatic node deletion, etc.

3While forest is an intuitive name for this class, it has to be noticed that the decision diagrams are not
trees, but directed acyclic graphs (DAGs).
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MDDForest
+ levelNumber : int
+ terminalZero : MDDNode
+ terminalOne : MDDNode
+ GetNodes(level : int)
+ NewNode(level : int) : MDDNode

MDDNode
+ id : long
+ level : int
+ isZeroNode : bool
+ childs : MDDNode[ ]

+ CheckIn() : MDDNode
+ Union(n1 : MDDNode, n2 : MDDNode) : MDDNode
+ Intersect(n1 : MDDNode, n2 : MDDNode) : MDDNode

– nodes
1..*

(a) Basic MDD structure

EDDForest
+ levelNumber : int
+ terminalNode : EDDNode
+ GetNodes(level : int)
+ NewNode(level : int) : EDDNode

EDDNode
+ id : long
+ level : int
+ isZeroNode : bool
+ childs : EDDEdge[ ]

+ CheckIn() : EDDNode
+ AsMdd() : MDDNode
+ AsMdd(forest : MDDForest) : MDDNode
+ Union(n1 : EDDEdge, n2 : EDDEdge) : EDDEdge
+ Intersect(n1 : EDDEdge, n2 : EDDEdge) : EDDEdge

EDDEdge
+ label : int
+ node : EDDNode
+ IsInfinityLabelled() : bool

– nodes
1..*

(b) Basic EDD structure

Figure 4.2: Class diagrams of the decision diagram implementation
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Figure 4.3: Number of created EDDNode objects in each iteration using dif-
ferent stack sizes
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node can be reinitialized, so no constructor call is needed. The implementation of this
idea is quite simple, as it can be seen on Listing 4.1. Note: this solution is similar to the
pooling proposed in [32].

To illustrate this solution, I executed a restarting bounded state space exploration (on
model FMS–5 with increment = 5) with different stack (pool) sizes. The results can be
seen in Figure 4.3. It is easy to see, that even a small-sized stack can reduce significantly
the EDDNode constructor calls. Its reason is that there are lots of objects with short lifetime
(for example large amount of node created by the union operator is dropped immediately
after CheckIn call).

While it is true that bigger object cache means lower number of constructor calls, the
same is not always true for the run time. I measured large models with stack size of 500
and 5000 and in most cases, the smaller size produced better results. The reason of this
characteristic is not clear. It can be caused by older, lower quality implementations in the
saturation module of PetriDotNet, or the optimizations in the .NET garbage collector.
For further improvements of the implementation, it would need further studies.

Therefore in the measurements the applied object cache size was 500 which provided better
results than the 0 or 5000 value.

4.2.3 Effects of micro-optimization

The .NET framework and the C# language provides a rich and easy-to-use base for soft-
ware development. These features (e. g., delegates, LINQ expressions, reflection) enables
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Listing 4.1: Cache of deleted nodes.
1 public class MDDNode : IDisposable
2 {
3 /// <summary>
4 /// Cache of old objects.
5 /// </summary>
6 private static Stack<MDDNode> oldInsts = new Stack<MDDNode>();
7
8 /// <summary>
9 /// Maximal size of old instance cache.

10 /// </summary>
11 public static int StackMaxSize { get; set; }
12
13 /// <summary>
14 /// Initializes the static fields (with default values).
15 /// </summary>
16 static MDDNode()
17 {
18 StackMaxSize = 500;
19 }
20
21 /// <summary>
22 /// Returns a new instance of the current class.
23 /// </summary>
24 /// <returns>New node instance.</returns>
25 private static MDDNode GetInstance()
26 {
27 if (oldInsts.Count == 0)
28 {
29 return new MDDNode();
30 }
31
32 var ret = oldInsts.Pop();
33 return ret;
34 }
35
36 /// <summary>
37 /// Returns a new instance of the current class initialized with the given parameters.
38 /// </summary>
39 /// <returns>New node instance.</returns>
40 public static MDDNode GetInstance( [...] )
41 {
42 var ret = GetInstance();
43 ret.Initialize( [...] );
44 return ret;
45 }
46
47 /// <summary>
48 /// Puts the unused instance to the cache.
49 /// </summary>
50 public void Dispose()
51 {
52 if (oldInsts.Count <= StackMaxSize)
53 {
54 // The instance properties and associations are deleted here in the real ←↩

implementation.
55
56 oldInsts.Push(this);
57 }
58 }
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us to write high-quality programs in short time.

However, some of these extensions are not suitable for algorithms with high computational
needs, like the saturation-based model checking. It is not extraordinary, if a method of a
saturation-based algorithm is called for million or billion times, even for small models that
can be verified in a couple of minutes. In this section, I introduce some observations gath-
ered during the development about what structures can be used and what constructions
are better to be avoided.

The “First()” LINQ expression

If we want to pick the first element of a list of array, it is common to use the First()

LINQ method, because it is simple and easy to read. However, after the application of
the First() method, I experienced slowdown in the execution. The reason is that this
method creates first an enumerator which is unnecessary in this simple case. Thus, it
wastes time and memory.

According to the measurements (see Table 4.1), an array.First() call requires about 150
times more run time than a simple array[0] statement (without compilation optimiza-
tions).

Table 4.1: Measurements of indexing and First() call

Solution Run time per call [ns]

array.First() call 204.64
array[0] call 1.39

It has to be noted that in C# even the array indexing is more complex than for example
in the C language, as the indexing operator is a method call and it contains some over-
indexing check. But if we have a look at the disassembled code (see Listing 4.2), even it is
a method call, no real call CPU instructions will be invoked, as the JIT (Just-In-Time)
compiler simplifies the code and eliminates the call in the case of the small methods (this
is the so-called “method inlining”). In some cases, if the indexing is safe (the index is
always between the bounds), the JIT can totally eliminate this index checking and error
handling part too.

Listing 4.2: Disassembled code of an array indexing
1 0000005e mov eax,dword ptr ds:[03E64F3Ch] ; move the start address of the array to eax ←↩

register
2 00000063 cmp dword ptr [eax+4],0 ; compare the length of array to the desired index
3 00000067 ja 0000006E ; if index<length, jump after the call statement
4 00000069 call 62073FD7 ; error handling (throw ←↩

System.IndexOutOfRangeException)
5 0000006e mov eax,dword ptr [eax+8] ; move the array[0] value to eax register
6 00000071 mov dword ptr [ebp-40h],eax ; move the content of eax to variable x
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The disassembly of the First() call looks simpler (see Listing 4.3), but here the call is not
eliminated by the JIT compiler. The First() method itself contains 90 CPU instructions,
so it is not be discussed here, but this method is significantly more complex.

Therefore no First() calls can be used in the saturation codes, even their usage is intuitive
and makes the source code more readable.

Listing 4.3: Disassembled code of a First() call
1 0000005e mov ecx,dword ptr ds:[03103348h] ; move the start address of the array to eax ←↩

register
2 00000064 call 603045A0 ; System.Linq.Enumerable.First() call (contains ~90←↩

instructions)
3 00000069 mov dword ptr [ebp-54h],eax ; gets the address of the return object
4 0000006c mov eax,dword ptr [ebp-54h] ; gets the return object
5 0000006f mov dword ptr [ebp-40h],eax ; move the content of eax to variable x

Conditional statements

The base saturation algorithm has many variants and also, they can be parametrized. If
every variant has a disjoint implementation, the variants do not have effects on each other,
but the source code will not be easily maintainable. If there is only one “unified” source
code for all variants, it could simplify the maintenance but it could have impact on the
performance.

Usually some conditional statements will not have serious impact on the run time, but
typically saturation uses short methods for plenty of times, as it was mentioned before,
therefore it has to be examined, what is the impact of conditional statements to the
performance of the algorithms.

Conditional blocks to parametrize the execution of the program can be implemented in
multiple ways, including:

1. Conditional compilation symbols. In this way, the unnecessary part of the source
code will not be presented in the compiled code, thus the unnecessary part will not
make any impact on the performance.

1 #if false
2 UnnecessaryOperation(1000);
3 #endif

2. Conditions given by constants. In this way, the unnecessary part of the source code
can be presented in the compiled code, but it cannot be used.
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1 const bool COND = false;
2 // ...
3 if (COND)
4 {
5 UnnecessaryOperation(1000);
6 }

3. Conditions given by local variables. This solution can provide some possibility of
reconfiguration, but if the local variable has a constant value, the compiler can
optimize and eliminate it.

1 public void Test()
2 {
3 bool cond = false;
4 if (cond)
5 {
6 UnnecessaryOperation(1000);
7 }
8 }

4. Conditions given by local fields. The advantage of this solution is that the algorithm
can be reconfigured in runtime.

1 public class Test
2 {
3 private bool cond = false;
4

5 public void Test()
6 {
7 if (this.cond)
8 {
9 UnnecessaryOperation(1000);

10 }
11 }
12 }

5. Conditions given by public property of an other object. The advantage of this solution
is that the algorithm can be easily reconfigured in runtime, using the object oriented
paradigms.

1 public class ConditionDescriptor
2 {
3 public Condition {get; set;}
4 public ConditionDescriptor()
5 {
6 this.Condition = false;
7 }
8 }
9
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10 public class Test
11 {
12 private ConditionDescriptor condDesc = new ConditionDescriptor();
13

14 public void Test()
15 {
16 if (condDesc.Condition)
17 {
18 UnnecessaryOperation(1000);
19 }
20 }
21 }

The impact of the different conditional statements is not always intuitive, as the final code
can be modified by the Just-In-Time (JIT) compiler. The JIT compiler can reduce code
size by “method inlining”, it can eliminate unnecessary conditions, etc. [32].

I have measured the upper five possible solutions by calling them for 1,000,000,000 times.
The run time results are the following:

Solution Run time [ms] Run time differ-
ence from Solu-
tion 1 [ms]

(1) Compilation symbol 1533 0
(2) Constants 1523 −10
(3) Local variable 1520 −13
(4) Local field 1906 +373 (+24.3%)
(5) Property of different object 2899 +1366 (+89.1%)

As the measurements showed, there is no difference between the first three solutions.4 If
we examine the disassembled output of the JIT compiler, the conditional statement will
be entirely omitted from the program.

Contrarily, if the condition is given by a local field (Solution 4), some processor instructions
will remain, the disassembled conditional statement is the following:

1 mov eax,dword ptr [ebp-10h] ; eax := address of this
2 cmp byte ptr [eax+4],0 ; compare this.cond and "false"
3 je AFTER_COND ; if the condition is false, jump through the ←↩

UnnecessaryOperation() call
4 mov ecx,3E8h ; parameter (1000) passing for the call
5 call 5FFB0898 ; UnnecessaryOperation() call
6 AFTER_COND:
7 ...

4Note that the third solution used constants as values of the local variable, therefore the conditional
statement was eliminated by the compiler.
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As it can be seen from the disassembled code, every conditional statement implemented
using Solution 4 will add 3 additional processor instruction. Usually it is a really small
overhead that is completely tolerable.

The measurements showed that Solution 5 (which is the most elegant solution above) is
significantly more costly than the others.

1 mov eax,dword ptr [ebp-10h] ; eax := address of this
2 mov eax,dword ptr [eax+4] ; eax := address of condDesc
3 cmp byte ptr [eax+4],0 ; compare condDesc.Condition and "false"
4 je AFTER_COND ; if the condition is false, jump through the ←↩

UnnecessaryOperation() call
5 mov ecx,3E8h ; parameter (1000) passing for the call
6 call 5FFB0898 ; UnnecessaryOperation() call
7 AFTER_COND:
8 ...

As you can see, the call of getter property has been eliminated by the JIT compiler and
only the additional indirection raises the number of necessary processor instructions.

Therefore it is not necessary to implement all variants of the algorithms separately, the
algorithms can be parametrized with small time penalty. For performance reasons, the
earlier saturation-based algorithms were implemented separately or used compilation sym-
bols. The conclusion of these measurements is that it is not necessary, constants and local
variables can be applied to configure the execution of the model checking, thus it is possible
to reconfigure the algorithms in runtime.

4.2.4 Usage of delegates

In the .NET framework, another possibility to create general algorithms is the usage of
delegates. The delegate is a typed function reference, similar to the function pointer in C.
The use of delegates would be handful in bounded algorithms as the bounded state space
exploration algorithms can use multiple truncation strategies (exact or appropriate, see
Section 2.6.1). But what is the impact of the delegates to the performance?

To be able to determine it, I measured the cost of direct calls and the calls using dele-
gates. The measurement codes can be seen on Listing D.1.3. I also measured the cost
of parametrized calls: in this measurement, I added a long and a bool parameter to the
called method.

The run time measurements can be seen in Table 4.2. As it can be seen, there is a
significant difference between the cost of direct calls and calls through delegates, even
if parameters are used. However, the impact of this difference is usually small, as the
direct calls and the calls through delegates are fast, the difference between them in real
applications is not significant.

If we have a look at the disassembled code, we can see that the direct call is compiled into
a single call processor instruction without parameters.
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Table 4.2: Measurements of overhead of delegates

Run time per call [ns]
Solution without parameters with parameters

direct call 2.52 2.53
delegate call 3.62 3.90

1 call dword ptr ds:[0052385Ch] ; calls TestMethod directly

If delegates are used instead of direct calls, some new processor instructions are added to
the compiled code, because the address of the method has to be determined, as it can be
seen below.

1 mov ecx,dword ptr [ebp-28h] ; ecx := variable del
2 mov eax,dword ptr [ecx+0Ch] ; eax := del._methodPetr (address of TestMethod)
3 mov ecx,dword ptr [ecx+4] ; ? (in this case, it does not modify ecx)
4 call eax ; calls TestMethod

If the call is parametrized, some new instructions are added. To put the long parameter
to the stack, two push instructions are needed. The Boolean parameter is passed through
a register, it needed one more processor instructions, as it can be seen below.

1 push dword ptr [ebp-0Ch] ; push first part of the long parameter
2 push dword ptr [ebp-10h] ; push second part of the long parameter
3 xor ecx,ecx ; sets the bool parameter (to false)
4 call dword ptr ds:[0028386Ch]

If the same parametrized method call is performed by a delegate, the same additional
instructions can be observed (two push and one xor instruction). Therefore the cost of
using delegates is not higher if parameters are used.

1 push dword ptr [ebp-10h] ; push first part of the long parameter
2 push dword ptr [ebp-14h] ; push second part of the long parameter
3 mov ecx,dword ptr [ebp-28h]
4 xor edx,edx ; sets the bool parameter (to false)
5 mov eax,dword ptr [ecx+0Ch]
6 mov ecx,dword ptr [ecx+4]
7 call eax

As it can be seen, usage of delegates means certain overhead, but the absolute difference
between direct calls and calls through delegates is small, their impact on the execution
time of the whole model checking is not significant. Therefore I used delegates in the
realization of the bounded saturation-based state space exploration algorithms. In this
way, it is easily parametrizable which truncating method is applied.
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Chapter 5

Evaluation

In this section measurements are introduced and discussed supporting the evaluation of
the presented algorithms. After the introduction, the Section 5.1 shows run time mea-
surements. The next chapter (Section 5.2) presents memory consumption measurements.
Section 5.3 is dedicated to the comparison of compacting and noncompacting incremen-
tal methods. Section 5.4 describes two real case studies where the new model checking
techniques can be applied. Finally, the conclusions are summarized in Section 5.5.

To evaluate the new developments, they have to be compared to the former algorithms.
As my task was to improve the saturation-based bounded saturation algorithms, I have
chosen the following algorithms as baselines:

• Unlimited saturation algorithm (Unlim) This is basically the same algorithm
as the one presented in [14] or the algorithm in [53] with infinite bound and without
truncation. Using this algorithm, the complete state space will always be explored
enriched with distance information.

• Restarting bounded saturation algorithm (Rest) This algorithm is the basic
incremental bounded saturation presented in [50, 51]. It starts every iteration from
scratch, so it runs from the initial state space in each iteration. The detailed in-
troduction of this algorithm can be read in Section 3.2. My primary goal was to
improve its performance.

I will compare the following new algorithms to them:

• Continuing bounded saturation algorithm (Cont) This algorithm is similar
to the restarting algorithm, except it continues every iteration from the state space
explored in the last iteration. The algorithm is presented in Section 3.3.

• This is the algorithm presented in Section 3.4 which starts every iteration from the
states on the border of the explored state space of the last iteration.
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• Compacting bounded saturation algorithm with subtraction (CompSub)
This algorithm is the compacting bounded saturation algorithm improved by the
extension with subtraction described in Section 3.4.6.

Now it is given which algorithms will be measured. But how they can be measured and
compared? As my goal was to improve the performance of the former algorithms, I will
compare their performance. Generally, there are three main dimensions of performance
comparison:

• run time comparison,

• memory consumption comparison,

• I/O consumption (usage of disk, network, etc.).

I/O measurements. As the saturation-based analysis algorithms does not use the net-
work or the disk directly, it is unnecessary to compare them in these dimensions.

Run time measurements. The measurement of the run time is relatively easy. The
.NET framework provides an accurate timer class (System.Diagnostics.Stopwatch). Us-
ing that, the run time of the algorithms can be measured. It has a relatively small perfor-
mance penalty (there is no resource consumption after starting it except a small amount
of memory), while it has high-precision on modern computers.1

Memory measurements. Measuring the memory consumption is not trivial and am-
biguous in the field of managed software. Two different approaches exist to measure the
memory consumption:

• measuring the memory allocation,

• measuring the peak or average memory consumption.

Basically, the memory allocation measures the total cumulated size of all created objects.
This measure is deterministic, but it does not determine, how much memory is needed by
the application.

If we measure the peak memory consumption, we measure the maximum size of active
objects. However, .NET uses a garbage collector to free up the space occupied by unused
objects. This garbage collector runs when the operating system is low on memory or

1The precision depends on the used computer but typically it is about 106 to 109 tick/second which
means 1 µs to 1 ns accuracy. If the hardware does not support a high-resolution performance counter,
Stopwatch uses the DateTime managed class instead of the unmanaged QueryPerformanceCounter Win32
API call. In this case, the accuracy is about 10 to 20 ms.
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its Generation 0 (i. e., the area of young objects in the heap) is full [32], so it is quasi-
nondeterministic from the view of the application. It highly depends on the current
computer and the other running programs. Therefore the peak memory consumption is
difficult to measure and the results are not accurate.2

However, measuring the peak memory consumption is not crucial in this case. Consider an
ordinary computer with 4 GiB of RAM. If the algorithm needs significantly less memory
than the available memory, it will run (relatively) fast, because there will not be too many
need for garbage collection. In the case of a verification, usually it is not primary whether
the program consumes 100 MiB or 1 GiB, as typically no other operations will be done
on the same computer at the same time.

The more memory the application consumes, the more garbage collection will be necessary.
If the peak memory need is larger than the size of the available memory, the performance
will be significantly dropped due to the garbage collection and the automatic swapping
performed by the operating system. So the memory needs will highly affect the run time
of the algorithm, thus the run time of the algorithm is a more important metric than the
memory consumption.

In Section 5.1 run time measurements are shown and evaluated both for full state space
exploration and for CTL expression evaluation (which is the real task for the iterative
algorithms). After, some memory measurements are discussed in Section 5.2.

5.1 Run time measurements

This section compares the run times of the described bounded saturation algorithms on
different models with different CTL expressions to evaluate. (The models used in mea-
surements are described in Appendix B.)

Measurement method. The run time of the algorithms are measured as the time
elapsed from starting to the finishing of the algorithm. This run time does not include
the initialization of the global data structures and the GUI input/output. The time is
measured using the previously described Stopwatch class. The machine used for measuring
is defined in Appendix D.3.

The measurements in this section are divided into two parts: the run time measurements
of the full state space exploration and the run time measurements of the evaluation of a
CTL expression.

2The reader can find more information about the garbage collector in the .NET Framework in [32].
There are lots of possibilities to tune the garbage collection methods which could be useful in the future
for the saturation algorithms.
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5.1.1 Full state space exploration

The first dimension of the run time analysis is the full state space exploration. In this case,
the complete state space have to be explored by the model checker to be able to evaluate the
requirement. This is the worst case scenario for the bounded model checking algorithms.
It cannot be expected that any of the bounded model checking algorithms will outperform
the non-bounded algorithms, as the bounded algorithms have their typical overhead, but
they cannot stop earlier, thus it is not possible to benefit from the boundedness. However,
it is important to compare the performance of the different bounded algorithms.

Table 5.1 shows the results of the measurements, done on several different models of
different size (different parameters). The bold numbers mark the best run time for each
model. If the best run time is achieved using the Unlimited algorithm, then the best
bounded run time is bold too. There are some observations easy to remark.

• The run time of the Unlimited saturation algorithm (Unlim) algorithm is less than
the run time of the other algorithms in most cases. Its reason is that the incremental
algorithms have an overhead due to their incrementality. In a normal case, there is a
trade-off between the overhead of the incrementality and the advantage of exploring
fewer states. However, if the full state space is explored, there is no advantage of
exploring fewer states than all states.

• Contrarily to the first observation, in the case of the Hanoi model, the compacting
algorithms perform better than the unlimited algorithm. This anomaly is discussed
in details in Section 5.3.

• Usually the results of the restarting and the continuing are close to each other. The
same is true for the two compacting methods. However, there are significant differ-
ences between the results of the restarting/continuing and the compacting methods.

• For some models, like Phil–N , RR–N , Kanban–N , the compacting algorithm with
subtraction extension (CompSub) performs better than the simple compacting algo-
rithm.

• It can be seen that the run time depends not only on the model but on the increment
parameter too. (For example, the run time of incremental algorithms are better with
increment=2 than with increment=1 for the model Queen–10.) This dependency is
discussed below in details.

Effect of the parameters. As I stated above, the results of the measurements depends
not only on the models, but on the parameters too. Important parameters are the par-
titioning of the model and the increment parameter of the bounded algorithm. As the
challenges in model partitioning is not discussed in this thesis, I focus on the other pa-
rameter. (The partitioning was always the same for each model. The used partitioning is
given in Appendix B.)
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Figure 5.1: Results of full state exploration of Counter-12 model with different
increment values

Consider the Counter–12 model. Multiple measurements were made on this model with
different increment values. The results are shown in Table 5.2 and in Figure 5.1 (note that
both axes are logarithmic on the diagram).

As it can be seen, the overhead of iterative bounded checking is significantly lower if the
increment is bigger. However it has to be noted that Counter is a pathological model as
discussed in Appendix B.7.

5.1.2 Evaluation of CTL expressions

It is not surprising that in most cases, the unlimited method is faster than every iterative
saturation algorithm if the full state space has to be explored, because the overhead of the
incremental operation can be avoided. But if the given CTL expression can be evaluated
based on a (relatively small) part of the state space, the iterative methods can perform
better. This is the case when the iterative algorithms have an advantage.

Table 5.3 shows the results of the measurements of evaluating various CTL expressions.
Usually I used the same CTL expressions as Ciardo et al. in [12, 15, 13].

The most important observations are the following:

• If the problem is “shallow”, usually the incremental algorithms perform better. In
many cases, the unlimited method was unable to calculate the result before the
timeout (600 s) .
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Table 5.1: Run times of full state space exploration

Run time [s]

Model Increment Unlim Rest Cont Comp CompSub

Counter–8 16 0.095 0.102 0.104 0.182 0.180
Counter–8 32 0.091 0.103 0.100 0.188 0.179
Counter–12 32 0.095 0.200 0.225 0.261 0.270
Counter–16 32 0.097 13.811 13.715 5.008 4.700
Counter–16 64 0.096 6.554 6.893 1.905 1.928
Hanoi–8 10 3.673 15.153 2.416 0.966 0.987
Hanoi–10 10 86.292 >600 66.940 7.391 7.445
Hanoi–12 10 >600 >600 >600 64.872 64.204
Kanban–2 10 0.095 0.108 0.107 0.211 0.202
Kanban–10 10 0.158 3.645 4.436 41.572 23.481
Phil–100 5 0.129 1.095 1.248 97.364 9.255
Queen–8 2 0.280 0.353 0.313 0.384 0.393
Queen–8 1 0.272 0.420 0.370 0.455 0.453
Queen–10 2 3.679 5.563 5.167 5.929 5.986
Queen–10 1 3.657 7.091 6.879 7.409 7.363
RR–10 10 0.269 0.577 0.351 0.524 0.464
RR–25 10 2.929 17.264 7.680 12.788 9.533
RR–50 10 24.719 361.535 117.597 223.624 118.293
SR–5 5 0.126 0.218 0.242 0.516 0.481
SR–10 5 0.286 13.191 17.346 55.509 44.462

Table 5.2: Results of full state exploration of Counter-12 model with different increment values

Run time [s]

Model Increment Unlim Rest Cont Comp CompSub

Counter–12 1 0.095 2.719 3.894 10.229 5.986
Counter–12 2 0.096 1.598 2.036 3.897 3.995
Counter–12 4 0.101 0.944 1.123 1.298 1.266
Counter–12 8 0.097 0.487 0.580 0.554 0.548
Counter–12 16 0.100 0.303 0.353 0.310 0.308
Counter–12 32 0.095 0.200 0.225 0.261 0.270
Counter–12 64 0.095 0.169 0.168 0.233 0.229
Counter–12 128 0.095 0.134 0.135 0.223 0.221
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Table 5.3: Run times of CTL expression evaluation

Run time [s]

N Unlim Rest Cont Comp CompSub

FMS–N (expression: EG E[M1 > 0 U P1s = 3 ∧ P2s = 3 ∧ P3s = 3], increment: 10)
25 2.120 40.019 40.566 18.647 21.981
50 24.501 56.307 59.514 21.964 26.284
100 396.880 61.679 63.510 21.775 26.127
1000 > 600 60.174 62.119 21.686 25.585
10,000 > 600 60.055 62.397 21.590 25.662
1,000,000 > 600 60.471 62.269 21.797 25.641

Hanoi–N (expression: EG EF (B8 > 0), increment: 10)
12 > 600 2.489 0.810 1.548 1.536
14 > 600 2.892 0.980 2.389 1.680
16 > 600 3.253 1.110 1.829 1.817
18 > 600 3.603 1.222 1.905 1.953
20 > 600 4.079 1.425 2.137 2.098

Phil–N (expression: E[eating2 = 0 U eating1 = 1], increment: 5)
200 0.165 0.264 0.287 0.653 0.586
300 0.215 0.413 0.446 1.039 0.901
400 0.279 0.611 0.640 1.478 1.187

RR–N (expression: EG true, increment: 10)
10 0.152 0.206 0.206 0.706 0.715
25 0.992 3.652 2.404 23.722 22.715
50 7.985 68.259 32.401 > 300 > 300

RR–N (expression: E[pload1 = 0 U psend0 = 1], increment: 10)
10 0.151 0.107 0.106 0.204 0.207
25 0.976 0.113 0.111 0.220 0.223
50 7.603 0.140 0.142 0.251 0.256
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• What is important to see is that there is no best solution. According to the mea-
surements, it is highly model and expression-dependent which bounded saturation
algorithm performs the best. As it can be seen, for the Hanoi–N model with the
given expression the continuing algorithm was the best. For FMS–N with the given
expression, the compacting algorithm performed best.

• There are cases when large part of the state space exploration is needed to be able
to evaluate the given CTL expression and the unlimited algorithm is better than
the incremental algorithms. For example, this is true for the Phil–N model. For
this model, the state space representation of the partial state space built by the
bounded algorithms is not efficient compared to the EDD representation of the full
state space.

• While there is no best solution, there were no measurements when the restarting
algorithm was the best. As the aim of this thesis was to improve the performance
of the restarting algorithm, it is an important observation.

5.1.3 Scalability

Scaling with the size of the model. One of the advantages of the iterative saturation-
based methods that they scale with the “size of the problem” (the size of the state space
fragment which is needed for CTL expression evaluation) and not with the size of the
model.

Consider the checking of the EF bit12 = 1 expression on the Counter models. (This expres-
sion means the counter can reach the decimal 212 value.) Using the unlimited algorithms,
the full state space needs to be explored, thus the run time depends on the size of the
model. However, only the same part of the model (the first 12 bits) needs to be explored to
evaluate the given expression, no matter what is the size of the model. The measurements
are depicted in Figure 5.2. It shows that the restarting and continuing algorithms do not
depend on the size of the model. However, the run time of the compacting saturation
depends on the model size. Its possible reason is that even the states that needed to be
explored are the same for every model, the built state space EDDs will be different, and
the depth of the recursion also depends on the size of the model.

Scaling with the size of the problem. The iterative methods perform well if the
state space which is needed to be explored for the expression evaluation is relatively small.
This characteristic can be observed on the Queen–10 model, by evaluating EF (qi = 0)
expression (which means informally: the first i queen can be placed on the chessboard)
with different i values. The measurements can be seen in Table 5.4 and in Figure 5.3.

There are two important observations. First, it can be seen that for small values of
parameter i, the iterative algorithms are much better than the unlimited. But as the
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Figure 5.2: Runtime of EF bit12 = 1 evaluation on Counter–N models

Table 5.4: Results for evaluation of EF (qi = 0) on Queen–10 model

Run time [s]

Parameter i Unlim Rest Cont Comp CompSub

1 1.370 0.162 0.172 0.246 0.247
2 1.385 0.166 0.168 0.330 0.338
3 1.343 0.252 0.245 0.340 0.350
4 1.395 0.247 0.241 0.973 0.966
5 1.403 0.759 0.729 0.978 0.949
6 1.357 0.757 0.712 2.747 2.762
7 1.384 2.055 2.042 2.746 2.763
8 1.381 2.069 2.014 4.200 4.171
9 1.353 3.658 3.727 4.147 4.316
10 1.393 3.689 3.597 4.512 4.630

parameter i increases, the required size of the state space to be explored also increases
and the advantage of the incremental algorithms decreases. If value of parameter i is high,
the effect of the overhead caused by incrementality is higher than the benefit of the smaller
state space exploration and the unlimited algorithm will have better results.

Another observation is that there are “plates” in the run time of incremental algorithms
(i.e., the run time restarting and continuing algorithm is nearly the same for i = 5 and
i = 6). Its reason is that the increment value was set to 2 in this case, so the same part of
the state space is explored for i = 5 and i = 6. These plates are at different places for the
restarting/continuing and the compacting algorithms, because the compacting algorithms
can stop one iteration earlier in some cases, as it was discussed in Section 3.5.
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Figure 5.3: Results for evaluation of EF (qi = 0) on Queen–10 model

Table 5.5: Measurements of peak memory consumption

Peak memory consumption (without editor) [MiB]

Model Expression Incr. Unlim Rest Cont Comp CompSub

Hanoi–10
EG EF (B8 > 0)

10 1580.92 83.11 32.43 36.25 37.41
Hanoi–12 10 > 4 GiB 86.60 27.88 38.11 32.32
Hanoi–16 10 > 4 GiB 117.73 38.84 57.18 43.85
FMS–25 EG E[M1 > 0 U P1s =

P2s = P3s = 3]

10 43.86 976.56 955.50 420.53 539.24
FMS–50 10 234.66 1262.54 1165.71 471.70 631.07
FMS–100 10 1820.83 1224.42 1179.33 495.54 633.95
Queen–10 EF (q2 = 0) 2 297.33 33.64 33.65 30.62 26.57
Queen–10 EF (q4 = 0) 2 266.50 46.58 45.04 75.88 74.67
Queen–10 EF (q6 = 0) 2 258.33 86.71 85.34 274.60 275.58
Queen–10 EF (q8 = 0) 2 263.90 256.96 229.34 414.26 413.96
Queen–10 EF (q10 = 0) 2 243.85 460.58 354.12 508.95 487.47

5.2 Memory consumption measurements

This section presents memory consumption measurements of the described algorithms.

5.2.1 Peak memory consumption

Method. First, I measured the memory consumption of the PetriDotNet editor with
the loaded model. Then I run a saturation algorithm and measured the peak memory
consumption. The values presented below are the measured peak values of which the
memory consumption of the editor is subtracted. Every metric was get by the Sysinternals
Process Explorer tool where I used the “Private bytes” and “Peak private bytes” metrics.
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The measurements of peak memory consumption can be seen in Table 5.5. The main
observations are the following:

• One of the new iterative algorithms always requires less memory than the restarting
method. Therefore it was successful to improve the memory consumption of the
restarting algorithm.

• For the Hanoi model with the given expression the memory consumption of the
continuing algorithm is about 30–40 % of the memory consumption of the restarting
method.

• For the FMS model with the given expression the memory consumption of the com-
pacting algorithm is about 40 % of the memory consumption of the restarting or the
continuing method.

• A strange behaviour can be observed in the case of Queen–10 model using the Un-
lim algorithm. As we can see, while the memory consumption of the incremental
algorithms is larger and larger as more and more queens have to be placed to the
chessboard, the Unlim algorithm consumes less and less memory. The difference in
memory consumption in the case of Unlim algorithm is from the formula checking
phase. Apparently, more nodes have to be created in order to compute the expression
EF (q2 = 0) than for the computation of EF (q10 = 0) with the current decompo-
sition of the model. It has to be noticed, that this difference between the memory
consumption with different parameter values is probably much less, this difference
might be due to the strategy of the garbage collector.

5.2.2 Memory allocation measurements

I also measured the number of decision-diagram-related objects created during the different
analysis algorithms. For these measurements I used the CLR Profiler which provides the
needed information. It has to be noted that the optimization described in Section 4.2.2
was turned on, the size of the caches was 500. The number of reused objects are not
included in the measured metrics.

The measurements are shown in Table 5.6. For every algorithm, two metrics were mea-
sured: the total number of created EDD nodes and the total number of created MDD
nodes. (To be precise, the constructor calls of these classes were measured.)

The EDDs are used for encoding the state space, while MDDs are used for model checking
and to encode the constraints of the compacting algorithms. (MDDs are also used to
encode the next-state functions, but they are not included in the number of MDD nodes
as these are implemented as special MDD nodes. The number of next-state nodes are
equal for every iterative methods, so their comparison is unnecessary.)

The observations concluded from the measurements are the following:
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Table 5.6: Total number of created node objects

Total number of created node objects

N Unlim Rest Cont Comp CompSub

EDD MDD EDD MDD EDD MDD EDD MDD EDD MDD

Hanoi–N (expression: EG EF (B8 > 0), increment: 10)
8 108 767 55 391 124 279 30 620 37 874 30 620 3453 80 806 3453 80 806
10 2 126 550 373 434 122 500 31 355 37 992 31 355 3508 76 634 3508 76 634
12 — — 122 554 31 759 38 022 31 759 3560 75 777 3560 75 777
16 — — 122 662 32 499 38 082 32 499 3664 76 421 3664 76 421

FMS–N (expression: E[M1 > 0 U P1s = 3 ∧ P2s = 3 ∧ P3s = 3], increment: 10)
25 17 790 91 538 770 299 214 311 774 300 214 311 205 416 622 470 315 600 622 470
50 110 506 346 688 792 204 215 378 796 302 215 378 215 237 642 396 325 148 642 396
100 783 221 1 350 113 792 224 215 378 796 322 215 378 215 237 642 396 325 148 642 396

Queen–10 (expression: EF qN = 0, increment: 2)
2 87 455 161 362 3197 630 3200 630 7392 4087 7392 4087
4 87 455 161 361 12 052 4313 10 802 4313 34 620 30 819 34 620 30 819
6 87 455 161 360 48 931 32 836 45 276 32 836 84 564 123 831 84 564 123 831
8 87 455 161 359 127 304 140 057 120 368 140 057 120 128 231 575 120 128 231 575
10 87 455 161 358 214 201 301 360 203 434 301 360 120 128 312 280 120 128 312 280

• Usually the incremental methods need less constructor calls than the unlimited al-
gorithm.

• In the case of the Hanoi and the FMS models, where the size of the model was
changed but the expression was not, the node counts of the iterative algorithms are
approximately constant, while the node counts of the unlimited method is growing.
Contrarily, in the case of the Queen model, where the size of the model was constant
and the expression was changed, the unlimited algorithms used constant amount of
nodes and the iterative algorithms used more and more nodes as the evaluation of
the expression became more and more difficult.

• The MDD node count of the compacting saturation and the compacting saturation
extended with subtraction is the same. That is because there is no difference between
these two algorithms after the end of each iteration, exactly the same EDD will be
produced by them, thus the constraints and the input of the model checker will be
the same. There is a difference only in the building of the state space encoded by
EDD. For similar reasons, the MDD node count of the restarting and the continuing
saturation is the same too.

• We have seen earlier that the compacting algorithm performs well for Hanoi model.
The possible reason can be seen on the measurements: the compacting algorithm
uses about 100 times less EDD nodes.

5.3 Comparison of compacting and noncompacting methods

As it can be seen on the measurements, there are models (e.g. the full state space explo-
ration of Hanoi–N model where compacting algorithms perform better than the unlimited
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algorithm) for which the performance of the compacting algorithms is extremely good and
there are models (e.g. the DPhil–N model) for which the compacting methods perform
poorly. What causes this difference?

The DPhil and the Hanoi models have different characteristics: while DPhil is a rather
asynchronous and symmetric model (components affect each other’s behaviours only lo-
cally), Hanoi is a synchronous model. Therefore DPhil has a relatively “tight” and “dense”
state space (there are lots of states at the same distance from the initial state), contrarily
Hanoi has a “narrow” state space (there are states at long distance, but there are not so
many states exactly at each distance). It can be easily seen in Figure 5.4 which shows the
number of states by their distance values.

A difference can be observed in the size of EDDs encoding the state space too. I measured
the size of state space EDDs at the end of each iteration. I also measured the initial (the
“compacted”) size of the state space for the compacting method. The results can be seen
in Figure 5.5. As we can see, the state space representation created by the compacting
algorithm remains small for Hanoi model, but the representation of continuing method
grows rapidly. The same advantage of the compacting method cannot be observed in the
case of the asynchronous DPhil model.

5.4 Industrial case studies

Apart from the benchmarks introduced before, I made measurements on two real cases,
as shown in this section.

5.4.1 Verification of the PRISE logic in a nuclear power plant

In Pressurised Water Reactors (PWR), like the reactors in the Paks Nuclear Power Plant,
the cooling system is divided into two circuits: a primary and a secondary coolant loop.
The water in the primary circuit is directly heated by the fissile material. The turbines
producing electricity take place in the secondary coolant loop where the coolant is non-
contaminated. The heat is transferred between the two circuits through a heat exchanger.
The damage of this fragile heat exchanger can induce the so-called Primary to Secondary
Leakage Event (PRISE) that means the radioactive coolant from the primary loop con-
taminates the water in the secondary circuit. To reduce the risks of this event, a safety
function is deployed that identifies the PRISE event and initiates the necessary emergency
operations [42, 43].

For the measurements, I used the Coloured Petri Net (CPN) model of the PRISE safety
logic. The logic was given as a Function Block Diagram (FBD) [42] as can be seen in
Figure 5.7. The transformation of this FBD to Coloured Petri Net is done in [3]. The
structure of the CPN model can be seen in Figure 5.8.
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This CPN model of the PRISE safety logic is parametric: by modifying the delay of
the delay module and the pulse width of the pulse modules, we can get models with
different complexity. Here I consider three versions with three different size of parameters:
PRISE S, PRISE M, and PRISE L. I measured the evaluation of two different expressions:
the first is a simple reachability property that can be considered as relatively “shallow”,
the second is a more complex, real requirement expressing that the emergency action is
only initiated if it is necessary.

The run times can be seen in Table 5.7. Every measurement was performed with different
initial bounds (Init b.) and increment values (Incr). Based on the results the following
observations can be made:

• As the first expression refers to a relatively shallow property, the bounded model
checking outperforms the non-bounded model checking, as the answer can be given
based on a small part of the state space.

• For the bigger models (PRISE M and L) it can be seen that all the new bounded al-
gorithms (continuing, compacting) are better than the original restarting algorithm.
Furthermore the measurements show that the extension of the compacting satura-
tion (CompSub algorithm) can have a huge positive impact on the model checking
time.

• As it was observed previously, the bigger increment value usually means faster com-
putation as fewer iterations are needed. However for the PRISE model, the (29,29)
configuration is significantly better for all the bounded algorithms than the (40,25)
configuration, even if the latter needs less iterations (see Figure 5.9). What makes
the number 29 special? If we observe the distance distribution of the states in the
state space (Figure 5.6) we can see a certain periodicity: the number of states at
n · 29 distance (n ∈ N) is much less than at other distances. The cause is in the
structure of the model. This safety logic has a cyclic behaviour, thus at the end of
the cycles, the number of possible states is low. However, the order of independent
computations during a cycle is not defined, thus there is a huge number of possible
combinations. The compacting algorithms can highly benefit from this behaviour.

• The evaluation of the second expression relies on a big part of the state space, thus
the non-bounded algorithm usually has lower run times. The restarting algorithm
cannot evaluate the given CTL expression for the models PRISE M and L. The
continuing algorithm provides slightly better performance. However, the compacting
algorithms were able to evaluate the requirement for all the models. Moreover, using
the optimal parameters, the CompSub algorithm provided even better results for the
PRISE L model than the non-bounded algorithm.
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Table 5.7: Run times of CTL expression evaluation on PRISE models

Run time [s]

Model Init b. Incr Unlim Rest Cont Comp CompSub

Expression 1: EF(OUTPUT-1 can be true)

PRISE S 5 10 2.84 1.97 2.11 3.58 2.95
20 20 2.76 1.52 1.56 2.42 1.81
40 25 2.80 1.20 1.28 2.69 1.85
29 29 2.79 1.14 1.21 1.34 1.19

PRISE M 5 10 11.18 34.13 19.58 15.02 12.26
20 20 11.11 19.09 10.74 10.07 6.64
40 25 11.03 14.58 9.14 11.05 6.48
29 29 11.10 13.66 8.91 4.79 4.07

PRISE L 5 10 27.88 34.45 19.37 15.30 12.18
20 20 28.47 19.23 10.88 10.28 6.63
40 25 28.03 14.68 9.13 10.92 6.55
29 29 28.42 13.72 8.98 4.80 4.02

Expression 2: there is no PRISE activation, if not necessary

PRISE S 5 10 5.37 78.63 41.87 42.85 38.33
29 29 5.39 33.97 19.98 12.18 10.33

PRISE M 5 10 21.96 — — 122.62 107.97
29 29 21.98 — 113.03 30.38 26.13

PRISE L 5 10 56.86 — — — —
29 29 56.70 — — 51.83 46.28
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5.4.2 Verification of PLC programs in CERN

CERN (European Organization for Nuclear Research or European Laboratory for Parti-
cle Physics) is one of the biggest scientific organizations in the world. The goal of this
organization is to study and understand the fundamental structure of the universe in the
frame of an international collaboration. For this reason, CERN operates numerous sci-
entific instruments and an accelerator complex, including the Large Hadron Collider, the
largest and most powerful particle accelerator on the world. The operation needs reliable
auxiliary systems, such as cooling and ventilation, cryogenics, gas systems, etc. (This
introduction is based on [22].)

Many of these systems use PLCs (Programmable Logic Controllers) as industrial con-
trollers. To standardize the PLC-based systems and to facilitate the development, a
framework called UNICOS (Unified Industrial Control System) is developed at CERN. It
provides a standard library of common objects (called baseline objects) and a development
method [7].

The correctness of the UNICOS baseline objects has high priority, as they are the building
blocks of most PLC programs operated in CERN. Verification techniques, such as manual
and automated testing were applied to the baseline objects [28, 29], but these techniques
are not efficient for finding all kind of software faults, as the exhaustive testing of complex
programs is typically not possible.

Model checking seems to be a good choice to complement the testing techniques in order to
improve the quality of the PLC codes by finding bugs in the implementation. During my
internship at CERN, I was working on applying formal verification to PLC programs. The
goal was to check complex properties on the PLC code, therefore we developed a method
to generate models from the PLC code automatically for the verification of properties
expressed in CTL or LTL (Linear Temporal Logic) [22].

This method (see Figure 5.10) first converts the PLC programs to an internal automaton-
based intermediate model. The CERN PLC programs are mainly written in ST language,
but partially the SFC and IL languages are supported too. Then various reductions are
performed on this intermediate model: simplification of the automata, merge of variables,
property-dependent reductions based on the requirement to be verified, etc. After the
reductions, the intermediate model is converted to the concrete syntax of a model checker
tool. Currently NuSMV/nuXmv, UPPAAL, the BIP framework and PetriDotNet (or other
tools supporting the PNML standard) are supported. More details can be found about
the reduction techniques in [23]. A detailed case study applying this method can be found
in [30].

The common intermediate model makes the method flexible and easily extendible. To
include a new model checker tool, only the mapping between the intermediate model and
the input format of the model checker tool have to be described, the conversion from PLC
languages or the reductions are not affected by the extension.
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Figure 5.10: Automated PLC code modelling and verification workflow [30]

Using this method, many requirements were verified on several baseline objects. These
verifications revealed many problems. Some requirements were not satisfied because they
came from bad or incomplete specification. Other expressions were proved to be false
because of real bugs in the implementation. These bugs were demonstrated using the
real PLC hardware and software too, to show that the source of the problem is in the
implementation, and not in the model generated automatically.

Our verifications were performed mainly using NuSMV/nuXmv, as its input language is
close to the intermediate model and because it provided the best results so far. However
for evaluation of the methods presented here, some measurements using the algorithms
described in this thesis are shown. The coloured Petri net used as model is automatically
generated using our tool implementing the described methodology and it benefits from
the reduction techniques of the methodology.

Five requirements were used for evaluation. All of them describes requirements of the
baseline object called OnOff. This is a widely-used baseline object in UNICOS whose size
is representative for most of the standard objects. The requirements are the following:

• REQ1 and REQ2 are simple reachability properties, checking if a particular part of
the code is reachable or not. Both are satisfied.

• REQ3 and REQ4 are real safety requirements (in the following form: AG((α ∧ β ∧
. . . )→ ω), where the Greek letters denote Boolean predicates) given by developers.
None of them are satisfied. REQ3 is false because of a real bug in the implementa-
tion. REQ4 is false, because its specification was not complete and it discarded a
specific situation.

• REQ5 is a real safety requirement similar to the last two, but this is satisfied.

The results of the measurements can be seen in Table 5.8. For REQ1–REQ4, the bounded
algorithms provide better results than the unlimited algorithm. In this cases, the result
can be determined based on a part of the full state space. However for REQ5, the whole
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Table 5.8: Run times of CTL expression evaluation on models of CERN PLC codes

Run time [s]

Model Req. Init b. Incr Unlim Rest Cont Comp CompSub

OnOff REQ1 5 5 3.18 0.14 0.14 0.20 0.20
OnOff REQ1 10 10 3.22 0.61 0.62 0.69 0.71
OnOff REQ2 5 5 3.21 0.99 1.07 1.15 1.15
OnOff REQ2 10 10 3.15 1.24 1.39 1.51 1.52
OnOff REQ3 5 5 3.15 0.99 1.08 4.74 4.48
OnOff REQ3 10 10 3.21 1.27 1.39 2.95 3.10
OnOff REQ4 5 5 3.19 0.98 1.08 3.58 3.57
OnOff REQ4 10 10 3.20 1.25 1.39 2.76 2.77
OnOff REQ5 5 5 5.81 26.07 27.83 16.43 16.45
OnOff REQ5 10 10 5.89 17.11 17.31 11.71 11.66

state space has to be explored, therefore the bounded methods do not have benefit and the
unlimited method outperforms its bounded counterpart. For these examples, typically the
restarting algorithm provided the best results. However, for REQ5, the two compacting
algorithms performed better than the restarting and compacting algorithms.

These are preliminary results but they show that bounded model checking can be used
to detect shallow problems efficiently. However, if a safety requirement is satisfied, the
full state space has to be explored, thus the bounded algorithms are not efficient. Con-
sequently, the bounded methods can be useful for safety requirements in the beginning
of the development process, when bugs can be found often. For mature program codes,
where the occurrence of bugs is less likely, the usage of nonbounded techniques can be
more efficient.

5.5 Conclusions of measurements

In this section, I compared the described bounded saturation-based algorithms by several
different metrics. The conclusion was nearly the same in every case: there is no “best
solution”. It is highly depending on the model and the expression to be evaluated, if the
iterative methods are usable or not, and if they are usable, which iterative algorithm is
the best.

It can be concluded too, that in most cases, one of the iterative algorithms proposed in
this thesis perform better than the restarting method. As the goal of this thesis was to
improve the performance of the restarting algorithm, the measurements proved that this
goal was fulfilled.

A surprising conclusion of the measurements is that the subtracting extension does not
improve the performance of the normal compacting algorithm, because usually it needs
more time to execute. However it can be caused by the implementation (the saturation
might be more optimized than the decision diagram operations, but the reimplementation
of the diagram operations was not an objective of this work). However, in the case of full
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state space exploration, it has measurable positive effects, so this extension is not useless
and it is worth further analysis.
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Chapter 6

Summary

This chapter summarizes the work described in this thesis. After, some future directions
are drawn up.

In my thesis, I have examined the existing saturation-based algorithms, focused on the
bounded state space exploration algorithms. Then I proposed new algorithms focusing to
be able to perform incremental bounded state space exploration. During the evaluation
it turned out that both the continuing and the compacting saturation have advantages.
There are specific models and expressions to check for which the continuing saturation is
better, but for other models, the compacting saturation could be a better choice. For some
problems (when the problem is not “shallow”), all iterative methods perform badly, but
this is obvious. Therefore the conclusion is that there is no best bounded saturation-based
algorithm, the performance depends on the characteristics of the model.

All objectives of this thesis are reached:

• I have examined the existing saturation-based bounded algorithms in Section 2.6,
2.7 and 3.2.

• I have modified the existing bounded state space exploration algorithms to be able to
explore states from multiple initial states. The problem is discussed in Section 3.3.1,
the modified algorithm is Algorithm C.11.

• I have developed a method to ensure that the bounded state space exploration does
not “reexplore” previously explored states. This method is the “negated constrained
saturation” presented in Section 3.4.4.

• I have combined these solutions into a bounded saturation-based model checking
algorithm, which is the compacting saturation (see Section 3.4 and Appendix C.6).

• I have demonstrated the new methods and evaluated them using measurements
presented in Chapter 5.
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6.1 Future work

• As there is no best bounded saturation algorithm, it is an important task to choose,
which algorithm will be the most efficient. It would be useful to be able to determine
it based on the characteristics of the model. Therefore a possible future direction is
to develop heuristics that can analyse the Petri nets and suggest a well suited model
checking method.

• The Chapter 4 showed multiple ways to improve the performance of the algorithms.
However, further optimization can reduce the amount of necessary time and mem-
ory. For example, fine-tuning the garbage collector and the optimization of decision
diagram library could help.

• Saturation is a general method, it can be applied for not only Petri nets. It could
be interesting to port the algorithms to other formalisms (e. g., automata-based
formalisms that are used for formal verification at CERN [22]) and evaluate them.
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Appendix A

Abbreviations and used symbols

A.1 Symbols

0 terminal zero node of a (binary or multivalued) decision diagram
1 terminal one node of a (binary or multivalued) decision diagram
⊥ terminal node in an EDD
α event in a discrete-state model (α ∈ E)
A(v) above operator (the set of tuples encoded from the root node to node v)
B(v) below operator (the set of tuples encoded from node v to the terminal

node)
Bot(α) bottom function (the lowest level on which event α is not independent)
δ(s) distance of the state s from the initial state
Di the domain of the ith level in a decision diagram
E set of edges in a Petri net
E set of events
Ek events whose Top value is k
i = (iK , . . . , i1) global states in a partitioned model
K number of submodels
level(n) level number of node n in a decision diagram
M(p) marking of the place p in a Petri net (number of tokens on place p)
N next-state function/relation (set of possible state-state transitions)
Nα next-state function of event α
N set of nonnegative integer numbers: {0, 1, 2, . . .}
P set of places in a Petri net
r root node of a decision diagram
ρ weight of the dangling edge in an EDD
〈s, w〉 an edge in an EDD which points to the node w with label s ∈ N ∪ {∞}
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s0 initial state of a model
S set of reachable states
Ŝ potential state space
S init set of initial states
Si local state space of the ith submodel
Siter=i state space explored during iteration i
Sb,k k-bounded part of reachable states (states reachable from the initial

state within ≤ k transitions)
supp(α) support set of event α (levels on which event α is not independent
T set of transitions in a Petri net
Top(α) top function (the highest level on which event α is not independent)
V vertex set of a graph
value(n) value of terminal node n in a binary or multivalued decision diagram (0

for terminal zero node, 1 for terminal one node)
w(e) weight of the edge e in a Petri net
xi the ith represented variable of a decision diagram
Z+ set of positive integer numbers: {1, 2, . . .}

A.2 Abbreviations

BDD Binary Decision Diagram

CERN European Organization for Nuclear Research or European Laboratory for Particle
Physics

CPN Coloured Petri net

CPU Central Processing Unit

CTL Computation Tree Logic

DAG Directed Acyclic Graph

DPhil–N Dining philosophers model with N philosophers (which can contain deadlock)

EDD (or EV+MDD) Edge-valued Decision Diagram

FBD Function Block Diagram

JIT compiler Just-In-Time compiler

LINQ Language Integrated Query (part of .NET framework)

MDD Multivalued (Multiway) Decision Diagram

Phil–N Dining philosophers model with N philosophers (which cannot contain deadlock)

PLC Programmable Logic Controller
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PN Petri net

PRISE Primary to Secondary Leakage Event

QMDD Quasi-reduced Multivalued (Multiway) Decision Diagram

RAM Random Access Memory

RR–N Round robin protocol with N participants

SR–N Slotted ring protocol with N participants

UNICOS Unified Industrial Control System
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Appendix B

Models

This chapter introduces the models used for evaluation in Chapter 5. Every discussed
model can be downloaded from the PetriDotNet website [55].

B.1 Dining philosophers

The Dining philosophers model is the generalization of the well-known Five Dining
Philosophers problem [26]. In this problem five philosophers sit around a circular ta-
ble. Each philosopher has a plate with full of spaghetti. There are five forks on the table,
one between each two plates. To eat the dish, each philosopher needs two available forks
aside their plate. Therefore two neighbours cannot eat at the same time.

Every philosopher can eat or think, but not at the same time. If a philosopher gets hungry
and wants to start to eat, he must get two forks. After he finished to eat, he will put the
forks back to the table immediately (but not before).

As the reader can see, there is a chance for getting into a deadlock. If all philosophers
get hungry at the same time and everyone gets the left fork first, every philosopher will
have only one fork, there will not be any more forks on the table. With one fork nobody
can eat their dish, so everyone remains hungry and nobody will put the forks back to the
table.

For evaluation purposes, I used two variants of this problem:

• a simplified variant without deadlocks (Phil–N), and

• a normal variant with possible deadlock (DPhil–N).

B.1.1 Phil–N model

This model is based on the Five Dining Philosophers problem, but instead of five philoso-
phers, there areN philosophers around the table. Another modification is that the philoso-
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eatingi

tei

thinkingi

forki

eti

forki+1 mod n

Figure B.1.1: One philosopher’s part in Phil–N model

phers get both forks at the same time, therefore they cannot hold single forks in their hand.
This modification eliminates the chance of deadlock.

The Petri net model of Phil–N can be seen on Fig. B.1.1. This model is easy to understand.
If forki place is marked, then the ith fork is on the table. If thinkingi is marked, then the
ith philosopher is thinking. Otherwise eatingi is marked and the ith philosopher is eating
(with his two forks).

Usual partitioning for the saturation-based algorithms: every philosopher forms 1–1 par-
tition.

B.1.2 DPhil–N model

This model is the straightforward model of the generalized Dining Philosophers problem
with N philosophers. The Petri net model of DPhil–N can be seen on Fig. B.1.2.

If the ith philosopher is thinking, the Thinkingi place is marked. If he gets hungry, the
GoEati transition will fire and he will wait for two forks. If he gets the left fork, the HasLefti
place will be marked. If both HasLefti and HasRighti are marked, the philosopher can
eat. After that, the Releasei transition will fire, the philosopher puts back the forks and
returns to thinking.

Usual partitioning for the saturation-based algorithms: every philosopher forms 2–2 par-
tition (3 place / partition).

B.2 Slotted ring protocol

The Slotted ring protocol model with N participants (SR–N) models a computer network
in which nodes are aligned into a circle, so all node has exactly two neighbours. The
communication uses fixed size frames which can be empty or occupied (used). [40, 44]

The Petri net model of SR–N can be seen in Figure B.2.1. If an empty frame arrives
to the ith node from the (i + 1 mod N)th node, the Freei+1 mod N transition fires. If
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WaitLefti WaitRighti

HasLefti HasRighti

Thinkingi

Forki

GoEati

GetLefti GetRighti

Releasei

Fork(i−1) mod n

Figure B.1.2: One philosopher’s part in DPhil–N model

the arriving frame is used, the Usedi+1 mod N transition fires. The marking of each place
means the following:

Ci The ith node is ready to receive a frame from node i+ 1 mod N .
Ai The ith node received an occupied (used) frame.
Bi The ith node received a free frame.
Di The ith node is ready to process the free frame that will be sent.
Hi The ith node is ready to process the occupied frame that will be sent.
Fi The ith node is ready to send a frame to node i− 1 mod N .
Ei The ith node is ready to send a free frame.
Gi The ith node is ready to send an occupied frame.

Usual partitioning for the saturation-based algorithms: every node forms 2–2 partition (4
place / partition).

B.3 Manufacturing systems

The FMS model represents a flexible manufacturing system as it is described in [16]. There
are multiple type of parts to assemble and there are N of each part. The model can be
seen in Figure B.3.1.

A similar model is the Kanban model [16] which models an assembly line using Kanban
scheduling system. The model can be seen in Figure B.3.2.

For both models, the structure is the same for every value N , only the number of tokens
depends on the parameter.

Usual partitioning for the saturation-based algorithms: every place is in separate partition.
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Figure B.2.1: One node’s part in SR–N model

P1

P1wM1 P1M1

M1

P1d

P1s

P1wP2

P12P12wM3P12M3

M3

P12s

P2

P2wM2 P2M2

M2

P2d

P2s

P2wP1

P3sP3M2

P3

tp1 tM1 tP1M1 tP1e

tP1s

tP1j
tx

tP12tM3tp12M3

tp12s

tP2 tM2 tP2M2 tP2e

tP2j

tP2s

tP3M2tP3 tP3s

N

N

N

Figure B.3.1: The FMS–N model
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Figure B.3.2: The Kanban–N model

B.4 Tower of Hanoi

The Tower of Hanoi (or Hanoi–N for short) model is the Petri net model of the well-
known Tower of Hanoi game. There are three rods (A, B, C) and N disks on the rod A.
Each disk has different size: the 0th disk is the smallest, the (N − 1)th disk is the biggest.
The disks can only be placed on top of smaller rings, only the topmost disk can be moved
from one rod to another and only one disk can be moved at a time. The goal of the game
is to move all disks from rod A to rod C [45].

The Petri net model contains places P = {A0, A1, . . . AN−1, B0, . . . BN−1, C0, . . . , CN−1}.
If there is a token in the Ai place it means the ith disk is on the A rod. For all x, y ∈
{A,B,C} and for all i ∈ {0, 1, . . . N−1}, j ∈ {empty, i, i+1, . . . , N−1} there is a transition
tx,y,i,j which means the ith disk is moved from rod x to rod y while the largest disk on
y is the jth. In the model there is an edge from xi to tx,y,i,j and from tx,y,i,j to yi which
corresponds to the transfer of the disk. The other constraints (there is no smaller disk on
x or on y than i) are expressed with inhibitor edges. The model contains large amount of
elements (for example, Hanoi–8 contains 222 transitions and 2040 edges).

Usual partitioning for the saturation-based algorithms: every disk forms 1–1 partition (3
place / partition).

B.5 Queen

The Queen–N model models the famous N -queens problem. The goal is to place N queens
on an N×N chessboard. For this problem we used the model presented in [16]. The model
contains N2 + N places: pi,j ∀i, j ∈ 1, . . . , N places signify that there is a queen on the
(i, j) position. There are also qi ∀i ∈ 1, . . . , N places. If there is a token in the qi place, it
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(Token present iff i = 0)

(Token present iff i 6= 0)

Figure B.6.1: Part of one process in RR–N model

means there is no queen in the ith row at the moment. The queens fill the table in order:
the first queen will be placed to the first row, the second queen to the second row, etc.
The other constraints are expressed by inhibitor edges.

According to [16], this model is “pathologically difficult for symbolic methods”.

Usual partitioning for the saturation-based algorithms: every place forms separate parti-
tion.

B.6 Round robin

The round robin model (RR–N) models a “round-robin resource sharing protocol, where
N processes cyclically can access a resource” [16]. The model of one process can be seen
in Figure B.6.1. Note that the place Res is global (there is only one place Res for all
processes).

Usual partitioning for the saturation-based algorithms: every process forms 2–2 partition
(4 place / partition), and place Res is in a separate partition.

B.7 Counter

The Counter–N model models an N -bit binary counter counting from 0 to 2N − 1 [16].
In this model, there are N places (bit0, . . . , bitN−1) representing each bit of the actual
counter value. There are also N + 1 transitions: inc0, . . . , incN−1 and reset. The firing of
transition inci removes one-one token from bit0, . . . , biti−1 places and puts a token into biti
place. The transition inci is disabled, if there is a token in place biti which is expressed
by an inhibitor edge. The reset transition removes one-one token from every place biti.
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It has to be noticed that Counter model is a pathological model. Usually the graph of
states is branching. As it can be seen in Figure 5.4, in the case of DPhil–20 model, there
are 20 possible state from the initial state. 230 states are reachable by two firing from
the initial state and there are more than 6.3 · 107 states at 10 distance. Contrarily, in the
Counter–N model every global state has exactly one successor state, so the graph of states
is topologically equivalent to a N -length circle which is quite unusual.

Usual partitioning for the saturation-based algorithms: every place forms separate parti-
tion.
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Appendix C

Pseudocodes

C.1 General unbounded saturation

Algorithm C.1: Generate (classic)
output : MDDNode

1 MDDNode last← 1;
2 for i = 1 to topLevelNumber do
3 MDDNode n← NewNode(i);
4 n[0]← last;
5 last← n;
6 Saturate(last);
7 s← CheckIn(s);
8 return s;

Algorithm C.2: SatFire (classic)
input : α : event, q : MDDNode, r : MDDNode
output : changed : bool

1 int l← q.level;
2 bool changed← false;
3 L← LocalStateTransitionsToExplore(r); // L = {(i, j) : r[i][j] 6= 0}
4 foreach (i, j) ∈ L do
5 MDDNode f ← SatRecFire(α, q[i], r[i][j]);
6 if f = 0 then continue ;
7 MDDNode u← Union(f, q[j]);
8 if u 6= q[j] then
9 if j /∈ Sl then Confirm(l, j);

10 q[j]← u;
11 changed← true;
12 if r[j] 6= 0 then
13 L← L ∪ {(j, x) ∈ LocalStateTransitionsToExplore(r)};
14 return changed;

115



Algorithm C.3: Saturate (classic)
input : p : MDDNode

1 bool changed← false;
2 while changed do
3 changed← false;
4 foreach e ∈ Ek do
5 changed← SatFire(α, p,Nα) ∨ changed;

Algorithm C.4: SatRecFire (classic)
input : α : event, q : MDDNode, r : MDDNode
output : MDDNode

1 int l← q.level;
2 if CacheFind(FIRE, (α, q),out s) then return s;
3 MDDNode s← NewNode(l);
4 bool changed← false;
5 L← LocalStateTransitionsToExplore(r); // L = {(i, j) : r[i][j] 6= 0}
6 foreach (i, j) ∈ L do
7 MDDNode f ← SatRecFire(α, q[i], r[i][j]);
8 if f = 0 then continue;
9 MDDNode u← Union(f, s[j]);

10 if u 6= s[j] then
11 if j /∈ Sl then Confirm(l, j);
12 s[j]← u;
13 changed← true;
14 if changed then Saturate(s);
15 s← CheckIn(s);
16 PutIntoCache(FIRE, (α, q), s);
17 return s;
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C.2 Unified unbounded saturation

Algorithm C.5: GenerateFromInitialState (unified)
input : cons : MDDNode,negCons : MDDNode
output : MDDNode

1 // cons: root node of the constraint
2 // negCons: root node of the negated constraint

3 MDDNode last← 1;
4 for i = 1 to topLevelNumber do
5 MDDNode n← NewNode(i);
6 n[0]← last;
7 last← n;
8 return Generate(last, cons,negCons);

Algorithm C.6: Generate (unified)
input : s : MDDNode, cons : MDDNode,negCons : MDDNode
output : MDDNode

1 // s : root node of initial state space
2 // cons: root node of the ponated constraint (set of states can be included)
3 // negCons: root node of the negated constraint (set of states must be omitted)

4 if Generate(s, cons,negCons) was already called then return;
5 if level(s) ≥ 1 then
6 for i = 0 to Dlevel(s) do
7 if s[i] = 0 then continue;
8 Generate(s[i], cons[i],negCons[i]);
9 Saturate(s, cons,negCons);

10 s← CheckIn(s);
11 return s;

Algorithm C.7: Saturate (unified)
input : p : MDDNode, cons : MDDNode,negCons : MDDNode

1 bool changed← true;
2 while changed do
3 changed← false;
4 foreach e ∈ Ek do
5 changed← SatFire(α, p,Nα, cons,negCons) ∨ changed;

117



Algorithm C.8: SatFire (unified)
input : α : event, q : MDDNode, r : MDDNode, cons : MDDNode,negCons : MDDNode
output : changed : bool

1 int l← q.level;
2 bool changed← false;
3 L← LocalStateTransitionsToExplore(r); // L = {(i, j) : r[i][j] 6= 0}
4 foreach (i, j) ∈ L do
5 if cons[j] = 0 then continue;
6 if negCons[j] 6= 0 ∧ l = 1 then continue;
7 MDDNode f ← SatRecFire(α, q[i], r[i][j], cons[j],negCons[j]);
8 if f = 0 then continue;
9 MDDNode u← Union(f, q[j]);

10 if u 6= q[j] then
11 if j /∈ Sl then Confirm(l, j);
12 q[j]← u;
13 changed← true;
14 if r[j] 6= 0 then
15 // if there is potentional state transition from state j
16 L← L ∪ {(j, x) : (j, x) ∈ LocalStateTransitionsToExplore(r)};
17 return changed;

Algorithm C.9: SatRecFire (unified)
input : α : event, q : MDDNode, r : MDDNode, cons : MDDNode,negCons : MDDNode
output : MDDNode

1 int l← q.level;
2 if cons = 1 ∧ l < Bot(e) then return q;
3 if CacheFind(FIRE, (α, q, cons,negCons),out s) then return s;
4 MDDNode s← NewNode(l);
5 bool changed← false;
6 L← LocalStateTransitionsToExplore(r); // L = {(i, j) : r[i][j] 6= 0}
7 foreach (i, j) ∈ L do
8 if cons[j] = 0 then continue;
9 if negCons[j] 6= 0 ∧ l = 1 then continue;

10 MDDNode f ← SatRecFire(α, q[i], r[i][j], cons[j],negCons[j]);
11 if f = 0 then continue;
12 MDDNode u← Union(f, s[j]);
13 if u 6= s[j] then
14 if j /∈ Sl then Confirm(l, j);
15 s[j]← u;
16 changed← true;
17 if changed then Saturate(, cons,negCons);
18 s← CheckIn(s);
19 PutIntoCache(FIRE, (α, q, cons,negCons), s);
20 return s;
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C.3 Unified bounded saturation

These pseudocodes are based on our earlier work [51] and on [50, 53]. The improvements
are marked with colours: the extensions due to the constrained saturation are marked with
blue, the negated constrained extensions are in red. Note that the constrained extensions
are not used in the iterative algorithms, they are here just for the completeness of the
algorithms.

Algorithm C.10: BoundedGenerateFromInitialState (unified)
input : cons : MDDNode,negCons : MDDNode
output : EDDEdge

1 // cons: root node of the constraint
2 // negCons: root node of the negated constraint

3 EDDNode last← ⊥;
4 for i = 1 to TopLevelNumber do
5 EDDNode n← NewNode(i);
6 n[0]← 〈0, last〉;
7 last← n;
8 return Generate(〈0, last〉, cons,negCons);

Algorithm C.11: BoundedGenerate (unified)
input : 〈v, s〉 : EDDEdge, cons : MDDNode,negCons : MDDNode
output : EDDEdge

1 // 〈v, s〉 : root edge of initial state space
2 // cons: root node of the ponated constraint (set of states can be included)
3 // negCons: root node of the negated constraint (set of states must be omitted)

4 if CacheFind(GEN, (〈v, s〉, cons,negCons),out a) then return 〈a, s〉 ;
5 if level(s) ≥ 1 then
6 for i = 0 to Dlevel(s) do
7 if s[i].label =∞ then continue;
8 Generate(s[i], cons[i],negCons[i]); // return value is intentionally not used
9 BoundedSaturate(〈v, s〉, cons,negCons);

10 int γ ← Normalize(s);
11 s← CheckIn(s);
12 PutIntoCache(GEN, (〈v, s〉, cons,negCons), γ + v);
13 return 〈γ + v, s〉;

Algorithm C.12: BoundedSaturate (unified)
input : 〈v, p〉 : EDDEdge, cons : MDDNode,negCons : MDDNode

1 bool changed← true;
2 while changed do
3 changed← false;
4 foreach e ∈ Ek do
5 changed← BoundedSatFire(α, 〈v, p〉,Nα, cons,negCons) ∨ changed;

C.3.1 Bounded saturation as a module

As all iterative bounded saturation algorithm uses the basic saturation-based algorithms,
it is easier to think about the basic algorithms as reusable modules, as it can be seen on
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Algorithm C.13: BoundedSatFire (unified)
input : α : event, 〈v, q〉 : EDDEdge, r : MDDNode, cons : MDDNode,negCons : MDDNode
output : changed : bool

1 int l← q.level;
2 bool changed← false;
3 L← LocalStateTransitionsToExplore(r); // L = {(i, j) : r[i][j] 6= 0}
4 foreach (i, j) ∈ L do
5 if p[i].label ≥ bound then continue;
6 if cons[j] = 0 then continue;
7 if negCons[j] 6= 0 ∧ l = 1 then continue;
8 〈y, f〉 ← BoundedSatRecFire(α, q[i], r[i][j], cons[j],negCons[j]);
9 〈w, s〉 ← Truncate(〈y + 1, f〉);

10 if w =∞ then continue;
11 〈u, p〉 ← UnionMin(〈w, s〉, q[j]);
12 if 〈u, p〉 6= q[j] then
13 if j /∈ Sl then Confirm(l, j);
14 q[j]← 〈u, p〉;
15 changed← true;
16 if r[j] 6= 0 then
17 // if there is potentional state transition from state j
18 L← L ∪ {(j, x) ∈ LocalStateTransitionsToExplore(r)};
19 return changed;

Figure C.3.1. In this way, the parameter passing is easier to understand.

• The Truncate field sets the used truncating method (exact or approximate).

• The bound field sets the used bound value.

• The initial field stores the root edge of the initial state space encoded by an EDD.

• The stateSpace field stores the root edge of the state space (explored by the last
execution) encoded by an EDD.

• The constraint field stores the root node of the constraint encoded by an MDD.

• The negConstraint field stores the root node of the negated constraint encoded by
an MDD.

• The topLevelNumber field stores the number of the root level of the decision dia-
grams.

• The BoundedSaturation method starts the state space exploration using the param-
eters set by the fields and stores the result in the state space field. (Basically, it
performs the following: stateSpace←Generate(initial,constraint,negConstraint).)
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Algorithm C.14: BoundedSatRecFire (unified)
input : α : event, 〈v, q〉 : EDDEdge, r : MDDNode, cons : MDDNode,negCons : MDDNode
output : EDDEdge

1 int l← q.level;
2 if negCons = 0 ∧ cons = 1 ∧ l < Bot(e) then return 〈v, q〉;
3 if CacheFind(FIRE, (α, q, cons,negCons),out 〈α, s〉) then return 〈α+ v, s〉;
4 // extension with subtraction (only present in CompSub algorithm)
5 if l < Bot(e) then
6 EDDEdge 〈rv, rn〉 ← SubtractMDD(q,negCons);
7 PutIntoCache(FIRE, (α, q, cons,negCons), 〈rv− v, rn〉);
8 return 〈rv, rn〉;

9 EDDNode s← NewNode(l);
10 bool changed← false;
11 L← LocalStateTransitionsToExplore(r); // L = {(i, j) : r[i][j] 6= 0}
12 foreach (i, j) ∈ L do
13 if cons[j] = 0 then continue;
14 if negCons[j] 6= 0 ∧ l = 1 then continue;
15 〈y, f〉 ← BoundedSatRecFire(α, q[i], r[i][j], cons[j],negCons[j]);
16 〈w, s〉 ← Truncate(〈y, f〉);
17 if w =∞ then continue;
18 〈u, p〉 ← UnionMin(〈w, s〉, s[j]);
19 if 〈u, p〉 6= s[j] then
20 if j /∈ Sl then Confirm(l, j);
21 s[j]← 〈u, p〉;
22 changed← true;
23 if changed then
24 BoundedSaturate(s, cons,negCons);
25 int γ ← Normalize(s);
26 EDDNode s← CheckIn(s);
27 PutIntoCache(FIRE, (α, q, cons,negCons), 〈γ, s〉);
28 return 〈γ + v, s〉;

Algorithm C.15: TruncateApprox
input : 〈v, p〉 : EDDEdge
output : EDDEdge

1 if v > bound then
2 return 〈∞,⊥〉;
3 else
4 return 〈v, p〉;

Algorithm C.16: TruncateExact
input : 〈v, p〉 : EDDEdge
output : EDDEdge

1 if v > bound then
2 return 〈∞,⊥〉;
3 if p.level = 0 then
4 return 〈v, p〉;
5 if CacheFind(TRUNC, 〈v, p〉,out t then
6 return 〈v, t〉;
7 EDDNode n← NewNode(p.level);
8 foreach i ∈ Sp.level do
9 r ← TruncateExact(〈v + p[i].label, p[i].node〉);

10 n[i]← 〈r.label− v, r.node〉;
11 n← CheckIn(n);
12 PutIntoCache(TRUNC, 〈v, p〉, n);
13 return 〈v, n〉;
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Algorithm C.17: Normalize
input : s : EDDNode
output : int

1 int γ ← min{s[i].label ∀i ∈ Dlevel(s)};
2 foreach i ∈ Dlevel(s) do
3 s[i].label← s[i].label− γ;
4 return γ;

BoundedSaturationData
+ Truncate : TruncateMethod
+ bound : int
+ initial : EDDEdge
+ stateSpace : EDDEdge
+ constraint : MDDNode
+ negConstraint : MDDNode
+ topLevelNumber : int {readonly}

+ BoundedSaturation()

Figure C.3.1: Public interface of the unified bounded saturation algorithm
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C.4 Restarting bounded saturation

Algorithm C.18: RestartingSaturation
input : incr : int
output : result of model checking

1 sd← new BoundedSaturationData;
2 sd.Truncate← TruncateExact; // sets the truncate method
3 sd.bound← incr;
4 int i← 1; // i: iteration counter

5 while true do
6 sd.bound← i · incr;
7 // The sd.initial is empty, so saturation will start from the initial state of

the Petri net.
8 sd.BoundedSaturation();
9 ModelChecking();

10 if model checking was able to determine the result then
11 return result of model checking;
12 i← i+ 1;

C.5 Continuing bounded saturation

As it can be seen, there is only small difference between the restarting saturation (Algo-
rithm C.18) and the continuing saturation (Algorithm C.19). But to be able to implement
the continuing saturation, the base bounded algorithms had to be extended, because
restarting saturation needed a special case only (when the initial state set contains only
one state).

Algorithm C.19: ContinuingSaturation
input : incr : int
output : result of model checking

1 sd← new BoundedSaturationData;
2 sd.Truncate← TruncateExact; // sets the truncate method

3 int i← 1; // i: iteration counter

4 while true do
5 sd.bound← i · incr;
6 sd.BoundedSaturation();
7 ModelChecking();
8 if model checking was able to determine the result then
9 return result of model checking;

10 // Continue the next iteration from the state space of this iteration.
11 sd.initial← sd.stateSpace;
12 i← i+ 1;
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C.6 Compacting bounded saturation

Algorithm C.20: CompactingSaturation
input : incr : int
output : result of model checking

1 sd← new BoundedSaturationData;
2 sd.Truncate← TruncateExact; // sets the truncate method
3 sd.bound← incr;
4 int i← 0; // i: iteration counter
5 MDDNode negConstraint← 0; // root of the negated constraint MDD
6 EDDEdge initialEDD;
7 while true do
8 if i > 0 then
9 sd.negConstraint← negConstraint;

10 sd.initial← initialEDD;
11 sd.BoundedSaturation();
12 ModelChecking();
13 if model checking was able to determine the result then
14 return result of model checking;
15 else
16 negConstraint← Union(negConstraint, sd.stateSpace.AsMDD());
17 initialEDD← TruncateExactEq(sd.stateSpace, incr); // copies states that are

exactly at incr distance
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Appendix D

Details of measurements

D.1 Measurements of implementation details

Listing D.1.1: Measurement for array indexing runtime.
1 const long ITER = 100000000;
2

3 private static void MeasA()
4 {
5 Stopwatch stopwatch = Stopwatch.StartNew();
6 int[] array = new int[1000];
7 int x;
8 for (long i = 0; i < ITER; i++)
9 {

10 x = array[0]; // compilation optimizations should be disabled!
11 }
12 stopwatch.Stop();
13 Console.WriteLine("Measurement: {0} ms; {1} ms/iter", stopwatch.ElapsedMilliseconds, (double)←↩

stopwatch.ElapsedMilliseconds / ITER);
14 }

Listing D.1.2: Measurement for array.First() runtime.
1 const long ITER = 100000000;
2

3 private static void MeasB()
4 {
5 Stopwatch stopwatch = Stopwatch.StartNew();
6 int[] array = new int[1000];
7 int x;
8 for (long i = 0; i < ITER; i++)
9 {

10 x = array.First();
11 }
12 stopwatch.Stop();
13 Console.WriteLine("Measurement: {0} ms; {1} ms/iter", stopwatch.ElapsedMilliseconds, (double)←↩

stopwatch.ElapsedMilliseconds / ITER);
14 }
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Listing D.1.3: Measurement for overhead of delegates.
1 public static class DelegateTest
2 {
3 private const long ITER = 100000000;
4

5 [System.Runtime.CompilerServices.MethodImpl
6 (System.Runtime.CompilerServices.MethodImplOptions.NoInlining)]
7 public static void TestMethod() { }
8

9 public delegate void VoidDelegate();
10

11 public static void Run()
12 {
13 MeasDirectCall();
14 MeasDelegate(TestMethod);
15 }
16

17 public static void MeasDirectCall()
18 {
19 Stopwatch stopwatch = Stopwatch.StartNew();
20 for (long i = 0; i < ITER; i++)
21 {
22 TestMethod();
23 }
24 stopwatch.Stop();
25 Console.WriteLine("Measurement direct call: {0} ms; {1} ms/iter",
26 stopwatch.ElapsedMilliseconds,
27 (double)stopwatch.ElapsedMilliseconds / ITER);
28 }
29

30 public static void MeasDelegate(VoidDelegate del)
31 {
32 Stopwatch stopwatch = Stopwatch.StartNew();
33 for (long i = 0; i < ITER; i++)
34 {
35 del();
36 }
37 stopwatch.Stop();
38 Console.WriteLine("Measurement delegate call: {0} ms; {1} ms/iter",
39 stopwatch.ElapsedMilliseconds,
40 (double)stopwatch.ElapsedMilliseconds / ITER);
41 }
42 }

D.2 Measurement tools

• CLR Profiler
Available at http://www.microsoft.com/en-us/download/details.aspx?id=

16273. This tool provides rich information about the memory allocation and
consumption of managed programs.

• Windows Software Development Kit (SDK) for Windows 8
Available at http://msdn.microsoft.com/en-us/windows/desktop/hh852363.

aspx. It contains WinDbg which is a powerful low-level debugging tool.
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• Windows Performance Toolkit
Part of the Windows Assessment and Deployment Kit (ADK) available at http:

//www.microsoft.com/en-us/download/details.aspx?id=30652. It includes two
powerful tools: Windows Performance Recorder and Windows Performance Ana-
lyzer.

• Sysinternals Process Explorer This tool provides rich information about running
programs. It is available at http://www.sysinternals.com.

D.3 Computer used for the measurements

The configuration of the computed used for measuring is the following:

• processor: Intel R© CoreTM i5 660 (3.3 GHz)

• memory: 8 GiB

• operating system: Microsoft Windows 7 Enterprise (64 bit edition)

• framework: .NET 4.5 Framework

• high-resolution performance counter is supported, frequency: 3,247,119 tick/s

• PetriDotNet version 1.3.4853.20859
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