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Kivonat

Biztonságkritikus rendszereknél egyre elterjedtebb a tervezésidejű verifikáció. Egy ilyen
technika az ún. modellellenőrzés. Ahogy a rendszerek egyre komplexebbé válnak, úgy nő
a rendszerek állapotváltozóinak száma is. Az ilyen „adatintenzív” rendszerek állapotainak
száma robbanásszerűen nőhet, az állapotteret explicit módon már nem lehetséges eltárolni.

Ezen probléma megoldására jelentek meg a szimbolikus modellellenőrző technikák, melyek
az állapotteret kompakt adatszerkezetek, jellemzően döntési diagramok segítségével tárol-
ják. Az ezeken dolgozó algoritmusok gyakran hatalmas állapottereket képesek hatékonyan
kezelni és tárolni.

Komplex, komponensekből felépülő rendszerek esetében komoly előrelépést jelenthet az
állapottér-reprezentáció során a rendszermodell struktúrájának kiaknázása a redundan-
cia csökkentéséhez. Az utóbbi néhány évben jelentek meg az úgynevezett hierarchikus
döntési diagramok, melyek a modellek hierarchikus adatszerkezeteihez illeszkedve képesek
hatékonyan csökkenteni az állapottér-reprezentáció méretét.

Jelen szakdolgozat célja a hierarchikus döntési diagramok vizsgálata és implementálása
az azokon értelmezett műveletekkel és állapottér felderítő algoritmusokkal együtt, illetve
ezek összehasonlítása a megszokott szimbolikus modellellenőrző technikákkal.
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Abstract

In safety critical software systems, the use of design-time verification, like model checking,
is more and more common. As systems become more complex, the number of state
variables of the systems also grows. This leads to the state space explosion problem
in these “data-intensive” systems, where the state space cannot be stored with explicit
methods.

To address this problem, symbolic model checking techniques were introduced. These
methods store the state space with compact data structures, such as decision diagrams.
Algorithms using decision diagrams can efficiently operate on and store huge state spaces.

The exploitation of the structure of the system model can lead to improvements in the
storage of state spaces of complex systems consisting of several components. During the
last several years, hierarchical set decision diagrams were introduced, which are naturally
fitting to the hierarchical data structures of the models – reducing the size of the state
space representation.

This thesis presents a theoretical overview and a new implementation of the set decision
diagrams complete with operations and state space exploring algorithms. The approach
is also compared to traditional symbolic methods found in the literature.
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Chapter 1

Introduction

It is evident that in a critical system, whether it be hardware or software, a fault can
cause serious consequences. A faulty control unit in a car or a plane can be responsible
for human lives, and even if a fault is detected before causing an accident, the recall of
faulty products cause huge financial losses to the manufacturing companies.

The verification of systems during design time is an effective way to discover errors in the
designs of the system, to spare significant expenses and to raise the overall quality of the
product in terms of dependability. Formal verification is a mathematically founded way to
analyze the correctness of systems, and it is getting acknowledged in the critical systems
industry.

An automated technique of formal verification called model checking was introduced in
the early ’80s [16], and has since undergone an enormous advancement. Various kinds
of algorithms have been developed and implemented, and several special methods were
devised for the verification of a broad range of system types.

Even today, a great challenge to the model checking is the phenomenon that is commonly
referred to as state space explosion. It means that even a relatively small system can
have a huge number of states. One of the possible reasons for the state space explosion
can be the large number of state variables. Even one additional state variable can cause
an exponential growth in the number of possible states of the system. Data-intensive
systems, i.e. systems which use lots of data can easily have state spaces that cannot be
stored explicitly in the physical memory of the computers.

To address this problem, symbolic model checking was introduced in the ’90s [3], which
represents the state space symbolically by efficient data structures such as decision dia-
grams. Since the first usage of decision diagrams in model checking, a number of specialized
versions and extensions of decision diagrams were developed.

In the mid 2000s, Jean-Michel Couvreur and Yann Thierry-Mieg introduced a new type of
decision diagram, aiming to exploit the structure of the models, called set decision diagram
[11]. Set decision diagram is still a less prevalent, young data structure, but it could be
the base of new state-of-the-art model checkers of data-intensive systems, because of its
improved memory-usage.

This thesis aims 1) to give the reader a deeper insight into set decision diagrams, and
the algorithms using them, as well as 2) to develop and implement set decision diagrams
with operations and related algorithms, and 3) to compare these approaches to traditional
symbolic methods.
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The layout of the thesis is aligned according to the stated goals. After laying the historical
background and motivation here, Chapter 2 presents the theoretical background of the
subject. Chapter 3 gives an overview on set decision diagrams. The main contributions
are presented in Chapters 4 and 5. The former gives an overview on model checking using
set decision diagrams (with comparisons to the most common symbolic model checking
methods) and presents new developments, which forms the theoretical contributions of this
work, while the latter presents the implementation of the data structure. The evaluation of
the implementations are presented in Chapter 6. Finally, Chapter 7 concludes the result,
and gives possibilities for future works.
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Chapter 2

Background

This chapter overviews the basic concepts and methods to lay down the basis of this work.
At first, Section 2.1 introduces Petri nets, which is a modeling language used in the field
of formal methods. Secondly, Section 2.2 introduces Kripke structures commonly used to
describe and represent state spaces of models, including Petri nets. Thirdly, Section 2.3
presents the basic concepts of model checking. Then Section 2.4 gives an overview on the
topic of decision diagrams, which are the data structures used by the majority of symbolic
model checkers. Finally, Section 2.5 presents multiple algorithms for exploring the state
space of a model.

2.1 Petri Nets

This thesis relies on the modeling formalism called Petri net. Petri nets are a widely used
graphical and mathematical modeling language with the main strength of modeling asyn-
chronous, concurrent and nondeterministic systems, making them a suitable formalism to
be the basis of this work.

This section gives a brief introduction on Petri nets, for more detailed descriptions, refer
to [22].

Definition 1 (Petri net).
A Petri net is a 5-tuple PN = (𝑃, 𝑇, 𝐴, 𝑊, 𝑀0) where:

∙ P is a finite set of places;

∙ T is a finite set of transitions;

∙ 𝐴 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is the set of directed arcs;

∙ 𝑊 : 𝐴→ N+ is an arc weight function;

∙ 𝑀0 : 𝑃 → N is the initial marking, i.e., the number of tokens on each place;

∙ 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ̸= ∅. �

A Petri net consists of places, transitions and directed arcs between places and transitions.
A state of the Petri net is determined by the marking function (𝑀 : 𝑃 → N0) assigning a
number of tokens for every place.
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Arcs from places to transitions are called input arcs, and arcs from transitions to places
are called output arcs. The input places of a transition 𝑡 are denoted by ∙𝑡 = {𝑝 :
𝑝 ∈ 𝑃 ∧ (𝑝, 𝑡) ∈ 𝐴}. In contrast, the output places of a transition 𝑡 are denoted by
𝑡∙ = {𝑝 : 𝑝 ∈ 𝑃 ∧ (𝑝, 𝑡) ∈ 𝐴}.

The behavior (i.e., the state changes) of the Petri net is defined by the following firing
rules:

∙ A transition t is enabled iff ∀𝑝 ∈ ∙𝑡 : 𝑀(𝑝) ≥ 𝑊 (𝑝, 𝑡), i.e., all input places of t has
at least as many tokens as the weight of the input arcs of t.

∙ An enabled transition may fire. Firing is a non-deterministic behavior, because there
is no ordering or precedence amongst them, and an enabled transition may not fire
at all.

∙ When a transition 𝑡 fires, it removes 𝑊 (𝑝, 𝑡) tokens from all of its input places 𝑝 ∈ ∙𝑡
then adds 𝑊 (𝑡, 𝑝) tokens to its output places 𝑝 ∈ 𝑡∙.

The following, more illustrative notations can be also used:

∙ 𝑊 +(𝑡, 𝑝) = 𝑊 (𝑡, 𝑝) is the total amount of tokens added to place 𝑝 by the firing of
transition 𝑡.

∙ 𝑊 −(𝑡, 𝑝) = 𝑊 (𝑝, 𝑡) is the total amount of tokens removed from place 𝑝 by the firing
of transition 𝑡.

∙ 𝑊 *(𝑡, 𝑝) = 𝑊 +(𝑡, 𝑝) −𝑊 −(𝑡, 𝑝) represents the sum of removed and added number
of tokens in place 𝑝 by the firing of transition 𝑡.

An example of the firing mechanism in Petri nets is shown on Figures 2.1 and 2.2.

If the ordered sequence of transitions 𝜏 can be fired in a Petri net in that exact order from
a current state of the Petri net, then 𝜏 is a firing sequence. The sequence of states reached
after each step in 𝜏 (including the initial state) is called a path and is denoted by 𝜌. A
marking 𝑀 is reachable from the initial marking 𝑀0 iff there is a path 𝜌 that begins with
𝑀0 and ends with 𝑀 .

Definition 2 (Bounded Petri net).
A Petri net is bounded iff ∃𝑘 ∈ N such that ∀𝑝 ∈ 𝑃, 𝑀 ∈ 𝑅𝑀 : 𝑀(𝑝) ≤ 𝑘, where 𝑅𝑀
denotes the set of the reachable markings from the initial marking. �

The reachable state space is finite iff the Petri net is bounded. Throughout this work, it
is assumed that the examined Petri net models are bounded.

Petri nets are graphically as edge weighted directed bipartite graphs. Places are repre-
sented by circles, and transitions are represented as rectangles. Arcs are drawn as directed
edges between places and transitions, labeled with the weight of the arc. Weights of 1 are
usually not represented. Tokens of the current marking are represented with dots inside
the places. Figures 2.1 and 2.2 present graphical representation of Petri nets.

2.2 Kripke Structures

The state spaces of high-level models can be described by the so-called Kripke structures
[20]. Kripke structures are directed graphs, with labeleded nodes. Nodes represent the
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Figure 2.1. A Petri net model of the reaction of hydrogen and
oxygen.

Figure 2.2. The Petri net model of the reaction of hydrogen and
oxygen after firing the transition.

different states of the modeled system, while edges denote the transitions between different
states. Each node is labeled with properties that hold in the corresponding state.

Definition 3 (Kripke structure).
Given a set of atomic propositions 𝐴𝑃 = {𝑝, 𝑞, . . .}, a (finite) Kripke structure is a 4-tuple
𝐾 = (𝑆, 𝐼, 𝑅, 𝐿), where:

∙ S is the finite set of states;

∙ 𝐼 ∈ 𝑆 is the set of initial states;

∙ 𝑅 ∈ 𝑆 × 𝑆 is the transition relation;

∙ 𝐿 : 𝑆 −→ 2𝐴𝑃 is the labeling function that maps a state to a subset of atomic
propositions; �

In a Kripke structure a path (or a trace) 𝜌 is directed path in the graph, corresponding to
an ordered sequence of states.

2.2.1 Kripke Structures as State Space Representations

As stated in Section 2.2, Kripke structures can represent the state spaces of high level
models.

When describing the state-space of a Petri net based model, a state of the Kripke structure
corresponds to a marking of the Petri net. The labels on the Kripke structure are relations
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interpreted over the represented marking of the labeled state. Transitions of the Kripke
structure correspond to a single firing of an enabled transition in the Petri net. This
method maps the state space of the Petri net to a Kripke structure, thus exploring the
state space of the Petri net is equivalent to the traversal of the Kripke structure.

Figure 2.3. Kripke structure describing the state space of a Petri
net.

As Figure 2.3 shows, the state space of a model can be larger and more complex than the
structure itself – this is especially true in the case of already complex models. That means
discovering and storing the full state space can be problematic.

2.3 Model Checking

Model checking [8] [7] is an automatic formal verification technique for exhaustively com-
puting and analyzing the state space to determine if it satisfies a given requirement.

The inputs of the model checking procedure are the model of the system and formalized
specifications of the expected behavior. The states or traces of the model are examined
by mathematically proven algorithms and if the model violates the requirements then a
counterexample are given to demonstrate the fault of the system.

Figure 2.4. The general workflow of model checking.

12



2.3.1 Symbolic Model Checking

Complex systems often have a huge state space with large state vectors, so efficient encod-
ing of states are necessary. In order to tackle the state space explosion problem, symbolic
algorithms introduce special encodings of the state space. These approaches handle huge
sets of states together and encode them in a compact symbolic representation.

The general idea behind symbolic algorithms is to operate on large sets of states instead
of single states [1]. As stated above, these methods encode state spaces in a compact
form, directly manipulating the symbolic representation. Common representations include
binary functions and decision diagrams, this work focuses on the latter approach.

2.4 Decision Diagrams

Decision diagrams are more compact forms of decision trees, where the nodes with the
same meaning were contracted to achieve more efficient, less redundant storage without
loss of information. In this section, we introduce two of the most widely used decision
diagrams: (binary decision diagram and multivalued decision diagram).

2.4.1 Binary Decision Diagrams

Binary decision diagrams (or BDDs) were introduced by Randal Bryant in 1986, to effi-
ciently represent binary functions [2]. In the following we introduce BDDs in more detail
as they are the most basic type of decision diagrams, encoding a set of binary vectors.

Definition 4 (Binary decision diagram).
A binary decision diagram is a directed acyclic graph, with a node set (𝑉 ) consisting of
two types of nodes: terminal and non-terminal nodes. Every nonterminal node 𝑣 ∈ 𝑉 has
two outgoing edges to two children nodes, we denote them as 𝑣[0] = 𝑙𝑜𝑤(𝑣) ∈ 𝑉 and 𝑣[1] =
ℎ𝑖𝑔ℎ(𝑣) ∈ 𝑉 . Nodes are associated with levels: 𝑙𝑒𝑣𝑒𝑙(𝑣) ∈ Z+. For every non-terminal
node, 𝑙𝑒𝑣𝑒𝑙(𝑙𝑜𝑤(𝑣)) < 𝑙𝑒𝑣𝑒𝑙(𝑣) and 𝑙𝑒𝑣𝑒𝑙(ℎ𝑖𝑔ℎ(𝑣)) < 𝑙𝑒𝑣𝑒𝑙(𝑣) must hold. There are also
exactly two terminal nodes, 0 ∈ 𝑉 and 1 ∈ 𝑉 , called terminal zero and terminal one
respectively. The terminal nodes also have fixed level numbers: 𝑙𝑒𝑣𝑒𝑙(0) = 𝑙𝑒𝑣𝑒𝑙(1) = 0.
The terminal nodes encode binary values: 𝑣𝑎𝑙𝑢𝑒(0) = 0, 𝑣𝑎𝑙𝑢𝑒(1) = 1. Every BDD has a
root node which is on the highest level (top level). �

The graphical representation of BDDs consists of circles for the non-terminal nodes,
squares for the terminal nodes and arrows for the directed edges. The squares are la-
beled with the value of the corresponding terminal node. There are two type of arrows:
dotted arrows for the 𝑙𝑜𝑤(𝑣) edges and solid arrows for the ℎ𝑖𝑔ℎ(𝑣) edges.

The semantics of BDDs come from the level numbers: each level corresponds to a variable.
The value of the encoded function can be computed by traversing the graph starting from
the root, and following the edges according to the value of the variable of the current level.

In Figure 2.5 presents a BDD encoding a binary functions that is true for the following
Boolean tuples: (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1).

2.4.2 Multivalued Decision Diagrams

Multivalued decision diagrams (or MDDs) are extensions of binary decision diagrams [23]
[19], as seen in Definition 5.
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Figure 2.5. Graphical representation of a BDD.

Definition 5 (Multivalued decision diagram).
A multivalued decision diagram is a directed acyclic graph, with a node set (𝑉 ) consisting
of two types of nodes: terminal and non-terminal nodes. Nodes are associated with levels:
𝑙𝑒𝑣𝑒𝑙(𝑣) ∈ Z+. An MDD encodes an integer function 𝑓(𝑥1, ..., 𝑥𝑛) −→ {0, 1}, and the 𝑖th
level in an MDD corresponds to a variable 𝑥𝑖 of the function with a finite integer domain
𝐷𝑖 = {0, 1, 2, ..., |𝐷𝑖| − 1}. Every nonterminal node 𝑣 ∈ 𝑉 has |𝐷𝑙𝑒𝑣𝑒𝑙(𝑣)| outgoing edges to
children nodes, we denote them as 𝑣[0], 𝑣[1], ..., 𝑣[|𝐷𝑙𝑒𝑣𝑒𝑙(𝑣)| − 1]. For every non-terminal
node, 𝑙𝑒𝑣𝑒𝑙(𝑣[𝑖]) < 𝑙𝑒𝑣𝑒𝑙(𝑣) must hold. There are also exactly two terminal nodes, 0 ∈ 𝑉
and 1 ∈ 𝑉 , called terminal zero and terminal one respectively. The terminal nodes also
have fixed level numbers: 𝑙𝑒𝑣𝑒𝑙(0) = 𝑙𝑒𝑣𝑒𝑙(1) = 0. The terminal nodes encode binary
values: 𝑣𝑎𝑙𝑢𝑒(0) = 0, 𝑣𝑎𝑙𝑢𝑒(1) = 1. Every MDD has a root node which is on the highest
level (top level). �

When there are no isomorphic sub-diagram in an MDD, we call it a canonical MDD.
Formally, if 𝑣 = 𝑤 ∈ 𝑉, 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) and ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑣[𝑖] = 𝑤[𝑖] in a canonical
MDD, then 𝑣 = 𝑤.

If a canonical MDD has no edges skipping levels, we call it a quasi-reduced MDD [24].
Formally, this means that ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑙𝑒𝑣𝑒𝑙(𝑣[𝑖]) = 𝑙𝑒𝑣𝑒𝑙(𝑣) − 1 holds for every non-
terminal node.

If a canonical MDD has no redundant nodes, we call it a fully-reduced MDD [24]. Formally,
this means that ∀𝑖, 𝑗 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑣[𝑖] ̸= 𝑣[𝑗] holds for every non-terminal node.

When representing the MDD graphically, we still use circles and squares as in BDDs, but
the edges in MDDs are always solid lines with an 𝑖 integer label, which corresponds to
the edge leading to 𝑣[𝑖]. If an edge is not shown on a figure, then it either points to the
terminal zero or to a zero node, which is a node where every outgoing path leads to the
terminal zero.

Figure 2.6 presents an MDD encoding a function which is true for the following (𝑥1, 𝑥2,
𝑥3) values: (0, 0, 1), (0, 2, 2), (1, 0, 2), (1, 1, 2).
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Figure 2.6. Graphical representation of an MDD.

2.4.2.1 Operations on Multivalued Decision Diagrams

MDDs are often used to encode a set of integer vectors as the function corresponding
to the MDD returns 1 for exactly the vectors included in the set. Based on this, it is
possible to define set operations on MDD nodes. The result of MDD operations on two
MDD nodes encodes the same set as the corresponding set operations would produce from
encoded sets of the original nodes. Operations are defined strictly to nodes on the same
level.

The union of nodes v and w is

𝑣 ∪ 𝑤 =
{︃

𝑣 = 1 ∨ 𝑤 = 1 if 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) = 0
𝑥 otherwise, where ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑥[𝑖] = 𝑣[𝑖] ∪ 𝑤[𝑖].

The intersection of nodes v and w:

𝑣 ∩ 𝑤 =
{︃

𝑣 = 1 ∧ 𝑤 = 1 if 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) = 0
𝑥 otherwise, where ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑥[𝑖] = 𝑣[𝑖] ∩ 𝑤[𝑖]

The relative complement of node w in v:

𝑣 r 𝑤 =
{︃

𝑣 = 1 ∧ 𝑤 = 0 if 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) = 0
𝑥 otherwise, where ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑥[𝑖] = 𝑣[𝑖] r 𝑤[𝑖].

The union, the intersection and the relative complement of terminal nodes w and v is
similar to Boolean logic.
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Due to the recursive definition of the operations, they can be efficiently realized with
recursive functions. Using a cache also improves the performance, since the same nodes
can be reached along multiple paths.

2.5 Algorithms for State Space Exploration

Section 2.2.1 introduced a way to represent state spaces with Kripke structures. Kripke
structures are essentially directed graphs, so graph traversal algorithms can be used to
explore the state spaces.

Different problems require different algorithms. For example, when determining if a given
state is reachable from an initial state, then using special, directed algorithms can be
more effective [15]. The main goal of the implemented methods and data structures in
this thesis is to efficiently explore the whole state space, so this section will introduce
general traversal algorithms.

2.5.1 Basic Algorithms

Two common methods of traversing the state space presented here are the widely known
breadth first search (BFS), and a similar algorithm called chaining loop.

BFS starts at the initial state, and explores the reachable states by taking one step with
every transition, from every known state and in every iteration. That means BFS finds
every reachable state with the minimum required firings needed to reach that state from
the initial state. With every iteration, BFS constructs the result for the firing of every
enabled transition on the currently explored state space, and then it merges the results
and this original set. The pseudo-code for BFS is given on Algorithm 1.

Algorithm 1: Breadth first search.
Input: a set 𝑠 containing the initial state only
Output: the encoded state space

1 while new states are found do
2 𝑑← empty set;
3 foreach every transition t do
4 𝑑← 𝑑 ∪ fireTransition(𝑠, 𝑡);
5 end
6 𝑠← 𝑠 ∪ 𝑑;
7 end
8 return 𝑠;

Chaining loop fires a single transition in every iteration, merging the results immediately.
This means that on average, chaining loop will find most of the reachable states sooner
then the BFS, but it can only give a loose upper estimation on firing needed to reach a
given state. The pseudo-code for chaining loop is given on Algorithm 2.

2.5.2 Saturation

Saturation algorithm [4, 5] is a symbolic iteration strategy to explore the state spaces of
concurrent systems, and it is designed to work on MDDs.
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Algorithm 2: Chaining loop algorithm.
Input: a set 𝑠 containing the initial state only
Output: the encoded state space

1 while new states are found do
2 foreach every transition t do
3 𝑠← 𝑠 ∪ fireTransition(𝑠, 𝑡);
4 end
5 end
6 return 𝑠;

Saturation consists of decomposing the model to components. These components can be
traversed locally, which will reduce the number of global steps in the state space exploration
[12]. The iteration in the saturation algorithm is adapted to the structure of the MDD
representation of the state space, instead of the BFS order of the states. When saturating a
decision diagram node, new nodes created on the lower levels will themselves be saturated
immediately, resulting in a recursive algorithm.

The saturation algorithm is not discussed more deeply in this thesis, as it is a very complex
subject on its own. For further description on saturation, refer to [4, 5, 13].
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Chapter 3

Hierarchical Set Decision
Diagrams

This chapter presents the so-called set decision diagrams, introduced by [11], aiming to
represent hierarchy in the data structure. The main idea behind SDDs is that its edges
encode sets of values instead of a single value. To achieve this, the outgoing edges of a node
are labeled by another decision diagram node instead of an integer. The definition in [11]
builds on a special decision diagram type called data decision diagram (DDD). However,
the concepts of SDDs follow more naturally if they are introduced as hierarchical extensions
of MDDs.

3.1 Definition of Set Decision Diagrams

The following definition of set decision diagrams builds on Definition 5.

Definition 6 (Set decision diagram).
A set decision diagram is a set of integer tuples represented by a directed acyclic graph,
with a node set (𝑉 ) consisting of two types of nodes: terminal and non-terminal nodes.
Every nonterminal node 𝑣 ∈ 𝑉 has at least one outgoing edge to a child node. Nodes
are associated with levels: 𝑙𝑒𝑣𝑒𝑙(𝑣) ∈ Z+. For every non-terminal node, 𝑙𝑒𝑣𝑒𝑙(𝑣[𝑖]) <
𝑙𝑒𝑣𝑒𝑙(𝑣) for every children of 𝑣. There are also exactly two terminal nodes, 0 ∈ 𝑉 and
1 ∈ 𝑉 , called terminal zero and terminal one respectively. The terminal nodes also have
fixed level numbers: 𝑙𝑒𝑣𝑒𝑙(0) = 𝑙𝑒𝑣𝑒𝑙(1) = 0. The terminal nodes encode binary values:
𝑣𝑎𝑙𝑢𝑒(0) = 0, 𝑣𝑎𝑙𝑢𝑒(1) = 1. The edges of the SDD encode sets of integer tuples. Edges
are denoted by 𝑥

𝑎𝑖−→ 𝑦, where 𝑥, 𝑦 ∈ 𝑉 , and 𝑎𝑖 is the root node of an MDD or SDD
representation of the set of integers. �

A path from the root node of an SDD to the terminal one encodes the Cartesian product
of the sets encoded by the labels of traversed edges. For the sake of convenience, the
notion of a node is often used to refer to the set it encodes, if not ambiguous.

3.2 Properties of Set Decision Diagrams

In order to efficiently use SDDs they have to be unambiguous. To achieve unambiguity,
canonical forms of SDDs are used.
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Definition 7 (Canonical set decision diagram).
An SDD is canonical iff :

∙ ∀𝑣 𝑎𝑖−→ 𝑤 =⇒ 𝑎𝑖 ̸= ∅ ∧ 𝑤 ̸= 0;

∙ ∀𝑣 𝑎𝑖−→ 𝑤 ∧ 𝑣
𝑎𝑗−→ 𝑧 =⇒ 𝑎𝑖 ∩ 𝑎𝑗 = ∅ ∧ 𝑤 ̸= 𝑧. �

Definition 7 can be fulfilled by applying the following reduction rules. For a visual expla-
nation, see Figure 3.1 and 3.2:

∙ A canonical representation of 𝑣
𝑎𝑖−→ 𝑤 and 𝑣

𝑎𝑗−→ 𝑤 is 𝑣
𝑎𝑖∪𝑎𝑗−−−→ 𝑤.

∙ A canonical representation of 𝑣
𝑎𝑖−→ 𝑤 and 𝑣

𝑎𝑗−→ 𝑧, where 𝑤 ∪ 𝑧 ̸= ∅ and 𝑤 ∩ 𝑧 ̸= ∅,
is 𝑣

𝑎𝑖∖𝑎𝑗−−−→ 𝑤, 𝑣
𝑎𝑗∖𝑎𝑖−−−→ 𝑧 and 𝑣

𝑎𝑖∩𝑎𝑗−−−→ 𝑤 ∪ 𝑧.

Figure 3.1. Visualization of the first SDD reduction rule.

Figure 3.2. Visualization of the second SDD reduction rule.

The advantage of MDDs is that they can exploit the similarities of the encoded tuples
to achieve a compact representation. In addition to this, SDDs add the capability of
exploiting the inner structure of the encoded tuples, i.e., symmetries inside a tuple can be
efficiently represented hierarchically. When used in symbolic model checking, this feature
aligns with the compositional structure of high level models.

The graphical representation of an SDD is problematic due to the hierarchical structure.
The convention used in this work is to represent labeled nodes by a dashed arrow pointing
from the referencing edge to the referenced decision diagram’s node. Figure 3.3 shows the
graphical notations and also illustrates the source of compactness in SDDs.
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Figure 3.3. An MDD and an SDD hierarchy encoding the same
set.

3.3 Operations on Set Decision Diagrams

In [11], the SDD definition builds on a special type of decision diagrams, called data
decision diagrams, which are discussed further in [9]. DDDs support special types of
operation, called homomorphism.

A homomorphism is an abstract operation that maps canonical (called well-defined by [9])
DDD nodes to canonical DDD nodes. As SDDs are generalized DDDs, [11] defines SDD
homomorphisms. They can be used to define various operations, including set operations,
integer arithmetic or even variable assignments.

3.3.1 Set Operations

The SDD implementation of this work is integrated into a currently developed model
checker framework of the Fault-Tolerant System Research Group at Budapest University
of Technology and Economics. To fit the interface of the implementation of the SDD into
the framework, the usual set operations had to be defined.

The following algorithms will be doubly recursive: for every edge in the resulting diagram
the label and the child node has to be computed by a recursive calls to another set
operation. The recursions computing the child nodes traverse the current diagram and
will be terminated on the terminal level. The recursions computing the labels to the
new children traverse the hierarchy, and will eventually result in a simple MDD operation
(introduced in Section 2.4.2.1). Furthermore, reduction rules must be enforced during the
computation.
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When defining the following algorithms, one must consider the path passing through the
current decision diagram node(s). In every case we will consider how to compute the child
and label nodes of the resulting edges such that the resulting node is canonical.

3.3.1.1 Intersection

The intersection of two SDDs is an SDD encoding the set of vectors encoded by both of
the operands. Our first consideration is that every path that is present in the intersection
has to pass trough some label in both the first and the second operand. Therefore, to
compute the labels of resulting edges, we have to intersect labels of every edge of the first
operand with labels of every edge of the second operand. The resulting intersection are the
candidates to be labels on the edges of the result node. Furthermore if a path got through
the labels, it still has to reach the terminal one in both diagrams, so the intersection of
the children nodes also has to be computed for every edge candidate. If the intersection is
non-empty, we add an edge to the result node labeled with the intersection of the labels
leading to the intersection of their corresponding children. This construction inherently
satisfies both of the reduction rules.

Algorithm 3: Intersection of two SDD nodes
Input: SDD nodes v and w on the same level in two canonical SDD graph
Output: SDD node z encoding the intersection of the inputs

1 if v = 0 ∨ w = 0 then
2 return 0;
3 end
4 if v = w then
5 return v;
6 end
7 𝑧 ← new node on the same SDD level as operands;
8 foreach outgoing edge e of v do
9 foreach outgoing edge f of w do

10 𝑐← child(𝑒) ∩ child(𝑓);
11 𝑙← label(𝑒) ∩ label(𝑓);
12 if n ̸= 0 and l ̸= 0 then
13 create edge 𝑧

𝑙−→ 𝑐 ;
14 end
15 end
16 end
17 if z does not have any edges then
18 𝑧 ← 0;
19 end
20 return z;

3.3.1.2 Union

The union of two SDDs is an SDD encoding the set of vectors encoded by any of the
operands. Our first consideration is that every path that is present in both of the operands
has to path trough some label in both the first and the second operand. But unlike in
the case of intersection, the corresponding children has to be merged. Furthermore, in
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this case, paths only present in one of the operands also have to be included in the result.
Therefore, the parts of labels not present in the intersections has to be added as a new
edge with their original child node.

While the definition of intersection implied that the reduction rules are satisfied, it is not
the case here. To see this, consider the following. Assume that the label of an edge had
an intersection with the label of another edge, whose child was the same. In this case
the algorithm above would create two edges that lead to the same child. Therefore, the
last step of the algorithm has to apply the first reduction rule (defined in Section 3.2)
by merging the labels of the edges leading to the same child node. The other rule is still
guaranteed by the construction.

Algorithm 4: Union of two SDD nodes
Input: SDD nodes v and w on the same level in two canonical SDD graph
Output: SDD node z encoding the union of the inputs

1 if v = 1 or w = 1 then
2 return 1;
3 end
4 if v = w then
5 return v;
6 end
7 𝑧 ← new node on the same SDD level as operands;
8 foreach outgoing edge e of v do
9 foreach outgoing edge f of w do

10 𝑐← child(𝑒) ∪ child(𝑓);
11 𝑙← label(𝑒) ∩ label(𝑓);
12 if l ̸= 0 then
13 create edge 𝑧

𝑙−→ 𝑐;

14 replace e with 𝑣
label(𝑒) ∖ 𝑙−−−−−−→child(𝑒);

15 replace f with 𝑣
label(𝑓) ∖ 𝑙−−−−−−→child(𝑓);

16 end
17 end
18 end
19 add every remaining edges from v and w to z;
20 while ∃𝑎𝑖, 𝑎𝑗 , 𝑥 : 𝑧

𝑎𝑖−→ 𝑥 ∧ 𝑧
𝑎𝑗−→ 𝑥 do

21 remove edges 𝑧
𝑎𝑖−→ 𝑥 and 𝑧

𝑎𝑗−→ 𝑥;
22 create edge 𝑧

𝑎𝑖 ∪ 𝑎𝑗−−−−→ 𝑥;
23 end
24 return z;

3.3.1.3 Subtraction

The subtraction of an SDDs from another SDD encoding the set of vectors encoded only by
the latter. In our implementation, we subtracted the right operand from the left operand.
Our first consideration is that every path that is present in both of the operands has to
path trough some label in both the first and the second operand. But unlike in the case of
intersection, the corresponding children has subtracted, with subtracting the children of
the right operands from the children of the left operand, thus eliminating the paths found
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in both of the operands. Furthermore, in this case, paths only present in the left operand
also have to be included in the result. Therefore, the parts of labels from the left operand
not present in the intersections has to be added as a new edge with their original child
node.

While the definition of intersection implied that the reduction rules are satisfied, it is not
the case here. To see this, consider the following. Assume that the label of an edge had
an intersection with the label of another edge, whose children nodes are disjunct. In this
case the algorithm above would create two edges that lead to the same child. Therefore,
the last step of the algorithm has to apply the first reduction rule (defined in Section 3.2)
by merging the labels of the edges leading to the same child node. The other rule is still
guaranteed by the construction.

Algorithm 5: Subtraction of an SDD node from another SDD node
Input: SDD nodes v and w on the same level in two canonical SDD graph
Output: SDD node z which is the subtraction of w from v

1 if v = 0 or w = 0 then
2 return v;
3 end
4 if v = w then
5 return 0;
6 end
7 𝑧 ← new node on the same SDD level as operands;
8 foreach outgoing edge e of v do
9 foreach outgoing edge f of w do

10 𝑐← child(𝑒) ∖ child(𝑓);
11 𝑙← label(𝑒) ∩ label(𝑓);
12 if l ̸= 0 then
13 create edge 𝑧

𝑙−→ 𝑐;

14 replace e with 𝑣
label(𝑒) ∖ 𝑙−−−−−−→child(𝑒);

15 end
16 end
17 end
18 add every remaining edges from 𝑣 to 𝑧;
19 while ∃𝑎𝑖, 𝑎𝑗 , 𝑥 : 𝑧

𝑎𝑖−→ 𝑥 ∧ 𝑧
𝑎𝑗−→ 𝑥 do

20 remove edges 𝑧
𝑎𝑖−→ 𝑥 and 𝑧

𝑎𝑗−→ 𝑥;
21 create edge 𝑧

𝑎𝑖 ∪ 𝑎𝑗−−−−→ 𝑥;
22 end
23 return z;
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Chapter 4

Model Checking with Set Decision
Diagrams

This chapter presents different approaches for symbolic state space representation and
generation. MDD and SDD based symbolic model checking methods are demonstrated
here, to illustrate the differences between the two approaches.

First, Section 4.1 shows how to use multivalued decision diagrams and set decision di-
agrams to encode the state space of a system, as well as some methods to represent
transitions of Petri nets, or in general, vector addition systems. This section also intro-
duces a new way to store the transitions of hierarchical models. Then Section 4.2 discusses
the basic state space exploration algorithms (introduced in Section 2.5) in terms of set
decision diagram representations.

4.1 Symbolic Representations

When dealing with symbolic model checking, an important question is how to encode the
states and transitions of the system. In this section, two types of decision diagram based
encodings are given for states, and a lightweight representation is proposed specifically for
Petri net transitions.

4.1.1 Representation of the State Space

The most trivial way to represent a state space of a model is to store its state graph,
explicitly enumerating the different states and transitions.

Example. Figure 2.3 illustrates a Petri net and its state space. A marking of this net can
be stored as an integer vector (or tuple) of length three: the first integer referring to the
token count of 𝑝1, the second to 𝑝2 and the third to 𝑝3. In this case, the initial state can
be represented as (2, 0, 0). The state space can be stored as a set of the vectors encoding
the possible states. This Petri net has six distinct states, so this approach gives the set
(0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0) as the state space.

The example above clearly shows that the explicit storage is very straight-forward, but
also very naive. Usually. there are multiple states in which the token count of a place is
the same (e.g., in the example above, 𝑝1 has zero token in three different states), which
causes a redundancy. The strength of the decision diagram encoding is that it exploits the
redundancy in the state space to achieve a compact storage.
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4.1.1.1 Encoding States with Multivalued Decision Diagrams

MDDs are commonly used to represent sets of states, e.g., in [25]. As mentioned in Section
2.4.2, an MDD encodes an integer function 𝑓(𝑥1, ..., 𝑥𝑛) −→ {0, 1}. Suppose 𝑥𝑖 refers to
the token count of the i-th place, and 𝑓(𝑥1, ..., 𝑥𝑛) is 1 iff [𝑥1, ..., 𝑥𝑛] is part of the encoded
set. The levels of the MDD then correspond to places in the Petri net. MDDs have set-
like operations as seen in Section 2.4.2.1, thus it is possible to directly manipulate this
representation.

Example. The Petri-net on Figure 2.3 has three places, so the MDD encoding the state
space will have three levels. Let the first level represent p1, the second p2 and the third
p3. The MDD representation of the state space can be seen on Figure 4.1, with paths
from the root node to the terminal 1 denotes the encoded vectors.

Figure 4.1. An MDD representation of the state space of the Petri
net on Figure 2.3.

Figure 4.1 above illustrates the way an MDD provides a less redundant way to encode the
state space. However, this method is still not redundancy-free.

4.1.1.2 Ecoding States with Set Decision Diagrams

There are models which are structurally symmetrical, and this causes redundancy in the
MDD representation of their state space. Suppose a model has similar, repeated sub-
models, or components. If these components can be arranged into a hierarchy, then we
call it a hierarchical model.

Example. An example for hierarchical models could be the dining philosophers model.
This model has multiple philosophers around a table, their meals in front of them, and a
fork between every neighboring philosopher. A fork can be used by only one philosopher,
and a philosopher needs both forks next to him to eat.

As Figure 4.2 shows, the problem is composed of similar, repeated components. In this
case, a component consists of a philosopher and a fork. These components have sim-
ilar behavior and also similar states, so the MDD has repeating patterns. Figure 4.3
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Figure 4.2. The dining philosophers problem for five philosophers.

illustrates that repeating property – the lines represent diverse sub-diagrams in the MDD
(corresponding to single components), and the ellipses represent connecting, narrow parts.

To make the state space representation even more compact, set decision diagrams can be
used (see Chapter 3). Using SDDs, the symmetric parts can be encoded only once, and
their recurring appearance can be referenced by the use of edge labels.

Example. The aforementioned dining philosophers model can be arranged into three
hierarchy levels: the topmost level, with five philosopher-fork pairs, the middle level,
encoding the combination of a philosopher and a fork, and the lowest level, which encodes
the states of philosophers and forks in MDDs. A route to the terminal 1 in the first
hierarchy level references the second hierarchy level five times by its labels. A route in the
second hierarchy level has two reference to the lowest hierarchy level (containing MDDs),
with one label pointing to the MDD node encoding the states of a philosopher and another
one encoding a fork.

Figure 4.4 shows a schematic figure of the resulting SDD hierarchy. Instead of storing the
broad, branching parts of the state space multiple times, now they are encoded only once
on the MDD level, and referenced multiple times by labels on the upper levels. Using
this method, the redundancy of the state space caused by the hierarchical and repeating
structure of the model is significantly reduced. For an even more detailed example on
using SDD hierarchy levels, see [18].

4.1.2 Encoding of Petri Net Transitions

Symbolic algorithms generate new reachable states from the already explored part of the
state space. To find these states, the algorithm has to know the transitions and their
exact effect. Thus another problem arises beside the representation of the state space –
the representation of transitions and their firing rules.
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Figure 4.3. Approximate shape of an MDD encoding the state
space of the dining philosophers problem.

4.1.2.1 Common Methods for Encoding Firing Rules

In case of Petri nets, the weight functions 𝑊 + and 𝑊 − (see Section 2.1) are a sufficient
representation when working with MDDs, because levels of the diagram are associated with
places. A trivial representation of these weight function is a |𝑇 |× |𝑃 | input and an output
incidence matrices 𝑁+ and 𝑁−, where 𝑁+(𝑡, 𝑝) = 𝑊 +(𝑡, 𝑝) and 𝑁−(𝑡, 𝑝) = 𝑊 −(𝑡, 𝑝) [21].

Example. The Petri-net on Figure 2.3 has the following incidence matrices:

𝑁+ =

⎛⎜⎝0 1 0
0 0 1
1 0 0

⎞⎟⎠ and 𝑁− =

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠
Another common way to represent firing rules is the use of Kronecker matrices [6], which
are encodings of the so-called next-state function. The next-state function of a model is
𝒩𝑡(𝑚), which gives the reachable states after a single firing of transition 𝑡 on state 𝑚.

Definition 8 (Kronecker matrix).
The matrix 𝑁𝑡 ∈ {0, 1}|𝑆|×|𝑆| is a Kronecker matrix, where ∀𝑡 ∈ 𝑇 : 𝑁𝑡[𝑖, 𝑗] = 1 iff
𝑗 ∈ 𝒩𝑡(𝑖). �

Example. Without decomposing the Petri-net on Figure 2.3, the states of the net can be
encoded as:
𝑀(𝑝1) = 2, 𝑀(𝑝2) = 0, 𝑀(𝑝3) = 0 −→ 0
𝑀(𝑝1) = 1, 𝑀(𝑝2) = 1, 𝑀(𝑝3) = 0 −→ 1
𝑀(𝑝1) = 0, 𝑀(𝑝2) = 2, 𝑀(𝑝3) = 0 −→ 2
𝑀(𝑝1) = 1, 𝑀(𝑝2) = 0, 𝑀(𝑝3) = 1 −→ 3
𝑀(𝑝1) = 0, 𝑀(𝑝2) = 1, 𝑀(𝑝3) = 1 −→ 4
𝑀(𝑝1) = 0, 𝑀(𝑝2) = 0, 𝑀(𝑝3) = 2 −→ 5
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Figure 4.4. Schematich figure of a hierarchical encoding of the
state space of the dining philosophers problem.

As the Kripke structure of the state space on Figure 2.3 also demonstrates, firing 𝑡1 will
take state 0 to state 1, state 1 to state 2 and state 3 to state 4, so the Kronecker matrix
for 𝑡1 is

𝑁𝑡1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The Kronecker matrices for 𝑡2 and 𝑡3 can similarly be constructed.

Next-state functions are often used with saturation [6, 12], and are usually decomposed
for local next-state functions 𝒩𝑘,𝑡 according to the 𝑘 cluster of the model, resulting in 𝑁𝑘,𝑡

Kronecker matrices for every 𝑘 level. Using Kronecker matrices in the basic exploration
algorithms can be problematic, because the algorithm would have to know the reachable
states beforehand to construct a matrix.
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4.1.2.2 Encoding Firing Rules of Hierarchical Models

When representing the same state space with an SDD, level numbers do not correspond to
places anymore, because the same diagram can encode the states of different components.
In other words, the meaning of a level is now context dependent – making the encoding
of firing rules with incidence matrices impossible.

To solve that problem, a method for representing the transitions hierarchically had to be
developed. Because the hierarchy of a model is basically a tree structure, the transitions
can be encoded in trees with the exact same structure as the model. In this construct,
the missing context is reintroduced by processing the proper subtree of the transition
encoding.

Figure 4.5. A hierarchical structure of decision diagrams, and the
tree structure of the transitions.

Figure 4.5 depicts a decision diagram hierarchy along with a tree describing a transition.
Leaf nodes correspond to levels of MDDs and they encode the effects of the transition
in two integer values: the number of tokens removed and added to the corresponding
place. Every non-leaf node corresponds to a decision diagram, with the 𝑖th child node
giving context to the labels of the 𝑖th level of the SDD. This relation is formalized in the
following definition:
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Definition 9 (Hierarchical transition tree).
A transition tree describing a transition in a hierarchical Petri net is a directed tree, with
a node set 𝑉 consisting of internal nodes and leafs (𝐿), an edge set 𝐸, and a function
𝑇 : 𝐿 −→ (Z,Z) such that 𝑇 (𝑤) : (𝑊 (𝑝, 𝑡), 𝑊 (𝑡, 𝑝)) for ∀𝑤 ∈ 𝐿. Every component in the
hierarchy is associated with an internal node 𝑣 ∈ 𝑉 ∖ 𝐿. Every place 𝑝 ∈ 𝑃 in Petri net
is associated with a corresponding leaf node 𝑤 ∈ 𝐿. There is an edge (𝑥, 𝑦) ∈ 𝐸 in the
tree iff the component or place corresponding to 𝑦 is the part of the subcomponent of the
component corresponding to 𝑥. �

4.2 State Space Exploration with Set Desicison Diagrams

To traverse through the state space, an algorithm has to be defined to generate the set of
states reached from an already discovered set of states after firing an enabled transition, as
the state space exploring algorithms in Subsection 2.5.1 used a transition firing function.
As Algorithm 6 demonstrates, the implementation of this function is simple and straight-
forward in the case of MDDs. This algorithm traverses down through the MDD recursively,
until it finds the terminal level. If the value of an MDD edge (representing the token
number of a place) minus the weight of the arc going from the place encoded by the
parent node of this edge to the transition is smaller then zero, then the transition is not
enabled, as this means that there are not enough tokens on the place. In this case, there
is no need to call the recursion.

Algorithm 6: Simple transition firing on MDDs.
Input: MDD node v, transition t
Output: MDD node w encoding the sub-states resulted from firing transition t

1 if level(v) = 0 then
2 return v;
3 end
4 𝑤 ← new node on the same MDD level as the operands;
5 𝑝← the place encoded by the level of 𝑣 i = 0;
6 foreach outgoing edge e of v do
7 if n[i] ̸= 0 ∧ i – 𝑊 −(𝑡, 𝑝) >= 0 then
8 𝑥← fireTransition(𝑛𝑜𝑑𝑒[𝑖], 𝑡);
9 if x ̸= 0 then

10 𝑤[𝑖−𝑊 −(𝑡, 𝑝) + 𝑊 +(𝑡, 𝑝)]← 𝑥;
11 end
12 end
13 end
14 if w don’t have any edges then
15 𝑤 ← 0;
16 end
17 return 𝑤;

As stated in Subsection 4.1.2, a level in a set decision diagram does not correspond to
a single distinct place of the Petri net, so Algorithm 6 is not usable with SDDs. To use
BFS and chaining loop with SDDs, new hierarchical firing algorithms had to be developed,
which are discussed in Subsection 4.2.1. Using these algorithms, BFS and chaining loop
can be applied to hierarchical models without alteration.
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Saturation with SDDs is also possible, and it is empirically an order of magnitude better
than the common traversal algorithms [18].

4.2.1 Firing Transitions in Hierarchical Systems

Algorithms 7 and 8 are designed to use the transition trees for firing transitions by calling
doubly recursion in accordance with the structure presented in Section 4.1.2. Algorithm
7 is called on the root node of the SDD on the top hierarchy level, and when it travels
down to the lowest SDD hierarchy levels, then eventually it calls the MDD variant of
the algorithm, when the labels are referring to MDDs. This MDD variant algorithm
(Algorithm 8) will determine if a transition is enabled, and if it is, then calculates the new
token count on the place of the Petri net corresponding the MDD level within the current
context. The other recursion traverses downwards in the levels of the SDD to calculate
the child nodes, and terminating on the terminal level.

Algorithm 7: Fire transition algorithm for SDD nodes.
Input: SDD node v, tree node t from the transition tree of a transition
Output: SDD node w encoding the sub-states resulted from firing the transition

corresponding to the tree of t on the states encoded by v
1 if level(v) = 0 then
2 return v;
3 end
4 𝑤 ← new node on the same SDD level as the operands;
5 foreach outgoing edge e of v do
6 𝑛← fireTransition(node(𝑒), 𝑡);
7 𝑙← fireTransition(label(𝑒), 𝑡[level(𝑣)]);
8 if l ̸= 0 ∧ n ̸= 0 then
9 create edge 𝑤

𝑙−→ 𝑛;
10 end
11 end
12 if w don’t have any edges then
13 return 0;
14 end
15 while ∃𝑎𝑖, 𝑎𝑗 , 𝑥 : 𝑤

𝑎𝑖−→ 𝑥 ∧ 𝑤
𝑎𝑗−→ 𝑥 do

16 remove edges 𝑤
𝑎𝑖−→ 𝑥 and 𝑤

𝑎𝑗−→ 𝑥;
17 create edge 𝑤

𝑎𝑖 ∪ 𝑎𝑗−−−−→ 𝑥;
18 end
19 return w;
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Algorithm 8: Fire transition algorithm for MDD nodes.
Input: MDD node v, tree node t from the transition tree of a transition
Output: MDD node w which encodes the sub-states resulted from firing the

transition corresponding to the tree of t on the states encoded by v
1 if level(v) = 0 then
2 return v;
3 end
4 𝑤 ← new node on the same MDD level as the operands;
5 i = 0;
6 foreach outgoing edge e of v do
7 if n[i] ̸= 0 ∧ i – 𝑡[𝑙𝑒𝑣𝑒𝑙(𝑣)].From >= 0 then
8 𝑥← fireTransition(𝑛𝑜𝑑𝑒[𝑖], 𝑡);
9 if x ̸= 0 then

10 𝑤[𝑖− 𝑡[𝑙𝑒𝑣𝑒𝑙(𝑣)].From +𝑡[𝑙𝑒𝑣𝑒𝑙(𝑣)].To]← 𝑥;
11 end
12 end
13 end
14 if w don’t have any edges then
15 𝑤 ← 0;
16 end
17 return 𝑤;
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Chapter 5

Implementation

The practical contribution of this thesis is the implementation of the SDD data structure,
and its related algorithms as a new library. This chapter discusses the challenges faced
during development as well as the finished data structure.

The library was implemented with the goal of being usable with the successor of the Petri-
DotNet [17] model checker framework developed by the Fault Tolerant Systems Research
Group at the Budapest University of Technology and Economics. That required the align-
ing of the interface of the library to match the interfaces of the data structures already
part of the program. The library was implemented with C# programming language, as
the model checker of the faculty is being developed in the .NET framework.

As there are only a handful of papers available on SDDs, all of them without any words
on the concrete implementation [11, 18], and to the best of our knowledge, only one public
SDD package is available [10] (implemented in a fully different environment and with little
documentation), the biggest challenge was that the development of the data structure (and
the majority of the related algorithms) had to be started from scratch (the new algorithms
are discussed deeper in Subsections 3.3.1, 4.1.2 and 4.2.1).

5.1 Overview of the Implemented Set Decision Diagram

This section overviews the classes of the SDD implementation, and their more significant
methods. Figure 5.1 shows the class diagram of the SDD. This diagram excludes the
classes of the MDD implementation (which is used on the lowest hierarchy level), as they
were already a part of the model checker framework.

The classes and their role are the following:

∙ SDDGraph is the main class for storing an SDD graph. Every SDD on the
same hierarchy level is stored in one SDDGraph class, even when they are disjoint.
SDDGraphs consist of several SDDLevels. To make a new node in a graph, the
method CreateNonTerminalNode should be called.

∙ SDDLevel is an abstract class, as it can be a terminal or a non-terminal level
(SDDTerminalLevel and SDDVariable respectively). The operations defined in Sec-
tion 3.3.1 are implemented in these classes as methods.

∙ SDDTerminalLevel is the terminal level of an SDD. It stores the two terminal
nodes, zero and one.
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Figure 5.1. The class diagram of the implemented SDD data
structure.

∙ SDDVariable is a non-terminal level in an SDD. It stores its nodes, and have a
method called CheckIn, which checks if there is a node with the same outgoing
edges as its input node. If it finds such a node, then it disposes the input node, and
gives back the found node, otherwise it adds the input node to the stored nodes of
the level. The purpose of this method is to guarantee that there is no isomorphic
sub-diagrams in the decision diagram.

∙ SDDEdge is the class representing an edge in an SDD. It has a child node,
and a label node. The child node is always an SDD node (implemented as a
DDNode<SDDEdge>), and the label node can be an MDD node in the lowest
hierarchy level, and an SDD node in every higher hierarchy level.

∙ DDNode is a universal class for decision diagram nodes. It is a generic class, with
a type parameter denoting the type of the outgoing edges.

∙ SDDTerminalNode is an inheritance of the DDNode<SDDEdge>, with a single
boolean value (false for 0, and true for 1).
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5.2 Optimizations

Model checking is a complex, memory-intense task – especially when the exploration of
the whole state space is needed. Thus the performance can be improved even with slight
optimizations in the memory usage.

To optimize the performance of the algorithms, the implementation uses caches whenever
possible: there are three caches in the SDDVariable class (one for each set operation), and
a cache for every hierarchy level when firing transitions. The caches are usable, because
the union, intersection, subtraction and the transition firing are static operations, which
means that for the result of an operation for two nodes (or a node and a transition) can
be stored to later use.

As Section 5.1 mentioned, every SDD on the same hierarchy level is stored in the same
SDDGraph. This is another optimization feature, which can improve the running time
of the set operations by a significant amount, as seen in [12]. The stored SDDs will not
necessarily be disjoint, because the CheckIn method forbids two nodes with the same
meaning. As the root node unequivocally identifies an SDD, this does not cause any
malfunctions.
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Chapter 6

Evaluation of the Results

This chapter presents the performance results of the implemented data structures and
algorithms, and compares the different solutions. The measurements consist of the two
basic algorithms presented in Subsection 2.5.1, both with using MDDs and SDDs as the
representation technique of the state space.

The measurements were performed on the following system: Intel i5-3210-M CPU @ 2.50
GHz, 6 GB DDR3-1333 MHz RAM, Microsoft Windows 10 operating system with .NET
platform 4.6. The memory usage of the running applications were limited to a maximum
of 4 GB and enforced a time limit of 10 minutes. If a test-case violated these limitations,
it was terminated and displayed the reason of termination in the results.

6.1 Results

This section gives the actual results of the implementation. The notations used in the
tables are the following:

∙ The Model column contains the name of the model we ran test-case on. The de-
scription of these models can be found in appendix A

∙ The |S| column shows the size of the state-space of the model, if it is unknown in
the literature, it contains the “?” symbol.

∙ The RT column shows the total runtime of the process.

∙ The PMU column shows the peak memory usage of the process.

∙ > 4 GB means that the process terminated due to too much memory consumption.

∙ > 10 m means that the process terminated due to reaching the time limit.

∙ if in a cell the symbol “–” showed it means that the cell cannot contain valuable data
due to termination because of other reasons or that the data is not representative.

36



Model |S|
SDD MDD

BFS Chaining Loop BFS Chaining Loop
RT PMU RT PMU RT PMU RT PMU

Dekker 10 6 144 > 10 m – > 10 m – 1.86 s 62 MB 1.88 s 63 MB
Dekker 20 278 528 > 10 m – > 10 m – – > 4 GB – > 4 GB
Dekker 50 ? > 10 m – > 10 m – – > 4 GB – > 4 GB
Peterson 2 20 754 > 10 m – > 10 m – 4.24 s 124 MB 4.28 s 123 MB
Peterson 3 3.408× 106 > 10 m – > 10 m – – > 4 GB – > 4 GB
Peterson 4 6.299× 108 >10 m – > 10 m – – > 4 GB – > 4 GB

FMS 5 2.895× 106 39.95 s 13 MB 9.93 s 1 MB 0.9 s 23 MB 0.79 s 23 MB
FMS 10 2.501× 109 64.57 s 15 MB 65.42 s 11 MB 5.12 s 114 MB 0.51 s 16 MB
FMS 20 6.029× 1012 > 10 m – > 10 m – 50.55 s 720 MB 50.04 s 699 MB
FMS 50 4.24× 1017 > 10 m – > 10 m – – > 4 GB – > 4 GB
DPhil 10 59 049 20.03 s 2 MB 8.04 s 1 MB 0.24 s 13 MB 0.07 s 5 MB
DPhil 20 3.487× 109 > 10 m – 194.72 s 5 MB 2.8 s 94 MB 2.68 s 94 MB
DPhil 50 7.179× 1023 > 10 m – > 10 m – 61.54 s 1570 MB 61.95 s 1585 MB
DPhil 100 5.146× 1047 > 10 m – > 10 m – – > 4 GB – > 4 GB
Kanban 5 1.006× 109 7.07 s 3 MB 3.49 s 1 MB 0.5 s 15 MB 0.51 s 15 MB
Kanban 10 1.006× 109 52.07 s 14 MB 29.03 s 7 MB 3.81 s 72 MB 0.8 s 19 MB
Kanban 20 8.054× 1011 536.98 s 92 MB 243.13 s 50 MB 48.43 s 520 MB 47.6 s 522 MB
Kanban 50 1.043× 1016 > 10 m – > 10 m – – > 4 GB – > 4 GB

TokenRing 5 166 69.8 s 7 MB 58.42 s 2 MB 0.18 s 7 MB 0.16 s 7 MB
TokenRing 10 58 905 > 10 m – > 10 m – 14.44 s 324 MB 14.29 s 324 MB
TokenRing 20 2.477× 1010 > 10 m – > 10 m – – > 4 GB – > 4 GB

Table 6.1. Comparison of the basic algorithms using MDDs and SDDs.
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6.1.1 Evaluation of the Measures

Table 6.1 contains the measurement datas for the two different decision diagrams combined
with the two different state space traversal algorithms. An interesting result is that the
automated termination of the program is always caused by the runtime in case of SDDs,
and by the memory usage in case of MDDs.

Unfortunately, SDDs were terminated more than MDDs, but it is still clear from looking
at the peak memory usages that it is indeed a way more compact data structure than the
MDD, as the memory usage in the case of using SDDs are an order of magnitude better.

The measurements reveal that the state space exploration with SDDs are more time con-
suming: on average, it is worse by an order of magnitude, but there are cases (like the
philosophers model), where there is a two decimal difference. This drawback is probably
caused by the doubly recursive property of the set operations.

In [18] it was demonstrated that the SDDs (and as seen in [14], most data structures)
are far more efficient when using saturation, as it can even surpass the saturation of flat
models. Implementing saturation for hierarchical structures are beyond the scope of this
thesis, but it can be an interesting path for future works.

Judged from the measurements, the chaining loop proved to be the more efficient al-
gorithm: whereas at models like TokenRing, Dekker or Peterson, there are little to no
differences between the breadth first search and the chaining loop, but at DPhil, FMS and
Kanban, the chaining loop have beaten the BFS with a decimal in the most cases.
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Chapter 7

Conclusion and Future Work

This chapter summarizes the results and contributions of this work, and present some of
my future plans of further developing the algorithms.

7.1 Contributions

The theoretical contributions of this thesis to the field of symbolic model checking are the
development of the usual set operation algorithms for the set decision diagrams, detailed in
Section 3.3, and the development of a method for encoding the firing rules of a hierarchical
system, detailed in Subsection 4.1.2.2.

The practical contributions of this work are the implementation of set decision diagrams
with its operations for the formal verification of hierarchical systems, and the implemen-
tation of two state space exploring algorithms with SDDs as well as MDDs. The finished
work is integrated into the model checker framework developed at the Fault Tolerant
System Research Group of the Budapest University of Technology and Economics.

7.2 Conclusion

Set decision diagram is still an uncommon, young data structure – as far as I know, this
thesis is among the first few works about SDDs.

The main problem of model checking is the size of the state spaces of complex models,
which is often caused by the number of state variables, thus the lightweight memory
consumption of the set decision diagrams can be a big improvement to the model checkers
of the future. My implementation showed that while SDDs greatly exploit the structure of
models to reduce redundancy, the running time of the operations on SDDs will suffer from
their hierarchical structure. To improve this performance, future works will be necessary.

7.3 Future Work

The further development and optimization of set decision diagrams is a promising future
work, as the memory usage proved to be cutting-edge, while there are methods to im-
prove the time consumption of the algorithms. Implementing saturation to hierarchical
structures is a part of our future plans with SDDs, because it can greatly improve their
speed as seen in [18]. Designing and implementing homomorphisms also seems to be a
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viable solution to increase the effectiveness of SDDs, because these are the original opera-
tions defined on the structure. One of the most promising plans for future research is the
parallelization of the processing of SDDs, exploiting the doubly recursive nature of their
algorithms.
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Appendix A

Description of Tested Models

This appendix gives a short overview on the tested benchmark models used in 6. All of
these tested models were used at the Model Checking Conference, 2013.

Dekker N

This model is a Petri net variant of Dekker’s algorithm for the mutual exclusion problem,
generalized for N processes. It is parametrized by the number of processes it realizes the
algorithm on.

FMS N

This Petri net is extracted a benchmark used for SMART. It models a flexible manufactur-
ing system with three conveyor belt. The model ha three processes, and it is parametrized
with the starting token-count on each processes (conveyor belts), so the size of the model
is not depends on the value of the parameter.

Peterson N

This is a model of the Peterson’s algorithm for the mutual exclusion problem, in its gener-
alized version for N processes. This algorithm is based on shared memory communication
and uses a loop with N-1 iterations, each iteration is in charge of stopping one of the
competing processes.

Kanban N

This Petri net is extracted a benchmark used for SMART. It models a Kanban scheduling
system. Ut is parametrized with the token-counts of the places in the initial marking, so
the size of the model is not depends on the value of the parameter.
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DPhil N

This is the Petri net model of the famous dining philosophers problem, which is an exam-
ple often used to illustrate an inappropriate use of shared resources generating deadlocks.
N philosophers share a table each with N plate, and with a fork between every two neigh-
boring plate. They are thinking and, when they need to eat, they go to the table, grab
one fork from one side of their plate, then the second from the other side, then eat, and
then go back thinking. If a philosopher grabbed a fork, he cannot go back thinking, until
he has eaten.

TokenRing N

A complex model of a system where a set of N machines are placed in a ring. The objective
of the protocol is to reach a stable state for the system, where given criteria are fulfilled.
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