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Kivonat A kritikus rendszerek – biztonságkritikus, elosztott és felhőalkalmazások – he-
lyességének biztosításához szükséges a funkcionális és nemfunkcionális követelmények
matematikai igényességű ellenőrzése. Számos, szolgáltatásbiztonsággal és teljesítmény-
vizsgálattal kapcsolatos tipikus kérdés általában sztochasztikus analízis segítségével
válaszolható meg.

A kritikus rendszerek elosztott és aszinkron tulajdonságai az állapottér robbanás
jelenségéhez vezetnek. Emiatt méretük és komplexitásuk gyakran megakadályozza a
sikeres sztochasztikus analízist, melynek számításigénye nagyban függ a lehetséges
viselkedések számától. A modellek komponenseinek jellegzetes időbeli viselkedése
és leginkább eltérő karakterisztikája a számításigény további jelentős növekedését
okozhatja.

A szolgáltatásbiztonsági és teljesítményjellemzők kiszámítása markovi modellek
állandósult állapotbeli és tranziens megoldását igényli. Számos eljárás ismert ezen
problémák kezelésére, melyek eltérő reprezentációkat és numerikus algoritmusokat
alkalmaznak ; ám a modellek változatos tulajdonságai miatt nem választható ki olyan
eljárás, mely minden esetben hatékony lenne.

A dolgozatban bemutatjuk az irodalomban ismert, markovi sztochasztikus rendsze-
rek állandósult állapotbeli és tranziens viselkedésének vizsgálatára alkalmas numerikus
algoritmusokat. Az algoritmusokat konfigurálható adatstruktúrával és lineáris algebrai
műveletekkel valósítottuk meg.

A bevezetett konfigurálható sztochasztikus analízis keretrendszer lehetővé teszi
a sztochasztikus viselkedéseket leíró különböző mátrix-dekompozíciók és az analízis
algoritmusok használatát állandósult állapotbeli, tranziens, első hiba várható idő és
érzékenységvizsgálatok elvégzésére. Az elkészített eszközt integráltuk a PetriDotNet
modellező szoftverrel.

Módszerünk gyakorlati alkalmazhatóságát szintetikus és ipari modelleken végzett
mérésekkel igazoljuk.

Kulcsszavak aszinkron rendszerek, teljesítményvizsgálat, sztochasztikus modell, nu-
merikus módszerek, érzékenységvizsgálat
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Abstract Ensuring the correctness of critical systems – such as safety-critical, dis-
tributed and cloud applications – requires the rigorous analysis of the functional and
extra-functional properties of the system. A large class of typical quantitative questions
regarding dependability and performability are usually addressed by stochastic analysis.

Recent critical systems are often distributed/asynchronous, leading to the well-
known phenomenon of state space explosion. The size and complexity of such systems
often prevents the success of the analysis due to the high sensitivity to the number of
possible behaviors. In addition, temporal characteristics of the components can easily
lead to huge computational overhead.

Calculation of dependability and performability measures can be reduced to steady-
state and transient solutions of Markovian models. Various approaches are known
in the literature for these problems differing in the representation of the stochastic
behavior of the models or in the applied numerical algorithms. The efficiency of these
approaches are influenced by various characteristics of the models, therefore no single
best approach is known.

In this thesis we present numerical solution algorithms for the steady state and
transient analysis of Markovian models. Various algorithms were implemented with
configurable data structure and linear algebra operations.

Our framework provides configurable stochastic analysis: an approach is introduced
to combine different matrix representations of stochastic behaviors with numerical
solution algorithms for steady-state, transient, mean-time-to-first-failure and sensitivity
problems.

The goal of our work is to introduce a framework that facilitates the analysis of
complex, stochastic systems by combining the advantages of compact matrix repre-
sentations and various numerical algorithms. The analysis tool is integrated into the
PetriDotNet modeling application.

Benchmarks and industrial case studies are used to evaluate the applicability of our
approach.

Keywords asynchronous systems, performance analysis, stochastic model, numeric
methods, sensitivity analysis
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Chapter 1

Introduction

The growing need for ensuring the correctness of critical systems – such as safety-critical,
distributed and cloud applications – requires the rigorous analysis of the functional and
extra-functional properties. A large class of typical quantitative questions regarding
dependability and performability are usually addressed by stochastic analysis.

Recent critical systems are often distributed/asynchronous, leading to the well-
known phenomenon of state space explosion. The size and complexity of such systems
often prevents the success of the analysis due to the high sensitivity to the number of
possible behaviors. In addition, temporal characteristics of the components can easily
lead to huge computational overhead or prevent algorithms from convergence.

Calculation of dependability and performability measures can be reduced to steady-
state and transient solutions of Markovian models. Various approaches are known
in the literature for these problems differing in the representation of the stochastic
behavior of the models or in the applied numerical algorithms. The efficiency of these
approaches are influenced by various characteristics of the models, therefore no single
best approach is known.

In this paper our goal is to propose a numerical backed for the solution of the various
problems occurring in stochastic analysis of complex systems.

In [49] we introduced the concept of configurable stochastic analysis. We developed
a framework to support the combination of

• various state space exploration techniques with

• decomposition algorithms and representation techniques for the stochastic behav-
ior of the systems

• various numerical algorithms to solve the steady-state and transient analysis
problem,
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• computation of high level measures such as various reward, sensitivity and mean
time to failure values.

Various problems were solved during our work: an approach is introduced to
combine the different matrix representations with numerical solution algorithms. The
approach consists of a flexible data structure, which is complemented by a set of linear
algebra operations configurable at runtime.

A diverse set of algorithms are implemented for steady-state reward and sensitivity
analysis, transient reward analysis and mean-time-to-first-failure analysis of stochastic
models. Several optimizations and improvements were applied to provide efficient
algorithms. Most of the developed algorithms are parallelized to exploit the modern
multicore architectures. Benchmarks and industrial case studies are used to evaluate
the applicability of our approach.

The algorithm development and optimization includes preliminary work on integrat-
ing the IDR(s)STAB(`) numerical linear equations solver into our stochastic analysis
framework, including modifications and tuning for matrices arising in steady-state
Markovian analysis problems. To our best knowledge, ours is the first preliminary result
in this area.

The analysis framework is integrated into the PetriDotNet modeling application
for stochastic models in the Stochastic Petri Net (SPN) formalism.

More than 78000 unit tests are generated with a combinatorial interface testing
approach to ensure the correctness of the data structure. To validate the stochastic
analysis pipeline and the implemented algorithms through software redundancy, 588
mathematically consistent configurations of the pipeline are executed and evaluated for
several models. More than 150 benchmark runs were performed with large models and
industrial case studies to gather information about the performance and memory uti-
lization characteristics of the analysis tool. In addition, 10000 shorter benchmark runs
were used to study the convergence behavior of our modification of the IDR(s)STAB(`)
algorithm.

The remainder of this paper is structured as follows: Chapter 2 reviews some
preliminaries of the stochastic analysis of stochastic Petri nets. Chapter 3 presents
the configurable stochastic analysis pipeline and its numerical backend. Chapter 4
describes the developed data structure and configurable linear algebra operations.
Chapter 5 presents numerical steady-state and transient analysis algorithms and their
implementations in our framework, with special attention to the homogeneous linear
equation systems arising from steady-state analysis. In Section 5.1.4 on page 52, we
present the Krylov subspace solvers utilized, including our preliminary work integrating
IDR(s)STAB(`) on page 54. After describing the testing and validation methodologies
applied to our framework in Chapter 6 as well as the benchmark results, we conclude
our thesis in Chapter 7.
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Chapter 2

Background

In this section we overview the basic formalisms and scope of our work. First, continuous-
time Markov chains and Markovian reward analysis tasks are introduces. We also recall
some foundations of Kronecker algebra. Lastly, stochastic automata networks are
introduced, which are commonly used hierarchical formalism for Markovian models
that are especially amenable to decomposition by Kronecker products.

2.1 Continuous-time Markov chains

Continuous-time Markov chains are mathematical tools for describing the behavior of
systems in continuous time where the stochastic behavior of the system only depends
on its current state.

Definition 2.1 A Continuous-time Markov Chain (CTMC) X (t) ∈ S, t ≥ 0 over the
finite state space S = {0,1, . . . , n− 1} is a continuous-time random process with the
Markovian or memoryless property:

P(X (tk) = xk | X (tk−1) = xk−1, X (tk−2) = xk−2, . . . , X (t0) = x0)

= P(X (tk) = xk | X (tk−1) = xk−1),

where t0 ≤ t1 ≤ · · · ≤ tk and X (tk) is a random variable denoting the current state
of the CTMC at time tk. A CTMC is said to be time-homogeneous if it also satisfies

P(X (tk) = xk | X (tk−1) = xk−1) = P(X (tk − tk−1) = xk | X (0) = xk−1),

i.e. it is invariant to time shifting.

In this report we will restrict our attention to time-homogeneous CTMCs over finite
state spaces. The state probabilities of these stochastic processes at time t form a
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finite-dimensional vector π(t) ∈ Rn,

π(t)[x] = P(X (t) = x)

that satisfies the differential equation

dπ(t)
dt

= π(t)Q

for some square matrix Q. The matrix Q is called the infinitesimal generator matrix of
the CTMC and can be interpreted as follows:

• The diagonal elements q[x , x] < 0 describe the holding times of the CTMC. If
X (t) = x , the holding time hx = inf{h> 0 : X (t) = x , X (t + h) 6= x} spent in state
x is exponentially distributed with rate λx = −q[x , x]. If q[x , x] = 0, then no
transitions are possible from state x and it is said to be absorbing.

• The off-diagonal elements q[x , y] ≥ 0 describe the state transitions. In state x
the CTMC will jump to state y at the next state transition with probability
−q[x , y]/q[x , x]. Equivalently, there is exponentially distributed countdown in
the state x for each y : q[x , y] > 0 with transition rate λx y = q[x , y]. The first
countdown to finish will trigger a state change to the corresponding state y . Thus,
the CTMC is a transition system with exponentially distributed timed transitions.

• Elements in each row of Q sum to 0, hence it satisfies Q1T = 0T.

For more algebraic properties of infinitesimal generator matrices, we refer to Plem-
mons and Berman [64] and Stewart [83].

A state y is said to be reachable from the state x (x   y) if there exists a sequence
of states

x = z1, z2, z3, . . . , zk−1, zk = y

such that q[zi , zi+1]> 0 for all i = 1,2, . . . , k−1. If y is reachable from x for all x , y ∈ S
y, the Markov chain is said to be irreducible.

The steady-state probability distribution π= limt→∞π(t) exists and is independent
from the initial distribution π(0) = π0 if and only if the finite CTMC is irreducible. The
steady-state distribution satisfies the linear equation

dπ
dt
= πQ = 0, π1T = 1. (2.1)

Example 2.1 Figure 2.1 shows a CTMC with 3 states. The transitions from state 0
to 1 and from 1 to 2 are associated with exponentially distributed countdowns with
rates λ1 and λ2 respectively, while transitions in the reverse direction have rates µ1

and µ2. The transition form state 2 to 0 is also possible with rate µ3.
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0 1 2

λ1 λ2

µ2µ1

µ3

0 1 2
 !0 −λ1 λ1 0

Q = 1 µ1 −λ2 −µ1 λ2
2 µ3 µ2 −µ2 −µ3

Figure 2.1 Example CTMC with 3 states and its generator matrix.

The rows (corresponding to source states) and columns (destination states)
of the infinitesimal generator matrix Q are labeled with the state numbers. The
diagonal element q[1, 1] is−λ2−µ1, hence the holding time in state 1 is exponentially
distributed with rate λ2+µ1. The transition from state 1 to 0 is taken with probability
−q[1, 0]/q[1, 1] = µ1/(λ2 +µ1), while the transition to 2 is taken with probability
λ2/(λ2 +µ1).

The CTMC is irreducible, because every state is reachable from every other state.
Therefore, there is a unique steady-state distribution π independent from the initial
distribution π0.

2.1.1 Markov reward models

Continuous-time Markov chains may be employed in the estimation of performance
measures of models by defining rewards that associate reward rates with the states of
a CTMC. The reward rate random variable R(t) can describe performance measures
defined at a single point of time, such as resource utilization or probability of failure,
while the accumulated reward random variable Y (t) may correspond to performance
measures associated with intervals of time, such as total downtime.

Definition 2.2 A Continuous-time Markov Reward Process over a finite state space
S = {0,1, . . . , n− 1} is a pair (X (t), r), where X (t) is a CTMC over S and r ∈ Rn is a
reward rate vector.

The element r[x] of the reward vector is a momentary reward rate in state x ,
therefore the reward rate random variable can be written as R(t) = r[X (t)]. The
accumulated reward until time t is defined by

Y (t) =

∫ t

0

R(τ)dτ.

The computation of the distribution function of Y(t) is a computationally intensive
task (a summary is available at [67, Table 1]), while its mean, EY (t), can be computed
efficiently as discussed below.
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Given the initial probability distribution vector π(0) = π0 the expected value of the
reward rate at time t can be calculated as

ER(t) =
n−1
∑

i=0

π(t)[i]r[i] = π(t) rT, (2.2)

which requires the solution of the initial value problem [39, 70]

dπ(t)
dt

= π(t)Q, π(0) = π0 (2.3)

to form the inner product ER(t) = π(t) rT.
To obtain the expected steady-state reward rate (if it exists) the linear equation (2.1)

should be solved instead of eq. (2.3) in order to acquire the steady-state probability
vector π. The computation of the reward value proceeds by eq. (2.2) in the same way
as in transient analysis.

The expected value of the accumulated reward is

EY (t) = E
�∫ t

0

R(τ)dτ

�

=

∫ t

0

E[R(τ)]dτ

=

∫ t

0

n−1
∑

i=0

π(τ)[i]r[i]dτ=
n−1
∑

i=0

∫ t

0

π(τ)[i]dτ r[i]

=

∫ t

0

π(t)dτ rT = L(t) rT,

where L(t) =
∫ t

0 π(t)dτ is the accumulated probability vector, which is the solution of
the initial value problem [70]

dL(t)
dt

= π(t),
dπ(t)

dt
= π(t)Q, L(0) = 0, π(0) = π0.

Example 2.2 Let c0, c1 and c2 denote operating costs per unit time associated with
the states of the CTMC in Figure 2.1. Consider the Markov reward process (X (t), r)
with reward rate vector

r=
�

c0 c1 c2

�

.

The random variable R(t) describes the momentary operating cost, while Y (t) is the
total operating expenditure until time t. The steady-state expectation of R is the
average maintenance cost per unit time of the long-running system.

2.1.2 Sensitivity

Sensitivity analysis is widely used to assess the robustnes of information systems.
Consider a reward process (X (t), r) where both the infinitesimal generator matrix Q(θ)
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and the reward rate vector r(θ)may depend on some parameters θ ∈ Rm. The sensitivity
analysis of the rewards R(t) may reveal performance or reliability bottlenecks of the
modeled system and help designers in achieving desired performance measures and
robustnes values.

Definition 2.3 The sensitivity of the expected reward rate ER(t) to the parame-
ter θ[i] is the partial derivative

∂ ER(t)
∂ θ[i]

.

Considering parameters with high absolute sensitivity the model reacts to the
changes of those parameters more prominently, therefore they can be promising direc-
tions of system optimization.

To calculate the sensitivity of ER(t), the partial derivative of both sides of eq. (2.2)
is taken, yielding

∂ ER(t)
∂ θ[i]

=
∂π(t)
∂ θ[i]

rT +π(t)
�

∂ r
∂ θ[i]

�T

= si(t) r
T +π(t)

�

∂ r
∂ θ[i]

�T

,

where si is the sensitivity of π to the parameter θ[i].
In transient analysis, the sensitivity vector si is the solution of the initial value

problem

dsi(t)
dt

= si(t)Q+π(t)Vi ,
dπ(t)

dt
= πi(t)Q, si(0) = 0, π(0) = π0,

where Vi = ∂Q(θ)/∂ θ[i] is the partial derivative of the generator matrix [68]. A similar
initial value problem can be derived for the sensitivity of L(t) and Y (t).

To obtain the sensitivity si of the steady-state probability vector π, the system of
linear equations

siQ = −πVi , si1
T = 0

is solved [10].
Another type of sensitivity analysis considers unstructured small perturbations of

the infinitesimal generator matrix Q instead of dependencies on parameters [36, 46].
This latter, unstructured analysis may be used to study the numerical stability and
conditioning of the solutions of the Markov chain.

2.1.3 Time to first failure

Computing the first time of a system failure (provided it was fully operational when it
was started) has many applications in reliability engineering.
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Let D ( S be a set of failure states of the CTMC X (t) and U = S \ D be a set of
operating states. We will assume without loss of generality that U = {0,1, . . . , nU − 1}
and D = {nU , nU + 1, . . . , n− 1}.

The matrix

QU D =

�

QUU qT
U D

0 0

�

is the infinitesimal generator of a CTMC XU D(t) in which all the failures states D were
merged into a single state nU and all outgoing transitions from D were removed. The
matrix QUU is the nU × nU upper left submatrix of Q, while the vector qU D ∈ RnU is
defined as

qU D[x] =
∑

y∈D

q[x , y].

If the initial distribution π0 is 0 for all failure states (i.e. π0[x] = 0 for all x ∈ D),
the Time to First Failure

TFF = inf{t ≥ 0 : X (t) ∈ D}= inf{t ≥ 0 : XU D(t) = nU}

is phase-type distributed with parameters (πU ,QUU) [62], where πU is the vector con-
taining the first nU elements of π0. In particular, the Mean Time to First Failure is
computed as follows:

MTFF = E[TFF] = −πUQ−1
UU1T. (2.4)

The probability of a D′-mode failure (D′ ⊂ D) is

P(X (TFF+0) = y) = −πUQ−1
UUqT

U D′ , (2.5)

where qU D′ ∈ RnU , qU D′[x] =
∑

y∈D′ q[x , y] is the vector of transition rates from opera-
tional states to failure states D′.

2.2 Kronecker algebra

In this section, we review the fundamentals of Kronecker algebra.

Definition 2.4 The Kronecker product of matrices A∈ Rn1×m1 and B ∈ Rn2×m2 is the
matrix C = A⊗ B ∈ Rn1n2×m1m3 , where

c[i1n1 + i2, j1m1 + j2] = a[i1, j1]b[i2, j2].

Some properties of the Kronecker product are

1. Associativity:
A⊗ (B ⊗ C) = (A⊗ B)⊗ C ,

which makes Kronecker products of the form A(0)⊗A(1)⊗ · · ·⊗A(J−1) well-defined.
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2. Distributivity over matrix addition:

(A+ B)⊗ (C + D) = A⊗ C + B ⊗ C + A⊗ D+ B ⊗ D,

3. Compatibility with ordinary matrix multiplication:

(AB)⊗ (C D) = (A⊗ C)(B ⊗ D),

in particular,

A⊗ B = (A⊗ I2)(I1 ⊗ B)

for identity matrices I1 and I2 with appropriate dimensions.

We will occasionally employ multi-index notation to refer to elements of Kronecker
product matrices. For example, we will write

b[x,y] = b[(x (0), x (1), . . . , x (J−1)), (y(0), y(1), . . . , y(J−1))] =

a(0)[x (0), y(0)]a(1)[x (1), y(1)] · · · a(J−1)[x (J−1), y(J−1)],

where x = (x (0), x (1), . . . , x (J−1)), y = (y(0), y(1), . . . , y(J−1)) and B is the J-way Kro-
necker product A(0) ⊗ A(1) ⊗ · · · ⊗ A(J−1).

Definition 2.5 The Kronecker sum of matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 is the
matrix C = A⊕ B ∈ Rn1n2×m1m3 , where

C = A⊗ I2 + I1 ⊗ B,

where I1 ∈ Rn1×m1 and I2 ∈ Rn2×m2 are identity matrices.

Example 2.3 Consider the matrices

A=

�

1 2
3 4

�

, B =

�

0 1
2 0

�

.

Their Kronecker product is

A⊗ B =









1 · 0 1 · 1 2 · 0 2 · 1
1 · 2 1 · 0 2 · 2 2 · 0
3 · 0 3 · 1 4 · 0 4 · 1
3 · 2 3 · 0 4 · 2 4 · 0









=









0 1 0 2
2 0 4 0
0 3 0 4
6 0 8 0









,

while their Kronecker sum is

A⊕ B =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









+









0 1 0 0
2 0 0 0
0 0 0 1
0 0 2 0









=









1 1 2 0
2 1 0 2
3 0 4 1
0 3 2 4









.
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2.3 Continuous-time stochastic automata networks

In this section, we present Continuous-time Stochastic Automata Networks (SAN),
which are a common theoretical foundation for the study of structure continuous-time
Markovian processes [13, 42], including Stochastic Petri Nets (SPN) [52], Generalized
Stochastic Petri Nets (GSPN) [15] and stochastic activity networks [55].

For additional details on the study of decomposed Markov chains, we refer the
reader to Dayar [30].

Definition 2.6 A Continuous-time stochastic automata network is a triple SAN =
�

E,
�

A( j)
�J−1

j=0 ,λ
�

, where
• E is a finite set of synchronizing events,
• A( j) = (S( j), x ( j)0 , E( j), T ( j)) is a stochastic automaton, such that E( j) ⊆ E and

E =
⋃J−1

j=0 E( j),
• λ : E→ R+ is an event rate function.

Definition 2.7 A stochastic automaton is a 4-tuple A= (S, x0, E, T ), where
• S is a finite set of states,
• x0 ∈ S is the initial state,
• E is a finite set of synchronizing events,
• T ⊂ E × S × S × R+ is the local transition relation, such that (e, x , y,µ) ∈ T ,

written as x
e,µ
−→ y , denotes a transition from x to y with rate µ synchronized on the

event e. It is required that x
e,µ
−→ y, x

e,ν
−→ y =⇒ µ= ν, i.e. the rate of a transition is

a (partial) function of its start and end states and synchronizing event.

Parenthesized superscripts will be used to denote elements of automatons of a SAN,
e.g. A( j) = (S( j), x ( j)0 , E( j), T ( j)) is the jth automaton of SAN with |S( j)|= n( j) states.

The set of potential states of SAN is

PS = S(0) × S(1) × · · · × S(J−1),

i.e. the Cartesian product of the state spaces of the automata. Thus, global states are
vectors x= (x (0), x (1), . . . , x (J−1)). The initial global state is x0 = (x (0), x (1), . . . , x (J−1)).

The global state changes from x ∈ PS to y ∈ PS when the event e ∈ E occurs,

x [e〉 y ⇐⇒ for all 0≤ j ≤ J − 1

¨

(e, x ( j), y( j),µ( j)) ∈ T ( j) if e ∈ E( j),

x ( j) = y( j) if e /∈ E( j).

The support of the event e is the set of automata which respond to it, supp e = { j :
e ∈ E( j)}. If supp e = { j}, e is local to A( j).
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The events local to A( j) are E( j)L = {e : supp e = { j}}. Events which affect other

automata are E( j)S = E( j) \ E( j)L synchronizing events of A( j). The set of all local events is

EL =
⋃J−1

j=0 E( j)L , while the set of all synchronizing events is ES =
⋃J−1

j=0 E( j)S = E \ EL.
A state y is reachable from the state x (written as x  y) if there exists a sequence

of states and events for some finite k such that

x= x1 [ei1〉 x2 [ei2〉 x3 [ei3〉 · · · [eik−1
〉 xk−1 [eik〉 xk = y.

The state y ∈ PS is in the reachable state space of SAN if x0  y, hence the reachable
state space is

RS = {y ∈ PS : x0  y} ⊆ PS.

The term state space explosion refers to the phenomenon that even small models
may have a very large number of states. For example, if n( j) = c for all 0 ≤ j ≤ J − 1,
|PS|= cJ , hence RS may contain O(cJ ) elements.

We will assume a bijection RS ↔ {0,1, . . . , n − 1} between the reachable state
space and the natural numbers such that x0 7→ 0. Moreover, we will assume a bijection
S( j)↔{0,1, . . . , n j − 1} such that x ( j)0 7→ 0. From now on, we will use natural number
state indices and abstract state vectors interchangeably.

2.3.1 Stochastic automata networks as Markov chains

We associate a Markov chain X (t) with a SAN as follows:

• The state space of the Markov chain is S = {0,1, . . . , n − 1}, i.e. the reachable
states RS of SAN according to the assumed bijection.

• The transition rate from x to y due to the event e is λ(e) ·
∏

j∈supp e µ
( j), where

x ( j)
e,µ( j)
−−−→ y( j). Thus, the infinitesimal generator matrix Q matrix of the X (t) is

formed by off-diagonal (QO) diagonal (QD) parts as

Q =QO +QD,

qO[x , y] =











0 if x = y,
∑

e∈E,x[e〉y

λ(e) ·
J−1
∏

j=0

µ( j)e if x 6= y, where x ( j)
e,µ( j)e−−−→ y( j),

QD = −diag{QO1T}.

• The initial distribution concentrates all the probability mass at x0,

π0 =
�

1 0 0 · · · 0
�

,

that is, π0[x] = δ0,x .
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The generator matrix requires O(n2) memory if a two-dimensional dense array
format is used.

Suppose that for each event e and source state x, x [e〉 y holds only for a number
of different target states y bounded from above by k ∈ N. Therefore, each row of Q
contains up to k|E|+1 nonzero elements including the diagonal element. This means Q
requires O(nk|E|) memory if a sparse format is chosen, which is preferable over dense
arrays for larger models.

Unfortunately, both of these storage methods may be prohibitively costly for large
models due to state space explosion. In addition, explicit enumeration of large RS may
take an extreme amount of time.

2.3.2 Kronecker generator matrices

To alleviate the high memory requirements of Q, the Kronecker decomposition for a
SAN with J automata expresses the infinitesimal generator matrix of the associated
CTMC in the form

Q =QO +QD, QO =
J−1
⊕

j=0

Q( j)L +
∑

e∈ES

λ(e)
J−1
⊗

j=0

Q( j)e , QD = −diag{QO1T}, (2.6)

where QO and QD are the off-diagonal and diagonal parts of Q. The matrix

Q( j)L =
∑

e∈E( j)L

λ(e)Q( j)e

is the local transition matrix of the component j, while the matrix

Q( j)e ∈ R
n j×n j , q( j)e [x

( j), y( j)] =

¨

µ if x ( j)
e,µ
−→ y( j),

0 otherwise

describes the effects of the event e on A( j). Q( j)e has a nonzero element for every local
state transition caused by e. If j /∈ supp e, Q( j)e is an n j × n j identity matrix.

The matrices Q( j)L and Q( j)e and the vector −QO1T together are usually much smaller
than the full generator matrix Q even when stored in a sparse matrix form. Hence
Kronecker decomposition may save a significant amount of storage at the expense of
some computation time.

Unfortunately, the Kronecker generator Q is a n0n1 · · ·nJ−1 × n0n1 · · ·nJ−1 matrix,
i.e. in encodes the state transitions in the potential state space PS instead of the
reachable state space RS.

Potential Kronecker methods [18] perform computations with the |PS|×|PS|Q matrix
and vectors of length |PS|. In addition to increasing storage requirements, this may
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lead to problems in some numerical solution algorithms, because the CTMC over PS is
not necessarily irreducible even if it is irreducible over RS.

In contrast, actual Kronecker methods [8, 18, 48] work with vectors of length
|RS|. However, additional conversions must be performed between the actual dense
indexing of the vectors and the potential sparse indexing of the Q matrix, which leads
to implementation complexities and computational overhead.

A third approach, which we discuss in the next subsection, imposes a hierarchical
structure on RS [6, 15, 19].

2.3.3 Block Kronecker matrix composition

A hierarchical decomposition of the reachable state space expresses RS as

RS =
⋃

x̃∈ÝRS

J−1

×
j=0

RS( j)
x̃ ( j)

, RS( j) =
⋃

x̃ ( j)∈ÝRS
( j)

RS( j)
x̃ ( j)

,

whereÝRS = {0̃, 1̃1, . . . ,àñ− 1} a set of global macro states,ÝRS
( j)
= {0̃( j), 1̃( j), . . . ,âñ j − 1

( j)
}

is the set of local macro states of A( j), and RS( j)x = {0
( j)
x , 1( j)x , . . . , (n j,x−1)( j)x } are the local

micro states in the local macro state x̃ ( j). The product symbol denotes the composition
of local states into a global state vector.

The decomposition of the state space into global macro states allows Q to be
expressed as a block matrix, where each matrix block is expressed using Kronecker
decomposition.

The matrices Q( j)e [ x̃ ( j), x̃ ( j)] and Q( j)L [ x̃
( j), x̃ ( j)] ∈ Rn j,x×nn,y describe the effects of a

single event e ∈ E and the aggregated effects of local transitions on A( j) as its state
changes from the local macro state x̃ ( j) to ỹ( j), respectively. Formally,

q( j)e [ x̃
( j), ỹ( j)][a( j)x , b( j)y ] =

¨

µ if a( j)x
e,µ
−→ b( j)y ,

0 otherwise,

Q( j)L [ x̃
( j), ỹ( j)] =

∑

e∈E( j)L

λ(e)Q( j)e [ x̃
( j), ỹ( j)].

In the case j /∈ supp e, we define Q( j)e [ x̃ ( j), ỹ( j)] as an identity matrix if x̃ ( j) = ỹ( j) and a
zero matrix otherwise.

Let us call macro state pairs (x̃, ỹ) single local macro state transitions (slmst.) at h if
x̃ and ỹ differ only in a single index h ( x̃ (h) 6= ỹ( j)).
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The off-diagonal part QO of Q is written as a block matrix with ñ× ñ blocks. A single
block is expressed as

QO[x̃, ỹ] =











































































J−1
⊕

j=0

Q( j)L [ x̃
( j), x̃ ( j)]

+
∑

e∈ES

λ(e)
J−1
⊗

j=0

Q( j)e [ x̃
( j), x̃ ( j)]

if x̃= ỹ,

IN1×N1
⊗Q(h)L [ x̃

(h), x̃ (h)]⊗ IN2×N2

+
∑

e∈ES

λ(e)
J−1
⊗

j=0

Q( j)e [ x̃
( j), x̃ ( j)]

if (x̃, ỹ) slmst. at h,

∑

e∈ES

λ(e)
J−1
⊗

j=0

Q( j)e [ x̃
( j), x̃ ( j)] otherwise,

(2.7)

where I1 =
∏h−1

f=0 nh,x (h) , I2 =
∏J−1

f=h+1 nh,x (h) . If x = y, the matrix block describes
transitions which leave the global macro state unchanged, therefore any local transition
may fire. If (x̃, ỹ) is slmst. at h, only local transitions on the component h may cause
the global state transition, since no other local transition may affect A(h). In every other
case, only synchronizing transitions may occur.

This expansion of block matrices is equivalent to eq. (2.6) on page 12 except the
considerations to the hierarchical structure of the state space.

The full Q matrix is written as

Q =QO +QD, QD = −diag{QO1T}

as usual. To further reduce storage requirements, identity matrices adjacent in Kro-
necker products may be merged if there is an O(1) storage method for identity matrices.
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Chapter 3

Overview

3.1 General stochastic analysis workflow

The tasks performed by stochastic analysis tools that operate on higher level formalisms
can be often structured as follows (Figure 3.1):

1. State space exploration. The reachable state space of the higher level model,
for example stochastic automata network or stochastic Petri net is explored to
enumerate the possible behaviors of the model S. If the model is hierarchically
partitioned, this step includes the exploration of the local state spaces of the
component as well as the possible global combinations of states.

If the set of reachable states is infinite, only special algorithms, e.g. matrix geo-
metric methods [45] may be employed later in the workflow. In this work, we
restrict our attention to finite cases.

2. Descriptor generation. The infinitesimal generator matrix Q of the Markov chain
X (t) defined over S is built. If the analyzed formalism is a Markov chain, Q
is readily given. Otherwise, this matrix contains the transition rates between
reachable states, which are obtained by evaluating rate expressions given in the
model.

3. Numerical solution. Numerical algorithms are ran on the matrix Q for steady-state
solutions π, transient solutions π(t), L(t) or MTFF measures.

State space
exploration

Descriptor
generation

Numerical
solution

Reward
calculation

Figure 3.1 The general stochastic analysis workflow.
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4. Reward calculations. The studied performance measures are calculated from the
output of the previous step. This includes calculation of steady-state and transient
rewards and sensitivities of the rewards. Additional algebraic manipulations (for
example, the calculation of the ratio of an instantenous and accumulated reward)
may be provided to the modeler for convenience.

In stochastic model checking, where the desired system behaviors are expressed
in stochastic temporal logics [2, 9], these analytic steps are called as subroutines to
evaluate propositions. In the synthesis and optimization of stochastic models [22], the
workflow is executed as part of the fitness functions.

3.1.1 Challenges

The implementation of the stochastic analysis workflow poses several challenges.
Handling of large models is difficult due to the phenomenon of “state space explo-

sion”. As the size of the model grows, including the number of components, the number
of reachable spaces can grow exponentially.

Methods such as the saturation algorithm [25] were developed to efficiently explore
and represent large state spaces. However, in stochastic analysis, the generator matrix
Q and several vectors of real numbers with lengths equal to the state space size must be
stored in addition to the state space. This necessitates the use of further decomposition
techniques for data storage.

The convergence of the numerical methods depends on the structure of the model
and the applied matrix decomposition. In addition, the memory requirements of the
algorithms may constrain the methods that can be employed. As various numerical
algorithms for stochastic analysis tasks are known with different characteristics, it is
important to allow the modeler to select the algorithm suitable for the properties of the
model, as well as the decomposition method and hardware environment.

The vector operations and vector-matrix products that are performed by the numer-
ical algorithms can also be performed in multiple ways. For example, multiplications
with matrices can be implemented either sequentially or in parallel. Large matrices
benefit from parallelization, while for small matrices managing multiple tasks yields
overhead. Distributed or GPU implementations are also possible, albeit they are missing
from the current version of our framework.

3.2 Our workflow in PetriDotNet

“PetriDotNet is a framework for the editing, simulation and analysis of Petri nets.
The framework is developed by the Fault Tolerant Systems Research Group at the
Budapest University of Technology and Economics.” [33]
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Stochastic
Petri Net

State space
exploration

Generator
construction

Data
structure

Model
partition

Numerical
algorithms

Reward
calculation

Reward
config.

Sensitivity
parameters

Analysis with
configurable operations

Figure 3.2 Configurable stochastic analysis workflow.

The implementation of the general stochastic analysis workflow in PetriDotNet
is illustrated in Figure 3.2. The models are specified using the stochastic Petri net
(SPN) formalism [52, 60], while engineering measures to be calculated are expressed
as SPN performance measures. Both explicit and symbolic state space exploration and
storage is supported, including symbolic hierarchical state space decomposition for
block Kronecker generator matrices.

The workflow is fully configurable, which means that the modeler may combine the
available algorithms for the analysis steps arbitrarily. In addition, implementations of
the linear algebra operations performed by the algorithms may be replaced at runtime.

3.3 Architecture

Figure 3.3 shows the architecture of the configurable stochastic analysis module.

• The user interacts with the stochastic analysis workflow runner.

The model, its parameters and its stochastic behavior as transition rates of timed
transitions is specified and engineering measures of interest (e.g. performability,
availability, reliability, dependability) are defined with SPN rewards. Afterwards,
the analysis workflow can be initiated by selecting the analysis type (steady-state,
sensitivity, transient, MTFF), the used algorithms and the engineering measures
to compute. The workflow runner instantiates and executes the components
which are required to complete the analysis and displays the results.
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Stochastic Petri net analysis:
• State space exploration

• Translation of SPN measures

Stochastic automata network analysis:
• Descriptor generation

• Reward and sensitivity calculation

Numerical algorithms:
• LU decomposition, power iteration,
Jacobi, Gauss–Seidel, group iteration,

BiCGSTAB
• Uniformization, TR-BDF2

Matrix-vector
data structure

Configurable
operations

A
na

ly
si
s
w
or
kfl

ow

P
e
t
r
iD

o
t
N
e
t

Backend

Frontend

Figure 3.3 Layered architecture for configurable stochastic analysis.

Numerical analysis algorithms most suitable for the analyzed model and execut-
ing hardware may be selected by the user. Moreover, low-level linear algebra
operations, for example, parallel or sequential algorithms for matrix products,
may be also selected for every step in the workflow.

The stochastic analysis problem is translated into numerical problems by the “frontend”
part of the analysis module:

• The stochastic Petri net analysis modules translate the stochastic behavior of Petri
net into generic data structures. The partition of the model defines the stochastic
automata of the SAN representation of the model. The algebraic expressions that
specify transition rates and rewards are evaluated, thus lower level components
only work with transition rates and their derivatives.

Symbolic state space exploration is performed by the saturation algorithm [24],
which is provided by the symbolic analysis component of PetriDotNet [29].
Petri nets with inhibitor arcs are supported, but transitions with priority (including
non-timed transitions) cannot be used/

Reward expressions that refer to subsets of the reachable state space defined by
Computation Tree Logic (CTL) [44] are also evaluated by the symbolic analysis
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component. Therefore, CTL rewards cannot be used with explicit state space
representation algorithms.

• The stochastic automata network analysismodule implements explicit and symbolic
procedures for infinitesimal generator matrix composition and reward calculation.
This component does not depend on the Petri net formalism and may be reused
for different formalisms.

The matrices Q and Vi , that is, the generator matrix and its partial derivatives may
be stored as a dense or sparse array or a block Kronecker matrix using the object
model defined by the matrix-vector data structure. Linear algebra operations
during the generator composition, for example, calculation of the diagonal entries
of Q, are performed by the operation framework supporting the data structure.

Numerical solution algorithms, such as linear equation solvers and transient
integrators are called to derive the steady state and transient distributions of the
Markov chain and its sensitivities.

The final task performed by the frontend is the calculation of the reward values,
which uses both linear algebra operations and symbolic iteration over the results
of the CTL evaluator.

The analysis “backend” serves as a library of matrix–vector data structured, linear
algebra operations and numerical solution algorithms:

• Numerical algorithms implement solution finding for linear equations and Marko-
vian transient initial value problems. The algorithms are implemented generically
whenever possible, so that no assumptions are made about the structure of matri-
ces unless necessary due to mathematical or performance reasons. This is achieved
by the definition of a (non-orthogonal) set of operations on the matrix-vector data
structure. The operations may be replaced at runtime for flexibility, for example,
different implementations of operations may be used for different algorithms in
the same workflow.

• The matrix-vector data structure provides an interface for storing various linear
algebra objects.

In addition to dense and sparse arrays, wrappers are provided to access parts of
matrices and vectors and to build expression trees out of smaller matrices. Hence,
matrices such as block Kronecker infinitesimal generators (eq. (2.7) on page 14)
can be stored as a collection of small sparse matrices in a nested expression tree.

While current the frontend only generates simple arrays and block Kronecker
matrices, and descriptor format may be used as long as it can be expressed as
expression trees.
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The data structure only provides storage, any calls to linear algebra operations
are delegated to the configurable operation context.

• The configurable operation context provides and dispatches the implementations
of linear algebra operations, such as matrix-vector product or vector addition.

Operations are specific to the data structure and may use multiple dispatch call
semantics. For example, an operation can be defined that handles the multiplica-
tion of a block matrix and a constant vector, and stores the result in vector backed
by a linear array. In addition to type information, the dispatch may use addi-
tion runtime properties, such as the length of a vector to select the appropriate
implementation.

The dispatch rules may be modified at runtime. For example, parallel execution
may be replaced with sequential during the execution of algorithms that achieve
parallelization through other means.

Contrast operations with numerical algorithms, which are higher level procedures
that solve a particular numerical problem on a wide range of data structures by
delegation to a non-orthogonal set of specific operations.

The stochastic analysis backed, which was developed by the author, comprise the
topic of present work. Figure 3.3 shows its three components shaded in gray.

Manipulations performed by the frontend components on the input Petri net models
the generated descriptors are discussed in this thesis only briefly. We refer the inter-
ested reader to [49] for an overview of the whole PetriDotNet stochastic analysis
component.

3.4 Current status

In this section we briefly summarize the results of the backend development effort.

3.4.1 Data structures

The data structure can represent infinitesimal generator matrices of continuous-time
Markov chains with possible stochastic automata network structure as dense or sparse
arrays, sums of Kronecker products and block Kronecker matrices.

Additional matrix decompositions may be created as algebraic expression trees using
from the provided expression primitives of block matrices, linear combinations and
Kronecker products. Moreover, the framework may be extended with further primitives
simply by implementing some interfaces.

The linear algebra operations framework provides the most commonly used vector
and matrix operations, including addition and scaling, scalar products and vector-matrix
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Table 3.1 Linear equation solvers supported by our framework.

memory parallel uses inner block
see usage impl. solver matrix

LU decomposition p. 44 very high – – –

Power method p. 46 moderate Ø – Ø
Jacobi over-relaxation p. 47 moderate Ø – Ø
Gauss–Seidel over-relaxation p. 47 very low – – Ø
Group Jacobi p. 50 moderate Ø Ø required

Group Gauss–Seidel p. 50 low – Ø required

BiCGSTAB p. 53 high Ø – Ø
IDR(s)STAB(l) p. 54 Work in progress

Table 3.2 Transient solvers supported by our framework.

instantenous accumulated uses inner block
see distribution distribution solver matrix

Uniformization p. 63 Ø Ø – Ø
TR-BDF2 p. 64 Ø not impl. Ø not impl.

products. Matrix-matrix products are not provided due to the impossibility of fast and
compact evaluation of such products with matrices of general decomposed forms.

All provided operations are listed in Table 4.1 on page 37 in Chapter 4, where the
data structure and operations are discussed.

3.4.2 Numerical algorithms

Seven linear equation solver algorithms were implemented for steady-state, sensitivity
and MTFF problems: LU decomposition, power iteration, Jacobi over-relaxation, Gauss–
Seidel over-relaxation, group Jacobi, group Gauss–Seidel and BiCGSTAB. Group Jacobi
and Gauss–Seidel require a block matrix, while the other algorithms may run on any
matrix.

Special attention is paid to the root finding of singular systems with zero right
vectors, i.e. the determination of the nullspace of a matrix for systems arising from
Markovian steady-state problems. Nonsingular problems are solved in steady-state
sensitivity analysis and mean-time-to-failure analysis.

The current research and development effort focuses on the integration of a solver
based on IDR(s)STAB(l) [78], a Krylov subspace algorithm which generalizes the
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BiCGSTAB algorithm. As the algorithm needs adaptation for singular matrices, it
is currently not suitable for production use in Markovian analysis due to numerical
breakdowns and instability.

Our modifications to IDR(s)STAB(l) are shown in Algorithms 5.10 to 5.12 on
pages 57–59, which were found to improve convergence behavior in steady-state
analysis problems. However, the stability is still lacking, as we observed in Section 6.3
on page 79.

Two solution algorithms, uniformization and TR-BDF2 are available for transient
analysis. Accumulated rewards can be calculated by uniformization only, while TR-
BDF2 provides robustness for otherwise difficult to handle stiff Markov chains.

Important considerations in solver selection are convergence properties and memory
requirements. Matrix decompositions can reduce the storage space needed by the
matrix Q by orders of magnitudes. We store all elements of probability vectors explicitly.
Therefore, one should pay close attention to the number of temporary vectors used in
the algorithm in order to avoid excessive memory consumption.

Numerical algorithms supported by our framework are further discussed in Chap-
ter 5. Linear equations solvers for steady-state CTMC analysis are shown in Table 3.1,
while transient solvers are shown in Table 3.2.
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Chapter 4

Configurable data structure and
operations

In this chapter, we present the linear algebra library that was developed as a foundation
for configurable stochastic analysis.

The library is composed of a data structure and its related operations. The data
structure provides abstraction for the numerical solution algorithms over the used
matrix and vectors storage formats. Matrices stored as dense or sparse arrays, and
even complex expression involving sums and Kronecker products that arise from matrix
decompositions can be handled in a general way.

While direct read write access to elements is supported for most matrices and vectors,
the majority of manipulations, such as vector–matrix products or vector additions,
structure are performed as operations. Instead of being implemented as methods
of the data structure classes, operations are decoupled into separate entities. This
allows operation execution with multiple dispatch, selecting optimized implementations
according to dynamic types of all operation arguments and other runtime properties,
e.g. the number of elements in the vector.

Another advantage of the decoupled operations framework is runtime configurability.
The dispatch logic may be replaced between the execution of algorithms in the stochastic
analysis workflow, therefore low level linear algebra operations may customized to
suit the algorithm and the matrix decomposition in use, as well as the hardware. For
example, parallel and sequential execution may be switched as neccessary.

Existing linear algebra and matrix libraries, such as [11, 32, 41, 53, 74], usually
have unsatisfactory support for operations required in stochastic analysis algorithms
with decomposed matrices, such as multiplications with Kronecker and block Kronecker
matrices. Therefore, we have decided to develop out linear algebra framework from
scratch in C#.NET specifically for stochastic algorithms as a basis of our stochastic
analysis framework.
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4.1 Data structure

The data structure library contains matrix and vector classes for stochastic analysis.

Client code interacts with the data structure through interfaces only, no classes are
exposed on the public API. The main interfaces are IVector and IMatrix for vectors
and matrices, respectively. The instances are created through an exposed static factory.

The interfaces are generic in the element type. For example IVector<double> and
IMatrix<double> are used to work with double-precision floating point arithmetic.
Due to language limitations, some classes must be implemented without genericity.
In these cases, only double is currently supported, although re-implementation for
single-precision floating point or other numeric types is trivial. The static factory
handles selection of the appropriate non-generic type to instantiate if generic behavior
is impossible.

There also exist block versions of these interfaces, IBlockVector and IBlockMatrix. A
block object is conceptually a container of objects with scalar elements. For example,
if v ∈ Rn0+n1+···+nk−1 is a block vectors with k blocks, v[i] ∈ Rni (0 ≤ i < k) is a
vector of real numbers with ni elements, while v[i][ j] is the jth element of the ith
block of v. However, block interfaces do not extend from IVector<IVector<T>> and
IMatrix<IMatrix<T>>, but a facility separate from ordinary indexing is provided for
block access. This allows passing IBlockVector<double> and IBlockMatrix<double>
objects to procedures consuming ordinary IVector<double> and IMatrix<double>.

4.1.1 Partials, splitting and composition

Manipulations of subsequences of vector and matrix elements, as well as conversion
between flat and block object are performed by partial object wrappers.

Definition 4.1 A partial vector v[s:t:m] of a vector v ∈ Rn is

v[s:t:m] ∈ Rm : v[s:t:m][i] = v[s+ t · i] for i = 0,1, . . . , m,

where 0≤ s ≤ n, 1≤ t, s+ t(m− 1)≤ n.

The index s is the start of partial, t is the stride and m is the partial length. Matrix
partials A[s1:t1:m1, s2:t2:m2] ∈ Rm1×m2 are defined analogously.

The method GetPartial forms partial matrices and vectors. The returned object
is always a wrapper which passes through and read and write indices to the original
object after index manipulation. However, partial manipulation of large vectors, which
was found to be a performance bottleneck upon profiling, is implemented with pointer
arithmetic instead.
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The GetPartial method itself is also passed through. This means forming a partial
of partial (v[s1:t1:m1][s2:t2:m2]) does not result in a chain of wrappers being created,
but only a single wrapper object is places around the original after the necessary index
manipulations.

Block vectors and matrices may be be formed by splitting flat objects into blocks
with partials, or by composition from unrelated objects.

Definition 4.2 A split of a vector v ∈ Rn at (n0, n1, . . . , nk−1) is a block vector

vS ∈ Rn0+n1+···nk−1 : vS[i] = v[Ni:1:ni], Ni =
i−1
∑

j=0

n j, (4.1)

where N0 = 0 and n= Nk+1 = n0 + n1 + · · ·nk−1.

Split matrices are defined analogously.

Definition 4.3 If v0,v1, . . . ,vk−1 are real vectors of length n0, n1, . . . , nk−1, respec-
tively, their composition vC ∈ Rn0+n1+···+nk−1 is block vector vC[i] = vi.

Definition 4.4 If A0,0, A0,1, . . . , A0,l−1, A1,0, . . . Ak−1,l−1 are matrices such that Ai, j ∈
Rni ,m j , their composition AC ∈ R(n0+n1+···+nk−1)×(m0+m1+···ml−1) is block matrix AC[i, j] =
Ai, j.

The Split method builds block vectors and matrices from flat objects for blockwise
access. Objects formed by Split can be split again arbitrarily, where the split command
is forwarded to the original flat object.

In contrast, Split can only be applied to a composite object if it does not result in
the creation of new partials. That is, a composite vector v ∈ Rn0+n1+···+nk−1 may only be
split at (m0, m1, . . . , ml−1) if k = l and ni = mi for all 0,1, . . . , k− 1. Because composite
objects are usually very large and are used in performance critical parts of algorithms,
we decided to throw an exception instead of splitting even though arbitrary splitting of
composite vectors and matrices would have been implemented easily.

4.1.2 Vectors

Vector data structures are used to store probability distributions of Markovian models,
as well as intermediate results of numerical algorithms.

The class hiearchy of vectors in our library is shown in Figure 4.1.
The abstract base classes AbstractVector, AbstractBlockVector are at the root

of the inheritance hierarchies. The data structure may be extended by inheriting from
these classes, or by implementing the publicly exposed interfaces directly.
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AbstractVector

ArrayVector

NativeVector

ConstantVector

IdentityVector

PartialVectorWrapper

NativePartialVectorWrapper

FlexiblePartialVectorWrapper

FlexibleNativePartialVectorWrapper

MatrixRowVector

MatrixColumnVector

MatrixDiagonalVector

AbstractBlockVector

VectorSplitWrapper

BlockVector

IVector

IBlockVector

IDisposeable

IFlexiblePartialVector

Figure 4.1 Inheritance hierarchy of vectors.
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Vector data types are available for the storage of general vectors, as well as for some
special cases.

ArrayVector The basic vector datatype provided is ArrayVector, which stores vector
elements in a Common Language Runtime (CLR) array. This class is completely generic,
i.e. any CLR value or reference type may be used as an element.

The Microsoft .NET implementation of the CLR allows arrays of size up to 2 GiB
even on 60-bit platforms. While on .NET 4.5, this limitation may be lifted with the
gcAllowVeryLargeObjects configuration directive1, this setting is cumbersome to use.
Therefore, no vectors larger than 2 GiB should be stored as array vectors.

NativeVector To work around the 2 GiB memory limitation on CLR arrays, we imple-
mented NativeVector which stores vector elements on the unmanaged heap. We also
found unmanaged allocation reduce the pressure on the garbage collector, therefore
provide the benefit of faster allocations.

Native vectors utilize the unsafe facilities2 provided by the C# language, includ-
ing the access to memory through pointers and direct memory management through
AllocHGlobal and FreeHGlobal. Therefore, the linear algebra library must be com-
piled with unsafe language features enabled. As an alternative, NativeVector may
be disabled with conditional compilation directive and replaced by a wrapper around
ArrayVector, forgoing the benefits of unmanaged allocation.

Due to language limitations, NativeVector must be implemented for any primitive
type desired to be used as vector elements. Currently, only double is supported.

The use of unmanaged memory requires manual deallocation to avoid memory leaks.
Because the C# language does not provide deterministic destructors, the IDisposeable
pattern3 must be used.

As an alternative means of memory management, an interface IBufferProvider
may be used to allocate and track multiple vectors. A IBufferProvider itself imple-
ments IDisposeable, a single C# using block may free several vectors in the same
scope, easing the burden of manual disposal. This approach is illustrated in Listing 4.1.

ConstantVector A constant vector is a vector with equal elements.
Two important special vector may be realized as ConstantVector instances in

stochastic analysis, the vector of all zeroes 0, and the vector of all ones 1,

Vectors.Constant<double>(n, 0)= 0 ∈ Rn,

Vectors.Constant<double>(n, 1)= 1 ∈ Rn.

1https://msdn.microsoft.com/en-us/library/hh285054(v=vs.110).aspx
2https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx
3https://msdn.microsoft.com/en-us/library/system.idisposable(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/hh285054(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx
https://msdn.microsoft.com/en-us/library/system.idisposable(v=vs.110).aspx
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Listing 4.1 Manual memory management for NativeVector.

1 // Create and dispose a NativeVector of length 100.
2 using (var vector = Vectors.NewDisposeableVector<double>(100))
3 {
4 vector[0] = 1.0;
5 }

7 // Dispose using IBu�erProvider.
8 var factory = new DisposingBufferProviderFactory();
9 using (var bufferProvider = factory.Make())

10 {
11 var v1 = bufferProvider.GetVector<double>(100);
12 var v2 = bufferProvider.GetVector<double>(100);
13 }
14 // Both v1 and v2 are disposed here.

Because constant vectors require only O(1) storage space instead of O(n), this is an
important optimization in equations involving 0, 1 and its scalar multiples.

IdentityVector An identity vector is vector with all but one zero elements and a single
1 element. Formally,

Vectors.Identity<double>(n, i)= ei ∈ Rn, ei[ j] = δi, j =

¨

1 if i = j,

0 if i 6= j.

IdentityVector is an O(1) space optimization for storing special vectors, similar
to ConstantVector.

PartialVectorWrapper and FlexiblePartialVectorWrapper Taking a partial vector of
a vector results in the creation of PartialVectorWrapper object, which passes through
read and write actions to the underlying vector after the necessary index manipulations.
Hence a new object is allocated at every call to GetPartial.

Long delegation chains are eliminated by collapsing partial vectors. When the
method GetPartial is invoked on PartialVectorWrapper, it performs index manipu-
lations and passes delegates to the GetPartial method of the original vector. Thus,
further partials do not have reference to the partial vector they were created from, but
only to the underlying vector.

FlexiblePartialVectorWrapper alleviates allocation costs in inner loops by pro-
viding a partial vector whose indices can be changed after construction. For example, if
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Listing 4.2 Ambigous use of FlexiblePartialVectorWrapper.

1 var vector = Vectors.NewArray<double>(100);

3 var part = vector.GetPartial(5, 2, 20);
4 var subPart = part.GetPartial(2, 1, 5);
5 // Unambigous, subPart = vector[5:2:20][2:1:5].

7 var flexible = vector.GetFlexiblepartial(5, 2, 20);
8 var subFlexible = vector.GetPartial(2, 1, 5);
9 flexible.SetPartial(6, 2, 20);

10 // Ambigous, is subFlexible = vector[5:2:20][2:1:5] or vector[6:2:20][2:1:5]?

a flexible partial vector v[s:t:m] is available, it can be changed to v[s′:t ′:m′] without
allocating a new instance whenever the need arises. The functionality is exposed to
consumers through an interface.

Flexible partials cannot have their partials taken, because the collapse of the del-
egation chain makes the propagation of index changes impossible. This problem is
illustrated in Listing 4.2.

Another set of partial wrappers handle partials of NativeVector instances. In these
cases, a (base pointer, stride, length) triple amy be queried for use in low-level operations.
Hence indexing logic may be skipped in favor of direct access.

To create a unified interface, the same triple may be queried from NativeVector
instances themselves, where base pointer is the pointer to the allocated buffer, stride= 1
and length is the length of the vector itself.

Matrix vector wrappers To facilitate common manipulations of matrices, our library
provides wrappers to for read and write access of parts of matrices as vectors.

MatrixRowVector and MatrixColumnVector accesses a row or a column of matrix,
respectively. If A∈ Rn×m,

A.GetRow(i)= r ∈ Rm, r[ j] = a[i, j],

A.GetColumn( j)= c ∈ Rn , c[i] = a[i, j]

for 0≤ i < n, 0≤ j < m.
If n= m, i.e. A is square, MatrixDiagonalVector may provide access to the diago-

nal of the matrix,

A.GetDiagonal()= d ∈ Rn = Rm, d[i] = a[i, j].
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Block vectors VectorSplitWrapper reifies vector splitting according to eq. (4.1) on
page 25. The split vector is backed by a composition of partial vectors, thus it acts as a
composite vector. However, when the split wrapper is used as an instance of IVector,
commands, including re-splitting, are delegated to the underlying vector instead.

Composition of vectors according to Definition 4.3 on page 25 is represented by
BlockVector. The constructor of BlockVector is passed a sequence of vectors which
will constitute the block vector. Because BlockVector implements IVector, the com-
posite vector may be used as a normal vector, however, splitting is limited to avoid
performance penalties associated

4.1.3 Matrices

The class hiearchy of vectors in our library is shown in Figure 4.2. The abstract base
classes AbstractVector, AbstractBlockVector are at the root of the inheritance
hierarchies.

ArrayMatrix For smaller dense arrays with items of any value or reference type,
ArrayMatrix allows storage in two-dimensional CLR array.

The matrix may not be larger than 2 GiB, however, this is not a serious limitation in
practice, because processing large dense arrays could take extreme amounts of time.

SparseMatrix and NativeSparseMatrix Sparse matrices are stored in Compressed
Column Storage (CCS) format, i.e. an array or values and row indices are stored for
each column of the matrix (Figure 4.3), in order to effectively perform multiplications
by vectors from left.

While other sparse matrix formats, such as sliced LAPACK are more amenable to
parallel and SIMD processing Kreutzer et al. [50], CCS was selected due to implemen-
tation simplicity and the small number of nonzero entries in each column of the matrix,
which reduces the potential benefits of SIMD implementations.

The class SparseMatrix implements CCS sparse matrices backed by CLR arrays.

Due to state space explosion, extremely large sparse matrices may be needed when
block Kronecker decomposition is not use use. In our experiments in Chapter 6, sparse
matrices up to 20 GiB were tested. Therefore, sparse matrices backed by unmanaged
allocations were also implemented in the class NativeSparseMatrix.

NativeSparseMatrix is used for all sparse matrices, including Kronecker factor ma-
trices in block Kronecker decompositions. Memory may be freed by the IDisposeable
pattern or IBufferProvider (see Listing 4.1 on page 28).
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AbstractMatrix

ArrayMatrix

SparseMatrix

NativeSparseMatrix

DiagonalMatrix

NullMatrix

IdentityMatrix

PartialMatrixWrapper

PartialMaskWrapper

NormalizedLinearSystemWrapper

LinearCombinationMatrix

KroneckerMatrix

AbstractBlockMatrix

MatrixSplitWrapper

BlockVector

IMatrix

IBlockMatrix

ISparseMatrix

ISparseMatrix

IDisposeable

ILinearCombinationMatrix

IKroneckerMatrix

WeightedMatrix
*

Figure 4.2 Inheritance hierarchy of matrices.
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





1 0 0 2.5
3 1 0 0
4 0 0 1
5 0 0 0







A= {{(1,0), (3,1), (4,2), (5,3)},
{(1,1)},
{},
{(2.5,0), (1,2)}}

Figure 4.3 Compressed Column Storage of a matrix.

DiagonalMatrix For O(n) storage of matrices that that have nonzero elements only
along their diagonal, DiagonalMatrix provides a wrapper around any IVector con-
taining the diagonal elements.

Let v ∈ Rn. Then we have

Matrices.Diagonal(v)= diag{v}= D ∈ Rn×n, d[i, j] =

¨

v[i] if i = j,

0 if i 6= j.

NullMatrix and IdentityMatrix Two special cases were implemented with O(1) stor-
age, zero matrices and identity matrices, i.e.

Matrices.Null<double>(n, m)= A∈ Rn×m, a[i, j] = 0,

Matrices.Identity<double>(n)= B ∈ Rn×n, b[i, j] = δi, j =

¨

1 if i = j,

0 if i 6= j.

PartialMatrixWrapper Partials of matrices written as A[s1:t1:m1, s2:t2:m2] are repre-
sented as instances of PartialMatrixWrapper. The wrapper passes through any access
after the necessary index manipulations to the underlying matrix.

There is no support for flexible partial matrices, that is, unlike vectors, the par-
tial indexing of a matrix cannot be updated without creating a new instance of
IPartialMatrixWrapper.

PartialMaskWrapper The PartialMaskWrapper class may be used to access the
strictly upper and strictly lower triangular and diagonal parts of a matrix. In ad-
dition, the mask flags may be combined arbitrarily to yield upper and lower triangular
parts of matrices including the diagonal and also the off-diagonal part.

NormalizedLinearSystemWrapper The normalized linear system wrapper replaces
the last column of a matrix with the vector of all ones 1. If A∈ Rn×m,

A.ToNormalizedLinearSystem()= bA∈ Rn×m, â[i, j] =

¨

1 if j = m− 1,

a[i, j] if j 6= m− 1.
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If A is an n×n matrix of rank n−1 (i.e. its nullity is 1) the system of linear equations

xA= 1, x1T = 1

may be replaced with
xbA= en−1,

because A contains a redundant column due to its rank deficiency. The vector en−1 may
be realized as an IdentityVector.

LinearCombinationMatrix Linear combinations of matrices may be stored as an in-
stance of LinearCombinationsMatrix that contains a sequence of WeightedMatrix
instances, which are pairs of IMatrix objects a double-precision floating point scaling
factors. In our current implementation, only linear combinations of IMatrix<double>
are supported.

If A0, A1, . . . , Ak−1 ∈ Rn×m and w0, w1, . . . , wk−1 ∈ R,

Matrices.LinearCombination(A0.WithWeight(w0),

A1.WithWeight(w1), . . ., Ak−1.WithWeight(wk−1))=

w0A0 +w1A1 + · · ·+wk−1Ak−1 ∈ Rn×m.

As an optimization, a term of type DiagonalMatrix in the linear combination may
be designated as the diagonal if no other term contains diagonal elements. In this
case, methods to access the diagonal of the linear combination matrix will return
the designated term instead of MatrixDiagonalVector and PartialMaskWrapper
wrapper objects.

KroneckerMatrix KroneckerMatrix allows the representations of Kronecker products
of matrices as expressions similar to LinearCombinationMatrix for linear combina-
tions. More concretely,

Matrices.KroneckerProduct(A0, A1, . . ., AJ−1)= A0 ⊗ A1 ⊗ · · · ⊗ AJ−1,

where A0, A1, . . . , AJ−1 are matrices of possibly different sizes.
As the Kronecker product is not explicitly computed, very large matrices may be

expressed with this method in relatively little space.

Block matrices The classes MatrixSplitWrapper and BlockMatrix may be used for
blockwise storage and access of matrices in ways similar to VectorSplitWrapper and
BlockVector.

Diagonals and triangular parts of block matrices in R(n0+n1+···+nk−1)×(m0+m1+···+ml−1)

may only be requested if k = l and ni = mi for all i = 0,1, . . . , k− 1, i.e. when the rows
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Figure 4.4 Data structure for block Kronecker matrices.

and columns of the matrix have the same blocking partition. This always occurs if the
matrices describe transitions between states of a Markov chain, therefore, it poses no
practical limitation.

4.1.4 Expression trees

Decomposed Kronecker and block Kronecker matrices are stored as algebraic ex-
pression trees as shown in Figure 4.4. Expression may contain Kronecker products
(KroneckerMatrix), linear combinations (LinearCombinationMatrix) and block com-
positions (BlockMatrix).

The expression tree approach allows the use of arbitrary matrix decompositions that
can be expressed with block matrices, linear combinations and Kronecker products. The
implementation of additional operational primitives is also straightforward. The data
structure forms a flexible basis for the development of stochastic analysis algorithms
with decomposed matrix representations.

4.2 Operations

The operation framework achieves decoupling between the data structure and opera-
tions by reifying low-level linear algebra manipulations as operation objects.

In contrast to numerical solution algorithms, these operations are specific to their
argument types. For example, the multiplication of a NativeVector with a matrix
stored as a Kronecker product might be served by a different operation object that the
multiplication by a SparseMatrix. In addition, dispatch logic may take other runtime
properties into account, such as selecting a parallel implementation for multiplication
only if the vector is long enough.
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Listing 4.3 DSL for operation declarations (excerpt).

1 public enum OperationName
2 {
3 // Operation with base, operand, target and scale factor.
4 [OperationAlias("Add")]
5 [OperationArguments(typeof(IVector<>), typeof(IVector<>),

typeof(IVector<>), ExtraOperationArguments.ScaleFactor)]
6 VectorAdd,

8 // Operation with only base and extra argument.
9 [OperationAlias("Clear")]

10 [OperationArguments(typeof(IVector<>), Extra =
ExtraOperationArguments.Length)]

11 VectorClearFirstN,

13 // Operation that returns a value of the vector element type.
14 [OperationAlias("Sum")]
15 [OperationArguments(typeof(IVector<>), Return =

typeof(TheGenericArgument))]
16 VectorSumElements,
17 }

4.2.1 Operation declarations

Operations have a base (B) argument, and optionally one or both of operand (O) and
target (T) arguments. Syntactically, operation calls are represented as methods of the
base object.

The target of the operation is the vector or matrix that gets modified by the operation.
In-place execution of operations refers to the usage when the base and the target are
equal. It is also possible that the operations has no other argument that its base, for
example, the clearing of a vector by filling it with zeroes uses only a base. Then the
base of the operation will be modified, similar to in-place use.

Extra (E) operation arguments may include a double scaling factor λ and various
indices for operations manipulating parts of vectors and matrices. Operations that
return a value are also possible.

Operations are specified using an Domain Specific Language (DSL) embedded into
the C# programming language. An excerpt of the operation declarations is shown in
Listing 4.3.

The operation declarations are processed with aMicrosoft Text Template Transforma-
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Listing 4.4 An example interface generated by the T4 template.

1 public interface IVectorAddOperation<T>
2 {
3 void Invoke(PDN.Analysis.Common.Math.Vector.IVector<T> @base,

PDN.Analysis.Common.Math.Vector.IVector<T> operand,
PDN.Analysis.Common.Math.Vector.IVector<T> target, double
scaleFactor);

4 }

tion Toolkit (T4) template [58]. The template generates interfaces to be implemented
by the operation classes (Listing 4.4). In addition, a dispatch logic stub is created in
the OperationContext, which is the class that dispatches operation invocations.

The declared operations are summarised in Table 4.1.
Some operations are special cases of others, for example, ElementwiseMultiply may

be implemented in terms of Clear and AccumulateElementwiseMultiply. However, a
non-orthogonal set operations was defined to handle special cases such as in-place
execution. In addition, the non-orthogonality allows more easier overloading in specific
bottleneck scenarios identified by profiling.

4.2.2 Binding of operations to the data structure

Operations are declared on the interface of the base object as methods. Therefore,
the call to an operation is syntactically equivalent to a method call. This gives the
opportunity to use a friendlier naming and parameter order on the interfaces than the
strict base-operand-target conventions used by the operation declarations.

The interface is augmented with a contract class which describes the pre- and
postconditions of the operation. The Microsoft Code Contracts [56] runtime verification
engine inserts assertions into the output of the compiler if the library is compiled in
Debug mode. However, no assertions are inserted in Release mode, thus performance
penalties are averted in production.

The base classes AbstractVector and AbstractMatrix contain a reference to
their OperationContext. Operations are executed by delegation to the context, which
contains the dispatch logic, partly generated by the T4 template from the operation
declaration DSL, partly configured at runtime.

The contract and delegation process is illustrated in Listing 4.5.
Another domain specific language describe the dispatch logic of operations, which

is referred to as the operation configuration. The calls are dispatched to objects imple-
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Table 4.1 Linear algebra operations supported by our framework with their base (B),
operand (O), target (T) and extra (E) arguments. Operations marked with a star (*)
are syntactic sugars implemented in terms of other operations.

Category and operation BO T E Description

Vector

Add b o t λ t← b+λo

Scale b− t λ t← λb

Accumulate b− t λ t← t+λb

Set* b o −− b← o

ElementwiseMultiply b o t − t[i]← b[i] · o[i]
AccumulateElementwiseMultiply b o t λ t[i]← t[i] +λ · b[i] · o[i]
Clear b−−− b← 0

ClearFirstN b−− n b[0:1:n]← 0

ScalarProduct b o −− return b · o
Sum b−−− return

∑n
i=0 b[i] = b · 1

L1Norm b−−− return
∑n

i=0|b[i]|= ‖b‖1
L2Norm* b−−− return

p

b · b= ‖b‖2
Matrix

Add B O T λ T ← B +λO

Scale B− T λ T ← λB

Accumulate B− T λ T ← T +λB

Set* B O−− B← O

Clear B−−− B← the zero matrix

VectorMatrix

MultiplyFromLeft B o t − t← oB

AccumulateMultiplyFromLeft B o t λ t← t+λoB

MultiplyFromRight B o t − t← Bo

AccumulateMultiplyFromRight B o t λ t← t+λBo

ScalarProductWithColumn B o − j return b[·, j] · o
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Listing 4.5 Delegation of operations to the context (excerpt).

1 [ContractClass(typeof(VectorContract<>))]
2 public interface IVector<T> : IEnumerable<T>
3 {
4 // Method declaration on the interface with friendlier naming.
5 IVector<T> Add(IVector<T> toAdd, IVector<T> resultTarget,

double scaleFactor = 1);
6 }

8 [ContractClassFor(typeof(IVector<>))]
9 abstract class VectorContract<T> : IVector<T>

10 {
11 // Declaration of preconditions.
12 IVector<T> IVector<T>.Add(IVector<T> toAdd, IVector<T>

resultTarget, double scaleFactor)
13 {
14 Contract.Requires(toAdd != null);
15 Contract.Requires(resultTarget != null);
16 Contract.Requires(toAdd.Length ==

((IVector<T>)this).Length);
17 Contract.Requires(resultTarget.Length >=

((IVector<T>)this).Length);
18 throw new NotImplementedException();
19 }
20 }

22 abstract class AbstractVector<T> : IVector<T>
23 {
24 OperationContext OperationContext { get; set; }

26 // Delegation to the OperationContext.
27 public virtual IVector<T> Add(IVector<T> toAdd, IVector<T>

resultTarget, double scaleFactor = 1)
28 {
29 OperationContext.Add(this, toAdd, resultTarget,

scaleFactor);
30 return resultTarget;
31 }
32 }
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Algorithm 4.1 Parallel block vector-matrix product.

Input: block vector b ∈ Rn0+n1+···+nk−1 ,
block matrix A∈ R(n0+n1+···+nk−1)×(m0+m1+···+ml−1)

Output: c= bA∈ Rm0+m1+···+ml−1

1 allocate c ∈ Rm0+m1+···+ml−1

2 parallel for j← 0 to l − 1 do
3 c[ j]← 0 . VectorClear
4 for i← 0 to k− 1 do
5 c[ j]← c[ j] + b[i]A[i, j] . VectorMatrixAccumulateMultiplyFromLeft

menting the interfaces generated from the operations declarations, such as the one
shown in Listing 4.4.

The dispatch logic is compiled into .NET IL bytecode for fast execution. The dispatch
logic may be changed at runtime between executions of higher level algorithms.

Current, two operation configurations are exposed readily on the public interface
of the library.

• The Parallel operation configuration uses the thread pool to utilize multiple CPU
cores.

• The Sequential operation configuration does not use multiple thread, therefore it
is suitable for use with algorithms that handle multithreaded execution via other
means.

Additional operations configurations may be developed with the public API of the
library. Thus, the characteristics of the model and the executing hardware may be
considered on the linear algebra operation level in addition to the numerical algorithm
level in advanced stochastic analysis scenarios.

The flexible dispatch logic allows the identification of calculation hotspots via profil-
ing, such that a specific operation implementation may be created and used to improve
performance. If the specific implementation degrades performance of some algorithms,
it can be switched off by replacing the operation configuration.

4.2.3 E�cient vector-matrix products

Iterative linear equation and transient distribution solvers require several vector-matrix
products per iteration. Therefore, efficient vector-matrix multiplication algorithms are
required for the various matrix storage methods (i.e. dense, sparse and block Kronecker
matrices) to support configurable stochastic analysis.
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Algorithm 4.2 Product of a vector with a linear combination matrix.

Input: b ∈ Rn, A= ν0A0 + ν1A1 + · · ·+ νk−1Ak−1, where Ah ∈ Rn×m

Output: c= bA∈ Rm

1 c← 0 . VectorClear
2 for h← 0 to k− 1 do
3 c← νh · bAh . VectorMatrixAccumulateMultiplyFromLeft

4 return c

Algorithm 4.3 The Shuffle algorithm for vector-matrix multiplication.

Input: b ∈ Rn0n1···nk−1 , A= A(0) ⊗ A(1) ⊗ · · · ⊗ A(k−1), where A(h) ∈ Rnh×mh

Output: c= bA∈ Rm0m1···mk−1

1 n← n0n1 · · ·nk−1, m← m0m1 · · ·mk−1

2 tempLength←maxh=−1,0,1,...,k−1
∏h

f=0 m f
∏k−1

f=h+1 n f

3 allocate x,x′ with at least tempLength elements

4 x[0:1:n]← b, ileft← 1, iright←
∏k−1

h=1 nh . VectorSet
5 for h← 0 to k− 1 do
6 if A(h) is not an identity matrix then
7 ibase← 0, jbase← 0
8 for il← 0 to ileft − 1 do
9 for ir← 0 to iright − 1 do

. VectorMatrixMultiplyFromLeft
10 x′[ jbase:mh:iright]← x[ibase:nh:iright]A(h)

11 ibase← ibase + nhiright, jbase← jbase +mhiright

12 Swap the references to x and x′

13 ileft← ileft ·mh
14 if h 6= k− 1 then iright← iright/nh+1

15 return c= x[0:1:m]
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In this section, we present the operations developed in our framework for vector-
matrix multiplication. In addition, an example of the complex dispatch logic made
possible by the operation context mechanism is described.

Implemented matrix multiplication routines for the data structure (see Figure 4.4
on page 34) with a base and a target vector include

• Multiplication of vectors with dense and sparse matrices with and without paral-
lelization.

If parallel execution is desired, vectors are partitioned into chunks of length equal
to a blocking factor. Multiplications involving each chunk are executed on the
thread pool provided by the .NET Common Language Runtime.

• If one of the vectors is a VectorSplitWrapper but the matrix is not a block matrix,
the vector must be unwrapped first and the dispatch should be repeated.

• Multiplication with block matrices by delegation to the constituent blocks of the
matrix (Algorithm 4.1 on page 39). The input and output vectors are converted
to block vectors before multiplication. If parallel execution is required, each block
of the output vector can be computed in a different task, since it is independent
from the others. If the operand and target vectors are not block vectors, a
VectorSplitWrapper must be created first.

• Multiplication by a linear combination of matrices is delegated to the constituent
matrices (Algorithm 4.2 on page 40).

• Multiplications b · diag{a} by diagonal matrices are executed as elementwise
products b�a. The special case of multiplication by an identity matrix is equivalent
to a vector copy.

• Multiplications by Kronecker products is performed by the Shuffle algorithm [7,
18] as shown in Algorithm 4.3 on page 40.

The algorithm requires access to partial slices of a vector x[s:t:m]. As a sliding
window of partial vectors is used, the multiplication uses flexible partial vectors
to avoid repeated object construction in the inner loop. If both vectors are
NativeVector and the Kronecker product only contains identity matrices and
NativeSparseMatrix instances, a specialized subroutine is used which performs
pointer arithmetic directly without the use of partial vectors. This is an example of
an optimization that was added after profiling the computation of vector-matrix
products.

Shuffle rewrites the Kronecker products as

k−1
⊗

h=0

A(h) =
k−1
∏

h=0

I∏h−1
f=0 n f ×

∏h−1
f=0 n f

⊗ A(h) ⊗ I∏k−1
f=h+1 m f ×

∏k−1
f=h+1 m f

,



42 CONFIGURABLE DATA STRUCTURE AND OPERATIONS

where Ia×a denotes an a× a identity matrix. Multiplications by terms of the form
IN×N ⊗ A(h) ⊗ IM×M are carried out in the loop at line 8 of Algorithm 4.3.

The temporary vectors x,x′ are large enough store the results of the successive
matrix multiplications. They are cached for every worker thread to avoid repeated
allocations.

Other algorithms for vector-Kronecker product multiplication are the Slice [34]
and Split [28] algorithms, which are more amenable to parallel execution than
Shuffle. Their implementation is in the scope of our future work.

Multiplication of a matrix with a vector from the right is implemented similarly.
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Chapter 5

Algorithms for stochastic analysis

Steady state, transient, accumulated and sensitivity analysis problems pose several
numerical challenges, especially when the state space of the CTMC and the vectors and
matrices involved in the computation are extremely large.

In steady-state and sensitivity analysis, linear equations of the form xA = b are
solved, such as eq. (2.1) on page 4. The steady-state probability vector is the solution
of the linear system

dπ
dt
= πQ = 0, π1T = 1, (2.1 revisited)

where the infinitesimal generator Q is a rank-deficient matrix. Therefore, steady-state
solution methods must handle various generator matrix decompositions and homoge-
nous linear equation with rank deficient matrices. Convergence and computation times
of linear equations solvers depend on the numerical properties of the Q matrices, thus
different solvers may be preferred for different models.

In transient analysis, initial value problems with first-order linear differential equa-
tions are considered. The decomposed generator matrix Q must be also handled
efficiently. Another difficulty is caused by the stiffness of differential equations arising
from some models, which may significantly increase computation times.

To facilitate configurable stochastic analysis, we developed several linear equation
solvers and transient analysis methods. Where it is reasonable, the implementation is
independent of the form of the generator matrix Q.

The implementation of low-level linear algebra operations is also decoupled from the
numerical algorithms and data structure. This strategy enables further configurability
by replacing the operations at runtime, as described in Chapter 4.

In this chapter, we describe the algorithms implemented in our stochastic analysis
framework. The pseudocode of the algorithms is annotated with the low level operations
performed on the configurable data structure by the high level algorithms.
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Algorithm 5.1 Crout’s LU decomposition without pivoting.

Input: the matrix A∈ Rn×n operated on in-place
Output: L, U ∈ Rn×n such that A= LU , u[i, i] = 1 for all i = 0,1, . . . , n− 1

1 for i← 0 to n− 1 do
2 for j← 0 to i do a[i, j]← a[i, j]−

∑ j−1
k=0 a[i, k]a[k, j]

3 for j← i + 1 to n− 1 do a[i, j]←
�

a[i, j]−
∑i−1

k=0 a[i, k]a[i, j]
��

a[i, i]

4 Let AL, AD and AU refer to the strictly lower triangular, diagonal and strictly
upper triangular parts of A, respectively.

5 L← AL + AD
6 U ← AU + I
7 return L, U

5.1 Linear equation solvers

5.1.1 Explicit solution by LU decomposition

LU decomposition is a direct method for solving linear equations with forward and
backward substitution, i.e. it does not require iteration to reach a given precision.

The decomposition computes the lower triangular matrix L and upper triangular
matrix U such that

A= LU .

To solve the equation xA= xLU = b forward substitution is applied first to find z in
zU = b, then x is computed by back substitution from x L = b.

We used Crout’s LU decomposition [66, Section 2.3.1], presented in Algorithm 5.1,
which ensures

u[i, i] = 1 for all i = 0, 1, . . . , n− 1,

i.e. the diagonal of the U matrix is uniformly 1. The matrix is filled in during the
decomposition even if it was initially sparse, therefore it should first be copied to a
dense array storage for efficiency reasons. This considerably limits the size of Markov
chains that can be analyzed by direct solution due to memory requirements. Our
data structure allows access to upper and lower diagonal parts to matrices and linear
combinations, therefore no additional storage is needed other than A itself.

The forward and back substitution process is shown in Algorithm 5.2. If multiple
equations are solver with the same matrix, its LU decomposition may be cached.

Matrices of less than full rank

If the matrix Q is of rank n− 1, the element l[n− 1, n− 1] in Crout’s LU decomposition
will be 0. In this case, x[n−1] is a free parameter and will be set to 1 to yield a nonzero
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Algorithm 5.2 Forward and back substitution.

Input: U , L ∈ Rn×n, right vector b ∈ Rn

Output: solution of xLU = b
1 allocate x,z ∈ Rn

2 if b= 0 then z← 0 // Skip forward substitution for homogenous equations
3 else for j← 0 to n− 1 do z[ j]← b[ j] ·

∑ j−1
i=0 u[i, j]

4 if l[n− 1, n− 1]≈ 0 then
5 if z[n− 1]≈ 0 then x[n− 1]← 0 // Set the free parameter to 1
6 else error “inconsistent linear equation system”

7 else x[n− 1]← z[n− 1]/l[n− 1, n− 1]
8 for j← n− 2 downto 0 do
9 if l[ j, j]≈ 0 then error “more than one free parameter”

10 x[ j]←
�

z[i]−
∑n−1

i= j+1 x[i]l[i, j]
��

l[ j, j]

11 return x

Algorithm 5.3 Basic iterative scheme for solving linear equations.

Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0
Output: approximate solution of xA= b and its residual norm

1 allocate x′ ∈ Rn // Previous iterate for convergence test
2 repeat
3 x′← x // Save the previous vector
4 x← f (x′)
5 until ‖x′ − x‖ ≤ τ
6 return x and ‖xQ− b‖

solution vector when z[n− 1] = 0. If z[n− 1] 6= 0, the equation xL = z does not have a
solution and the error condition in line 6 is triggered. A matrix of rank less than n− 1
triggers the error condition in line 9.

In practice, the algorithm can be used to solve homogeneous equations in Markovian
analysis, because the infinitesimal generator matrix Q of an irreducible CTMC is always
of rank n− 1. The solution vector x is not a probability vector in general, so it must be
normalized as π= x/x1T to get a stationary probability distribution vector.

5.1.2 Iterative methods

Iterative methods express the solution of the linear equation xA= b as a recurrence

xk = f (xk−1),
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where x0 is an initial guess vector. The iteration converges to a solution vector when
limk→∞ xk = x exists and x equals the true solution vector x∗. The iteration is illustrated
in Algorithm 5.3 on page 45.

The process is assumed to have converged if subsequent iterates are sufficiently
close, i.e. the stopping criterion at the kth iteration is

‖xk − xk−1‖ ≤ τ (5.1)

for some prescribed tolerance τ. In our implementation, we selected the L1-norm

‖xk − xk−1‖=
∑

i

�

�xk[i]− xk−1[i]
�

�

as the vector norm used for detecting convergence.
Premature termination may be avoided if iterates spaced m > 1 iterations apart

are used for convergence test (‖xk − xk−m‖ ≤ τ), but only at the expense of additional
memory required for storing m previous iterates. In order to handle large Markov
chains with reasonable memory consumption, we only used the convergence test with
a single previous iterate.

Correctness of the solution can be checked by observing the norm of the residual
xkA− b, since the error vector xk − x∗ is generally not available. Because the additional
matrix multiplication may make the latter check costly, it is performed only after
detecting convergence by eq. (5.1). Unfortunately, the residual norm may not be
representative of the error norm if the problem is ill-conditioned.

For a detailed discussion stopping criteria and iterate normalization in steady-state
CTMC analysis, we refer to [82, Section 10.3.5].

Power iteration

Power iteration [82, Section 10.3.1] is the one of the simplest iterative methods for
Markovian analysis. Its iteration function has the form

xk = f (xk−1) = xk−1 +
1
α
(xk−1A− b).

The iteration converges if the diagonal elements a[i, i] of A are strictly negative,
the off-diagonal elements a[i, j] are nonnegative and α ≥ maxi|a[i, i]|. The matrix
A satisfies these properties if it is an infinitesimal generator matrix of an irreducible
CTMC. The fastest convergence is achieved when α=mini|a[i, i]|.

Power iteration can be realized by replacing lines 2–5 in Algorithm 5.3 on page 45
with the loop in Algorithm 5.4.

This realization uses memory efficiently, because it only requires the allocation of a
single vector x′ in addition to the initial guess x.
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Algorithm 5.4 Power iteration.

1 α−1← 1/maxi|a[i, i]|
2 repeat
3 x′← xA . VectorMatrixMultiplyFromLeft
4 x′← x′ + (−1) · x . In-place VectorAdd
5 ε← α−1‖x′‖ . VectorL1Norm
6 x← x+α−1x′ . In-place VectorAdd
7 until ε≤ τ

Observation 5.1 If b= 0 and A is an infinitesimal generator matrix, then

xk1T =
�

xk−1 +
1
α
(xk−1A− b)

�

1T

= xk−11T +
1
α

xk−1A1T − b1T

= xk−11T +
1
α

xk−10T − 01T = xk−11T.

This means the sum of the elements of the result vector x and the initial guess vector
x0 are equal, because the iteration leaves the sum unchanged.

To solve an equation of the form

xQ = 0, x1T = 1 (5.2)

where Q is an infinitesimal generator matrix, the initial guess x0 is selected such that
x01T = 1. If the CTMC described by Q is irreducible, we may select

x0[i]≡
1
n
, (5.3)

where n is the dimensionality of x. After the initial guess is selected, the equation x1T

may be ignored to solve xQ = 0 with the power method. This process yields the solution
of the original problem (5.2).

Jacobi and Gauss–Seidel iteration

Jordan and Gauss–Seidel iterative methods [82, Section 10.3.2–3] repeatedly solve a
system of simultaneous equations of a specific form.
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Algorithm 5.5 Jacobi over-relaxation.

Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0,
over-relaxation parameter ω> 0

Output: approximate solution of xA= b
1 allocate x′ ∈ Rn

2 Let AO refer to the off-diagonal part of A.
3 repeat
4 x′← xAO . VectorMatrixMultiplyFromLeft
5 x′← x′ + (−1) · b . In-place VectorAdd
6 ε← 0
7 for i← 0 to n− 1 do
8 y ← (1−ω)x[i]−ωx ′[i]/a[i, i]
9 ε← ε+ |y − x[i]|

10 x[i]← y

11 until ε≤ τ
12 return x

In Jordan iteration, the system

b[0] = xk[0]a[0, 0] + xk−1[1]a[1,0] + · · · + xk−1[n− 1]a[n− 1,0],
b[1] = xk−1[0]a[0,1] + xk[1]a[1,1] + · · · + xk−1[n− 1]a[n− 1,1],

...
b[n− 1] = xk−1[0]a[0, n− 1] + xk−1[1]a[1, n− 1] + · · · + xk[n− 1]a[n− 1, n− 1],















is solved for xk at each iteration, i.e. there is a single unknown in each row and the rest
of the variables are taken from the previous iterate. In vector form, the iteration can be
expressed as

xk = A−1
D (b− AOxk−1),

where AD and AO are the diagonal (all off-diagonal elements are zero) and off-diagonal
(all diagonal elements are zero) parts of A= AD + AO.

In Gauss–Seidel iteration, the linear system

b[0] = xk[0]a[0,0] + xk−1[1]a[1,0] + · · · + xk−1[n− 1]a[n− 1,0],
b[1] = xk[0]a[0,1] + xk[1]a[1,1] + · · · + xk−1[n− 1]a[n− 1,1],

...
b[n− 1] = xk[0]a[0, n− 1] + xk[1]a[1, n− 1] + · · · + xk[n− 1]a[n− 1, n− 1],















is considered, i.e. the ith equation contains the first i elements of xk as unknowns. The
equations are solved for successive elements of xk from top to bottom.

Jacobi over-relaxation, a generalized form of Jacobi iteration, is realized in Algo-
rithm 5.5. The value 1 of the over-relaxation parameter ω corresponds to ordinary
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Algorithm 5.6 Gauss–Seidel successive over-relaxatation.

Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0,
over-relaxation parameter ω> 0

Output: approximate solution of xA= b
1 allocate x′ ∈ Rn

2 Let AO refer to the off-diagonal part of A.
3 repeat
4 ε← 0
5 for i← 0 to n− 1 do
6 scalarProduct← x · aO[·, i] . VectorMatrixScalarProductWithColumn
7 y ←ω(b[i]− scalarProduct)/a[i, i] + (1−ω) · x[i]
8 ε← ε+ |y − x[i]|
9 x[i]← y

10 until ε≤ τ
11 return x

x













q[0, 0] q[0,1] · · · q[0, n− 2] 1
q[1, 0] q[1,1] · · · q[1, n− 2] 1

...
...

. . .
...

...
q[n− 2, 0] q[n− 2,1] · · · q[n− 2, n− 2] 1
q[n− 1, 0] q[n− 1,1] · · · q[n− 2, n− 1] 1













=













0
0
...
0
1













, (5.4)

Jacobi iteration. Values ω> 1 may accelerate convergence, while 0<ω< 1 may help
diverging Jacobi iteration converge.

Jacobi over-relaxation has many parallelization opportunities. The matrix multipli-
cation in line 4 and the vector addition in line 5 can be parallelized, as well as the for
loop in line 7. Our implementation takes advantage of the configurable linear algebra
operations framework to execute lines 4 and 5 with possible parallelization considering
the structures of both the vectors x,x′ and the matrix A. However, the inner loop is left
sequential to reduce implementation complexity, as it represents only a small fraction
of execution time compared to the matrix-vector product.

Algorithm 5.6 shows an implementation of successive over-relaxation for Gauss–
Seidel iteration, where the notation aO[·, i] refers to the ith column of AO.

Gauss–Seidel iteration cannot easily be parallelized, because calculation of succes-
sive elements x[0], x[1], . . . depend on all of the prior elements. However, in contrast
with Jacobi iteration, nomemory is required in addition to the vectors x, b and thematrix
X , which makes the algorithm suitable for very large vectors and memory-constrained
situations. In addition, convergence is often significantly faster.
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The sum of elements x1T does not stay constant during Jacobi or Gauss–Seidel
iteration. Thus, when solving equations of the form xQ = 0,x1T = 1, normalization
cannot be entirely handled by the initial guess. We instead transform the equation
into the form in eq. (5.4), where we take advantage of the fact that the infinitesimal
generator matrix is not of full rank, therefore one of the columns is redundant and can
be replaced with the condition x1T = 1.

While this transformation may affect the convergence behavior of the algorithm, it
allows uniform handling of homogenous and non-homogenous linear equations.

5.1.3 Group iterative methods

Group or block iterative methods Stewart [82, Section 10.4] assume the block structure
for the vectors x, b and the matrix A

x[i] ∈ Rni ,b[ j] ∈ Rn j , A[i, j] ∈ Rni×n j for all i, j ∈ {0, 1, . . . , N − 1},

Infinitesimal generator matrices in the block Kronecker decomposition along with
appropriately partitioned vectors match this structure. Each block of x corresponds to a
group a variables that are simultaneously solved for.

Group Jacobi iteration solves the linear system

b[0] = xk[0]A[0, 0] + xk−1[1]A[1,0] + · · · + xk−1[n− 1]A[n− 1,0],
b[1] = xk−1[0]A[0,1] + xk[1]A[1,1] + · · · + xk−1[n− 1]A[n− 1,1],

...
b[n− 1] = xk−1[0]A[0, n− 1] + xk−1[1]A[1, n− 1] + · · · + xk[n− 1]A[n− 1, n− 1],















while group Gauss–Seidel considers

b[0] = xk[0]A[0,0] + xk−1[1]A[1, 0] + · · · + xk−1[n− 1]A[n− 1,0],
b[1] = xk[0]A[0,1] + xk[1]A[1, 1] + · · · + xk−1[n− 1]A[n− 1,1],

...
b[n− 1] = xk[0]A[0, n− 1] + xk[1]A[1, n− 1] + · · · + xk[n− 1]A[n− 1, n− 1].















Implementations of group Jacobi over-relaxation and group Gauss–Seidel successive
over-relaxation are shown in Algorithms 5.7 and 5.8. The inner linear equations of the
form x[i]A[i, i] = c may be solved by any algorithm, for example, LU decomposition,
iterative methods, or even block-iterative methods if A has a two-level block structure.
The choice of the inner algorithm may significantly affect performance and care must
be taken to avoid diverging inner solutions in an iterative solver is used.

In Jacobi over-relaxation, parallelization of both the matrix multiplication and the
inner loop is possible. However, two vectors of the same size as x are required for
temporary storage.
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Algorithm 5.7 Group Jacobi over-relaxation.

Input: block matrix A, block right vector b, block initial guess n, tolerance τ > 0,
over-relaxation parameter ω> 0

Output: approximate solution of xA= b and its residual norm
1 allocate x′ and c with the same block structure as x and b
2 Let AOB represent the off-diagonal part of the block matrix A with the blocks
along the diagonal set to zero.

3 repeat
4 x′← x,c← b
5 c← c+ (−1) · x′AOB . VectorMatrixAccumulateMultiplyFromLeft
6 parallel for i← 0 to N − 1 do // Loop over all blocks
7 Solve x[i]A[i, i] = c[i] for x[i]

8 ε← 0
9 for k← 0 to n− 1 do // Loop over all elements

10 y ←ωx[k] + (1−ω)x ′[k]
11 ε← ε+ |y − x ′[k]|
12 x[k]← y

13 until ε≤ τ

Algorithm 5.8 Group Gauss–Seidel successive over-relaxation.

Input: block matrix A, block right vector b, block initial guess n, tolerance τ > 0,
over-relaxation parameter ω> 0

Output: approximate solution of xA= b and its residual norm
1 allocate x′ and c large enough to store a single block of x and b.
2 repeat
3 ε← 0
4 for i← 0 to N − 1 do // Loop over all blocks
5 x′← x[i],c← b[i]
6 for j← 0 to N − 1 do
7 if i 6= j then . VectorMatrixAccumulateMultiplyFromLeft
8 c← c+ (−1) · x[ j]A[i, j]

9 Solve x[i]A[i, i] = c for x[i]
10 for k← 0 to ni − 1 do
11 y ←ωx[i][k] + (1−ω)x ′[k]
12 ε← ε+ |y − x ′[k]|
13 x[i][k]← y

14 until ε≤ τ
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Gauss–Seidel successive over-relaxation cannot be parallelized easily. However it
requires only two temporary vectors of size equal to the largest block of x, much less
than Jacobi over-relaxation. Moreover, it often requires fewer steps to converge, making
it preferable over Jacobi iteration.

Because the inner solver may be selected by the user and thus its convergence
behavior varies widely, we do not perform the transformation for homogeneous equa-
tions (5.4). Instead, the normalization π= x/x1T is performed only after finding any
nonzero solution of xQ = 0.

For a detailed analysis of the convergence behavior of group iterative methods, we
refer to Greenbaum [40, Chapter 14] and Courtois and Semal [27].

5.1.4 Krylov subspace methods

Projectional iterative methods are iterative linear equation solvers that produce a
sequence of approximate solutions xk of the linear equation xA = b that satisfy the
Petrov–Galerkin conditions [73, Section 5.1.1]

xk ∈Kk, rk = b− xkA⊥Lk, (5.5)

where Kk and Lk are two subspaces of Rn and rk is residual in the kth iteration.
Krylov subspace iterative methods correspond to the choice

Kk =Kk(A, r0) = span{r0, r0A, r0A2, . . . , r0Ak−1},

where Kk(A, r0) is the kth Krylov subspace of A and the initial residual r0 = b− x0Q.
The smallest m ∈ N such that dimKm(A, r0) = dimKm+1(A, r0) is called the grade

of A with respect to r0. Hence k ≤ m implies dimKk(A, r0) = k. Krylov subspace solvers
usually suppose that the algorithm terminates at some iteration k∗ such that k∗ ≤ m,
therefore the dimension of Kk increases with each iteration. The contrary situation
leads to stagnation, because Kk ⊆ Kk+1 together with dimKk = dimKk+1 (k ≥ m)
implies Kk =Kk+1.

The subspace Lk also must be a k-dimensional subspace of Rn. Conceptually, while
the Krylov subspace Kk “expands” in dimensionality every iteration, the subspace Lk

likewise fills the space to make additional residuals forbidden by the Petrov–Galerkin
condition (5.5).

If A∈ Rn×n is of full rank and grade, Krylov subspace solvers find the exact solution
of the linear equation in at most n iterations with exact arithmetic. The only possible
orthogonal residual is the zero vector 0 if Ln = Rn holds. While n is usually too large
for this to be practical, convergence often happens with suitable accuracy after a small
number of iterations.

Note that problems may arise when A is singular, which may worsen the convergence
behavior. This is the case in CTMC analysis, where the infinitesimal generator matrix
Q is of rank n− 1.
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Some Krylov subspace methods for nonsymmetric matrices in wide use are General-
ized Minimum Residual (GMRES) [72], Bi-Conjugate Gradient Stabilized (BiCGSTAB)
[86], Conjugate Gradient Squared (CGS) [79] and IDR(s) [81].

Generalized Minimal Residual (GMRES)

Generalized Minimal Residual (GMRES) [73, Section 6.5.1; 72] a Krylov subspace
method for nonsymmetric linear systems. It is based on the choice

Lk =KkA= {r0A, r0A2, . . . , r0Ak}.

With this choice, the Petrov–Galerkin condition (5.5) minimizes the Euclidean norm
of the residuals in each iteration, i.e.

xk ∈Kk such that rk = b− xkA⊥Lk ⇐⇒ xk = argmin
x∈Kk

‖b− xQ‖2. (5.6)

Unfortunately, the solution of eq. (5.6) requires the storage of a basis of Kk, which
is a k dimensional subspace of Rn. Thus, each iteration requires the allocation of an
additional vector. Solution of a linear system with GMRES requires up to n additional
floating-point vectors of n elements each, i.e. O(n2) floating-point numbers. This
property makes GMRES a “long recurrence” algorithm.

The high memory requirements may be alleviated by discarding the basis of Kk and
restarting the iteration from another initial guess x0 if no solution is obtained after `
iterations. The resulting algorithm is called GMRES(`).

The convergence behavior of full GMRES is often excellent. However, due to
impractical memory requirements, we did not implement GMRES as a numerical solver
in our framework. We instead use BiCGSTAB and IDR(s)STAB(`), Krylov subspace
solvers incorporating GMRES(`)-like steps.

Bi-Conjugate Gradient Stabilized (BiCGSTAB)

Bi-Conjugate Gradient Stabilized (BiCGSTAB) [73, Section 7.4.2; 86] is a Krylov
subspace method where [75]

Lk =Kk(A
T, r̃0) · (Ωk(A)

T)−1, Ωk(A) =

¨

Ωk−1(A) · (I −ωkA) if k ≥ 1,

I if k = 0.
(5.7)

The initial shadow residual r̃0 must satisfy r0r̃T
0 6= 0 and must not be an eigenvector of

QT. Usually, r̃0 = r0, which is the convention we use in our implementation.
Equivalently, BiCGSTAB is a Krylov subspace method which produces residuals

rk ∈ Gk, Gk =

¨

(Gk ∩ r̃⊥0 )(I −ωkA) if k ≥ 1,

Rn if k = 0,
(5.8)
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where A⊥ is the set of vector orthogonal to A. It can be shown that [78]

Gk = S(Ωk, A, r̃0) = {v ·Ωk(A) : v⊥Kk(A
T, r̃0)},

whereS(Ω, A, r̃0) is theΩth Sonneveld subspace generated by Aand r̃0) of order k = degΩ.
Hence Lk = G⊥k , which makes BiCGSTAB equivalent to another Krylov subspace
method, Induced Dimensionality Reduction (IDR) [78] in exact arithmetic.

BiCGSTAB is a “short recurrence”, that is, the number of allocated intermediate
vectors does not depend on the number of variables in equation system.

Implementation We selected BiCGSTAB as the first Krylov subspace solver integrated
into our framework because of its good convergence behavior and low memory require-
ments. BiCGSTAB only requires the storage of 7 vectors, which makes it suitable even
for large state spaces with large state vectors.

Algorithm 5.9 shows the pseudocode for BiCGSTAB. Our implementation is based
on the Matlab code1 by Barrett et al. [5].

The inner loop of BiCGSTAB is the composed of two procedures. The bi-conjugate
gradient (Bi-CG) part in lines 9–20 calculates a residual t ∈ Gk−1A and its associated
approximate solution x ∈Kk. The GMRES(1) part in lines 21–31 selects ωk ∈ R and
calculates a new residual r ∈ Gk such that the Euclidean norm ‖r‖2 is minimized. This
part improves convergence over the original Bi-Conjugate Gradient algorithm.

Solving preconditioned equations in the form xAM−1 = bM−1 could improve conver-
gence, but was omitted from our current implementation. As the choice of appropriate
preconditioner matrices M is not trivial [51], implementation and sudy of precondition-
ers for Markov chains, especially with block Kronecker decomposition, is in the scope
of our future work.

Because six vectors are allocated in addition to x and b, the amount of available
memory may be a significant bottleneck.

Similar to Observation 5.1 on page 47, it can be seen that the sum x1T stays constant
throughout BiCGSTAB iteration. Thus, we can find probability vectors satisfying
homogenous equations by the initialization in eq. (5.3) on page 47.

Induced Dimensionality Reduction Stabilized (IDRSTAB)

Induced Dimensionality Reduction Stabilized (IDR(s)STAB(`)) [78] is Krylov subspace
solver that generalizes BiCGSTAB and IDR techniques to provide converge behaviors
closely matching GMRES while maintaining the short recurrence property.

As the algorithm developed relatively recently in 2010, high performance im-
plementations of IDR(s)STAB(`) are not widely available. To our best knowledge,

1http://www.netlib.org/templates/matlab/bicgstab.m

http://www.netlib.org/templates/matlab/bicgstab.m
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Algorithm 5.9 BiCGSTAB iteration without preconditioning.

Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0
Output: approximate solution of xA= b

1 allocate r, r̃0,v,p, s, t ∈ Rn

2 r← b . VectorSet
3 r← r+ (−1) · xA . VectorMatrixAccumulateMultiplyFromLeft
4 if ‖r‖ ≤ τ then
5 message “initial guess is correct, skipping iteration”
6 return x

7 r̃0← r,v← 0,p← 0,ρ′← 1,α← 1,ω← 1
8 while true do

Bi-CG step

9 ρ← r0 · r . VectorScalarProduct
10 if ρ ≈ 0 then error “breakdown: r⊥ r̃0”
11 β ← ρ/ρ′ ·α/ω
12 p← r+ β · p . VectorAdd
13 p← p+ (−βω) · v . In-place VectorAdd
14 v← pQ . VectorMatrixMultiplyFromLeft
15 α← ρ/(r̃0 · v) . VectorScalarProduct
16 r← s+ (−α) · s . VectorAdd
17 if ‖s‖< τ then
18 x← x+α · p . In-place VectorAdd
19 message “early return with vanishing s”
20 return x

GMRES(1) step

21 t← sA . VectorMatrixMultiplyFromLeft
22 tLengthSquared← t · t . VectorScalarProduct
23 if tLengthSquared≈ 0 then error “breakdown: t≈ 0”
24 ω← (t · s)/tLengthSquared . VectorScalarProduct
25 if ω≈ 0 then error “breakdown: ω≈ 0”
26 ε← 0
27 for i← 0 to n− 1 do
28 change← αp[i] +ωs[i], ε← ε+ |change|. x[i]← x[i] + change

29 if ε≤ τ then return x
30 s← t+ (−ω) · r . VectorAdd
31 ρ′← ρ
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IDR(s)STAB(`) was not investigated for use in CTMC analysis despite its promising re-
sults solving differential equations arising from finite element problems. Therefore, we
are currently focusing research and development effort into integrating IDR(s)STAB(`)
into our stochastic analysis. Special attention is paid to its behavior on steady-state
equations with infinitesimal generator matrices and other linear systems arising from
CTMC analysis.

IDR(s)STAB(`) merges two generalizations of BiCGSTAB:

• The first idea comes from IDR(s) [81], a Krylov subspace solver based on Sonn-
eveld subspaces. A block version of eq. (5.8) constraints the residual rk

rk ∈ Gk = S(Ωk, A,eR0) = {v ·Ωk(A) : v⊥Kk(A, R̃0)},

where Kk(A, R̃0) is the kth row Krylov subspace of A ∈ Rn×n with respect to
R̃0 ∈ Rs×n

Kk(A,eR0) = span{r̃0[i], r̃0[i]A, . . . , r̃0[i]A
k−1 : i = 0,1, . . . , s− 1}

and r̃0[i] is the ith row R̃0.

Higher values of s, i.e. higher dimensional initial shadow spaces, may accelerate
convergence, at the cost of allocation additional intermediate vectors.

• The second generalization, which is called BiCGSTAB(`) [76], replaces the
stabilizer polynomial Ωk from eq. (5.7) with

Ωk(A) = Ωk−1(A) · (I − γ[0]A− γ[1]A2 − · · · − γ[`− 1]A`),

i.e. degree of the stabilizer polynomial Ω increases by ` instead of 1 every iteration.
The increase is described by the vector ~γ ∈ R`.

The higher-order stabilization, also called a GMRES(`) step, improves conver-
gence behavior with unsymmetric matrices that have complex spectrum. However,
the number of intermediate vectors, thus the amount of required memory, also
grows.

A single dimensional initial shadow space (s = 1) and first-order stabilization (`= 1)
make IDR(s)STAB(`) identical to BiCGSTAB. Moreover, ` = 1 results is behavior
equivalent to IDR(s), while s = 1 results in behavior equivalent to BiCGSTAB(`).

These correspondences make IDR(s)STAB(`) a promising candidate for use in
configurable stochastic analysis, as different settings of (s,`) bring the power of multiple
algorithms to the modelers’ disposal.
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Algorithm 5.10 IDR(s)STAB(`).

Input: matrix A∈ Rn×n, right vector b ∈ Rn, initial guess x ∈ Rn, tolerance τ > 0
Output: approximate solution of xA= b

1 allocate R∈ R(`+1)×n,U,V ∈ R((`+2)×s)×n, eR0 ∈ Rs×n

2 allocate σ ∈ Rs×s, ~m ∈ Rs, ~α ∈ Rs, ~β ∈ Rs, G ∈ R`×`, ~ρ ∈ R`, ~γ ∈ R`

3 allocate C,D ∈ Rs×n

Initialize shadow residuals

4 for j = 0 to s− 1 do
5 Sample r̃0[ j] from an n-dimensional standard normal distribution

6 r̃0[ j]← r̃0[ j] +
�

−
∑n−1

k=0 r̃0[ j][k]/n
�

1 . In-place VectorAdd
7 for q = 0 to s− 1 do
8 r̃0[ j]← r̃0[ j] + (−r̃0[ j] · r̃0[q]) r̃0[q] . In-place VectorAdd

9 r̃0[ j]← (1/‖r̃0[ j]‖2) r̃0[ j] . In-place VectorScale

Initialize residuals and intermediate vectors

10 r[0]← b, r[0]← r[0] + (−1)xA . VectorMatrixAccumulateMultiplyFromLeft
11 for q← 0 to s− 1 do
12 if q = 0 then c[0]← (−1)x, u[0,0]← r[0] . VectorSet
13 else c[q]← u[0, q− 1], u[0, q]← u[1, q− 1] . VectorSet
14 U[1, q]← U[0, q]A . VectorMatrixMultiplyFromLeft
15 for k← 0 to q− 1 do
16 proj← u[0, k] · u[0, q] . VectorScalarProduct
17 c[q]← c[q] + (−proj)c[k] . In-place VectorAdd
18 u[0, q]← U[0, q] + (−proj)u[0, k], u[1, q]← U[1, q] + (−proj)u[1, k]

19 norm← ‖u[0, q]‖2 . VectorScalarProduct
20 c[q]← (1/norm)c[q], . In-place VectorScale
21 u[0, q]← (1/norm)u[0, q], u[1, q]← (1/norm)u[1, q]

Iteration

22 while ‖r[0]‖> ε do
23 Perform IDR step from Algorithm 5.11
24 Perform GMRES(`) step from Algorithm 5.12

25 return x
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Algorithm 5.11 IDR(s)STAB(`) IDR step.

1 for j← 1 to ` do // For every repetition step
2 for k← 0 to s− 1 do
3 for q← 0 to s− 1 do σ[q, k]← u[ j, q] · r̃0[k] . VectorScalarProduct
4 m[k]← r[ j − 1] · r̃0[k] . VectorScalarProduct

5 Solve ~ασ = ~m for ~α
6 for q← 0 to s− 1 do
7 x← x+α[q]u[0, q] . In-place VectorAdd
8 for k← 0 to j − 1 do r[k]← r[k] + (−α[q])u[k+ 1][q]

9 r[ j − 1]← rA . VectorMatrixMultiplyFromLeft
10 for q← 0 to s− 1 do // Build a new basis for the shadow space
11 if q = 0 then
12 d[0]← (−1)x . VectorScale
13 for k← 0 to j − 1 do v[k, 0]← r[k] . VectorSet
14 else
15 d[q]← v[0, q− 1] . VectorSet
16 for k← 0 to j − 1 do v[k, q]← v[k+ 1, q− 1] . VectorSet

17 for k← 0 to s− 1 do m[k]← v[ j, q] · r̃0[k] . VectorScalarProduct
18 Solve ~βσ = ~m for ~β
19 for i← 0 to s− 1 do
20 d[q]← d[q] + (−β[i])c[i] . In-place VectorAdd
21 for k← 0 to j do v[k, q]← v[k, q] + (−β[i])u[k, i]

22 v[ j + 1, q]← v[ j, q]A . VectorMatrixMultiplyFromLeft
23 for i← 0 to q− 1 do // Attempt orthonormalization
24 proj← v[ j, q] · v[ j, i] . VectorScalarProduct
25 d[q]← d[q] + (−proj)d[i] . In-place VectorAdd
26 for k← 0 to j + 1 do v[k, q]← v[k, q] + (−proj)v[k, i]

27 norm← ‖v[ j, q]‖2 . VectorScalarProduct
28 if norm< ε then // Gram–Schmidt breakdown
29 message “early exit with v[ j, q]≈ 0”

30 sum←
∑n−1

k=0 d[q][k], x← (1/sum) d[q][k] . In-place VectorScale
31 return x

32 d[q]← (1/norm)d[q] . In-place VectorScale
33 for k← 0 to j + 1 do v[k, q]← (1/norm)v[k, q] . In-place VectorScale

34 Swap the references to C and D
35 Swap the references to U and V
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Algorithm 5.12 IDR(s)STAB(`) GMRES(`) step.

Find argmin~γ∈R` ‖r[0]− R[1 : `]~γT‖2 by solving the normal equation

1 for j← 1 to s do
2 for i← 1 to s do g[i, j]← r[i] · r[ j] . VectorScalarProduct
3 ρ[ j]← r[0] · r[ j] . VectorScalarProduct

4 Solve ~γG = ~ρ for ~γ

Calculate the minimal residual

5 for j← 0 to j − 1 do
6 x← x+ γ[ j] r[ j] . In-place VectorAdd
7 r[0]← r[0] + (−γ[ j]) r[ j + 1] . In-place VectorAdd
8 for q← 0 to s− 1 do
9 c[q]← c[q] + (−γ[ j])u[ j, q] . In-place VectorAdd

10 u[ j, q]← u[ j, q] + (−γ[ j])u[ j + 1, q] . In-place VectorAdd
11 u[ j + 1, q]← u[ j + 1, q] + (−γ[ j])u[ j + 2, q] . In-place VectorAdd

Implementation The pseudocode of our implementation of IDR(s)STAB(`), which is
based on the pseudocode of Sleijpen and Van Gijzen [78], is show in Algorithms 5.10
to 5.12. Modification to the algorithm to obtain better convergence properties with
CTMC steady-state analysis are highlighted with shaded line numbers.

For convenient representation of memory requirements, we employ two different
typographical styles for vectors. Vectors in bold, e.g. x ∈ Rn are “long” vectors, while
vectors with arrows, e.g. ~γ are “short” vectors of length s or ` � n. Storage space
of long vectors dominated memory requirements and their manipulations including
vector–matrix products dominate computation time.

The algorithm works with three arrays of vectors, R∈ R(`+1)×n, U,V ∈ R((`+2)×s)×n,
i.e. r[ j′],u[ j, q],v[ j, q] ∈ Rn for all j′ = 0,1, . . . ,`; j = 0,1, . . . ,`+ 1; q = 0,1, . . . , s− 1.

The IDR part performs the projections, called a “repetition step”, shown in Figure 5.1,
for j = 1, 2, . . . ,` every iteration.

After a repetition step is complete, U and V are swapped and the process starts
again with increased j or the GMRES(`) part commences. Symbols with a subscript
“−” sign refer to vectors from the previous repetition step.

The projections Πi (i = 0, 1, . . . , j) are defined as

Πi = I − Aj−i
eRT

0σ
−1U[i, ·], σ = eR0(U[ j, ·])T,

where the matrix U[k, ·] is the s × n matrix that has the vector u[k, q] as its qth row.
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x− → x v[0,0] v[0,1] · · · v[0, s− 1],
↓ ↗Π0 ↓A ↗Π0 ↓A ↓A

r−[0]
Π1
→ r[0] v[1,0] v[1,1] · · · v[1, s− 1],

↓A ↗Π1 ↓A ↗Π1 ↓A ↓A
r−[1]

Π2
→ r[1] v[2,0] v[2,1] · · · v[2, s− 1],,

...
...

...
...

...
r−[ j − 2]

Π j−1
→ r[ j − 2] v[ j − 1,0] v[ j − 1,1] · · · v[ j − 1, s− 1],

↓A ↗Π j−1 ↓A ↗Π j−1 ↓A ↓A
r−[ j − 1]

Π j
→ r[ j − 1] v[ j, 0] v[ j, 1] · · · v[ j, s− 1],

↓A ↗Π j ↓A ↗Π j ↓A ↓A

r[ j] v[ j + 1,0] v[ j + 1,1] · · · v[ j + 1, s− 1]

(5.9)

Figure 5.1 Repetition step of the IDR(s) part of IDR(s)STAB(`).

They ensure that the rows of U[ j, ·] form a basis of the Krylov subspace Ks(AΠ j , r[ j]Π j)
after the jth repetition step.

The relationships r[i + 1] = riA, u[i + 1, q] = u[i, q]A, v[i + 1, q] = v[i, q] are
maintained throughout the algorithm via the projections. This is signified by the gray
↓ A arrows in eq. (5.9). Notice that this means r[0]Ai = r[i] and U[0, ·]Ai = U[i, ·].

In the case of r[ j] and v[ j + 1, q], a matrix multiplication is performed as shown by
the ↓ A arrows. Vectors generated by matrix multiplication are shown in borders.

For improving numerical properties, Sleijpen and Van Gijzen [78] recommend
performing Gram–Schmidt orthonormalization on U[ j, ·]. The same subtractions and
normalization operations must be performed on the rows of U[i, ·], i 6= j that are
performed in U[ j, ·] in order to maintain their relationships. We realized the orthonor-
malization by the modified Gram–Schmidt process in lines 23–33 of Algorithm 5.11.

The storage of R, U and V requires (`+ 1) + 2 · (`+ 1) · s vectors of length n, while
the initial shadow residual matrix eR0 requires space equal to s vectors of length n. Thus,
1+ `+ 3s+ 2`s intermediate vectors are needed in addition to the initial guess x0 and
the right vectors b. Although the memory requirements of IDR(s)STAB(`) are quite
high, s and ` can be selected to ensure that the solution fits in the available memory.

A different formulation of the IDR(s)STAB(`) principles is GBi-CGSTAB(s,`) [84],
which avoids the allocation of V by updating U in place, albeit with lesser numerical
properties due to the lack of orthonormalization steps. Another variant by Aihara et al.
[1] replaces some vector updates with matrix multiplications to improve accuracy.

Numerical problems and breakdown Unfortunately, our initial experiments with
IDR(s)STAB(`) in Markovian steady-state analysis did not lead to success when one
of the parameters s or ` were set to values strictly larger than 1. The only case that
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managed to decrease the norm of the residual reliably, s = ` = 1 is equivalent to
BiCGSTAB, but due to properties of the IDR formulation it is less numerically stable.

In steady-state analysis, equations of the form

xQ = 0, x1T = 1 (5.10)

are solved, where the infinitesimal generator matrix Q ∈ Rn×n is matrix of rank n− 1
(nullity 1) which satisfies Q1= 0T. To obtain the solution, the matrix A=Q is passed
to IDR(s)STAB(`) along with the right vector b= 0 and the initial guess x. The initial
guess is chosen to satisfy x1T = 1.

We have identified the following three numerical problems in the original version of
the algorithm algorithm that lead to eventual breakdown:

1. The quantity x1T may increase indefinitely instead of staying constant. Thus,
the normalization condition in eq. (5.10) is violated. Unconstrained increase
results in the loss of precision and overflow of the elements of x such that the
normalization cannot be restored by the division x̂= x/x1T.

2. The vectors V[ j, ·] that shall form the basis of the Krylov subspace Ks(AΠ j , r[ j]Π j)
may become linearly dependent, such that the Gram–Schmidt process in lines 23–
33 of Algorithm 5.11 fail due to some v[ j, q] becoming the zero vector.

3. The matrix σ may become singular such that the linear equation ~ασ = ~m has no
solution in line 5 of Algorithm 5.11. Since σ = U[ j, ·]eRT

0, this corresponds the
projection of the vectors U[ j, ·] into span eR0 becoming linearly dependent.

In addition, a nearly singular σ results in the accumulation of errors that cause
the norm of the residual to increase exponentially instead of converging to zero.

Handling numerical problems Is this section, we present the modification made to
IDR(s)STAB(`) in Algorithms 5.10 to 5.12 to improve its behavior with CTMC generator
matrices. We restrict our attention to the solution of equations of the form (5.10), that
is, steady-state normalized solution of Markovian models with zero right vector. Thus,
we will write Q instead of A for the linear equation matrix and assume a right hand
side b= 0.

Observation 5.2 IDR(s)STAB(`) only performs updates of the approximate solution
of the form x← x+λt, where

1. t is either an initial shadow residual r̃0[ j] for some j
2. or there exists a vector w such that t=wQ.

In the second case of Observation 5.2, one may notice that

t1T =wQ1T =w0T = 0,
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therefore x1T can be forced to stay constant by selecting initial shadow residual vectors
eR01T = 0T. Line 6 of Algorithm 5.10 contains this modification. The initialization of
the shadow residuals is otherwise identical to the recommendation of Sonneveld [80],
which selects a random orthonormalized set of s vectors.

The handling of the second problem of the Gram–Schmidt process failure is more
complicated.

Observation 5.3 If Q ∈ Rn is a rank n− 1 matrix such that Q1T = 0T and b = 0,
then v[i, q]1T = 0 for all i, q.

Proof. Because v[i, q] = v[i − 1, q]Q for all i > 0, it suffices to show that v[0, q]1T = 0.
The chain of projections in eq. (5.9) on page 60 shows that

v[0, q] =wΠ0 =w(I −Q j
eRT

0σ
−1U[0, ·]),

where w is either r[0] or v[1, q− 1].
Notice that v[1, q − 1]1T = 0 as we have shown before and r[0]1T = −xQ1T = 0.

Hence if u[0, k]1T = 0 for all k,

v[0, q] =wΠ01T =w1T −wQ j
eRT

0σ
−1U[0, ·]1T

=w1T −wQ j
eRT

0σ
−10T = 0.

Now it all remains to be shown that u[0, k]1T = 0. We will use induction over
the number of repetitions performed. If v[0, k]1T holds in the current repetition step,
u[0, k]1T = 0 holds in the next, because the references to U and V are swapped
every repetition step. This property is not disturbed by the performed Gram–Schmidt
orthonormalizations and the GMRES(`) steps.

We also notice that Algorithm 5.10 on page 57 initializes u[0,0] = r[0] = −xQ and
u[0, q] = u[0, q− 1]Q for q > 0. This completes the induction.

Observation 5.4 If the conditions from Observation 5.3 and v[ j, q] = 0 hold, then
v[i, q] = 0 for all i < j.

Proof. Suppose that there is some v[i, q] 6= 0 such that i < j. Without loss of generality,
we may assume that i is the largest index with this property, i.e. v[i′, q] = 0 for all i′ > i.
Then 0 = v[i + 1, q] = v[i, q]Q, therefore v[i, q] is the solution of the linear equation
xQ = 0.

However, we know that the nullspace kerQ = span{π}, where π is the stationary
distribution of the CTMC of which Q is the infinitesimal generator, i.e πQ = 0, π1T = 1.
Therefore, v[i, q] ∈ span{π} such that v[i, q]1T = 0 (Observation 5.3). This means
v[i, q] = 0

1 ·π= 0.
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d[0] d[1] · · · d[s− 1],
↗Π−1 ↓Q ↗Π−1 ↓Q ↓Q

x− → x v[0,0] v[0, 1] · · · v[0, s− 1],
↓−Q ↗Π0 ↓Q ↗Π0 ↓Q ↓Q

r−[0]
Π1
→ r[0] v[1,0] v[1, 1] · · · v[1, s− 1],

↓Q ↗Π1 ↓Q ↗Π1 ↓Q ↓Q
r−[1]

Π2
→ r[1] v[2,0] v[2, 1] · · · v[2, s− 1],,

...
...

...
...

...
r−[ j − 2]

Π j−1
→ r[ j − 2] v[ j − 1, 0] v[ j − 1, 1] · · · v[ j − 1, s− 1],

↓Q ↗Π j−1 ↓Q ↗Π j−1 ↓Q ↓Q
r−[ j − 1]

Π j
→ r[ j − 1] v[ j, 0] v[ j, 1] · · · v[ j, s− 1],

↓Q ↗Π j ↓Q ↗Π j ↓Q ↓Q

r[ j] v[ j + 1, 0] v[ j + 1, 1] · · · v[ j + 1, s− 1]

Figure 5.2 Extended repetition step of the IDR(s) part of IDR(s)STAB(`).

Observation 5.4 means that if the Gram–Schmidt process breaks down with v[ j, q] =
0, we are unable to recover a solution vector by looking at some v[i, q], i < j, because
those vector are also zero.

The projection scheme in eq. (5.9) on page 60 is extended with two additional
arrays C,D ∈ Rs×n, which serve as the “(-1)th” rows of U and V. This results in the
extended projections shown in Figure 5.2, where Π−1 = I − Aj−i

eRT
0σ
−1D. In order to

avoid d[q] = 0, c[0] is initialized to −x so that v[0,0] = r= c[0]Q.
After a Gram–Schmidt breakdown, the solution vector x is obtained as

x=
1

d[q]1T d[q].

Despite our attempts, we did not handle the third divergence problem of singular
or nearly singular σ. A possible remedy is the more careful choice of the stabilizing
polynomial Ωk. Choosing ~γ through means other than the minimization of the residual
norm ‖r[0]‖2 may result in better converge behavior [71, 77].

Empirical results on the convergence of IDR(s)STAB(`) in the steady-state analysis
of Markovian models of various size are presented in Section 6.3 on page 79.

5.2 Transient analysis

5.2.1 Uniformization

The uniformization or randomization method solves the initial value problem

dπ(t)
dt

= π(t)Q, π(t) = π0 (5.11)
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by computing

π(t) =
∞
∑

k=0

π0Pke−αt (αt)k

k!
, (5.12)

where P = α−1Q+I , α≥maxi|a[i, i]| and e−αt (αt)k
k! is the value of the Poisson probability

function with rate αt at k.
Integrating both sides of eq. (5.12) to compute L(t) yields [70]

∫ t

0

π(u)du= L(t) =
∞
∑

k=0

π0Pk

∫ t

0

e−αu (αu)k

k!
du

=
∞
∑

k=0

π0Pk 1
α

∞
∑

l=k+1

e−αt (αt)l

l!

=
1
α

∞
∑

k=0

π0Pk

�

1−
k
∑

l=0

e−αt (αt)l

l!

�

. (5.13)

Both eqs. (5.12) and (5.13) can be realized as

x=
1
W

 

kleft−1
∑

k=0

wleftπ0Pk +
kright
∑

k=kleft

w[k− kleft]π0Pk

!

, (5.14)

where x is either π(t) or L(t), kleft and kright are trimming constants selected based on
the required precision, w is a vector of (possibly accumulated) Poisson weights and
W is a scaling factor. The weight before the left cutoff wleft is 1 if the accumulated
probability vector L(t) is calculated, 0 otherwise.

Eq. (5.14) is implemented by Algorithm 5.13. The algorithm performs steady-state
detection in line 9 to avoid unnecessary work once the iteration vector p reaches the
steady-state distribution π(∞), i.e. p≈ pP. If the initial distribution π0 is not further
needed or can be generated efficiently (as it is the case with a single initial state), the
result vector x may share the same storing, resulting in a memory overhead of only two
vectors p and q.

The weights and trimming constants may be calculated by the famous algorithm
of Fox and Glynn [35]. However, their algorithm is extremely complicated due to the
limitations of single-precision floating-point arithmetic [47]. We implemented Burak’s
significantly simpler algorithm [20] in double precision instead (Algorithm 5.14 on
page 66), which avoids underflow by a scaling factor W � 1.

5.2.2 TR-BDF2

A weakness of the uniformization algorithm is the poor tolerance of stiff Markov chains.
The CTMC is called stiff if the |λmin| � |λmax|, where λmin and λmax are the nonzero
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Algorithm 5.13 Uniformization.

Input: infinitesimal generator Q ∈ Rn×n, initial probability vector π0 ∈ Rn,
truncation parameters kleft, kright ∈ N, weights wleft ∈ R, w ∈ Rkright−kleft ,
scaling constant W ∈ R, tolerance τ > 0

Output: instantaneous or accumulated probability vector x ∈ Rn

1 allocate x,p,q ∈ Rn

2 α−1← 1/maxi|a[i, i]|
3 p← π0
4 if wleft = 0 then x← 0 else x← wleft · p . VectorScale
5 for k← 1 to kright do
6 q← pQ . VectorMatrixMultiplyFromLeft
7 q← α−1 · q . In-place VectorScale
8 q← q+ p . In-place VectorAdd
9 if ‖q− p‖ ≤ τ then

10 x← x+
�

∑kright
l=k w[l − kleft]

�

· q . In-place VectorAdd
11 break

12 if k < kleft ∧wleft 6= 0 then x← x+wleft · q . In-place VectorAdd
13 else if k ≥ kleft then x← x+w[k− kleft] · q . In-place VectorAdd
14 Swap the references to p and q

15 x←W−1 · x . In-place VectorScale
16 return x

eigenvalues of the infinitesimal generator matrix Q of minimum and maximum absolute
value [69]. In other words, stiff Markov chains have behaviors on drastically different
timescales, for example, clients are served frequently while failures happen infrequently.

Stiffness leads to very large values of α in line 2 of Algorithm 5.13, thus a large right
cutoff kright is required for computing the transient solution with sufficient accuracy.
Moreover, the slow stabilization results in taking many iterations before steady-state
detection in line 9.

Some methods that can handle stiff CTMCs efficiently are stochastic complemen-
tation [54], which decouples the slow and fast behaviors of the system, and adaptive
uniformization [59], which varies the uniformization rate α. Alternatively, an L-stable
differential equation solver may be used to solve eq. (5.11), such as TR-BDF2 [4, 69].

TR-BDF2 is an implicit integrator with alternating trapezoid rule (TR) steps

πk+γ(2I + γhkQ) = 2πk + γhkπkQ
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Algorithm 5.14 Burak’s algorithm for calculating the Poisson weights.

Input: Poisson rate λ= αt, tolerance τ > 10−50

Output: truncation parameters kleft, kright ∈ N, weights w ∈ Rkright−kleft , scaling
constant W ∈ R

Calculate weights with high precision

1 Mw← 30, Ma← 44, Ms← 21 // Constants determine cuto� estimation accuracy
2 m← bλc, tSize← bMw

p
λ+Mac, tStart←max{m+Ms − btSize/2c, 0}

3 allocate tWeights ∈ RtSize

4 tWeights[m− tStart]← 2176

5 for j← m− tStart downto 1 do
6 tWeights[ j − 1] = ( j + tStart) tWeights[ j]/λ

7 for j← m− tStart+ 1 to tSize do
8 tWeights[ j + 1] = λ tWeights[ j]/( j + tStart)

Determine normalization constant and cuto� points

9 W ← 0
10 for j← 0 to m− tStart− 1 do
11 W ←W + tWeights[ j]

12 sum1← 0 // Avoid adding small numbers to larger numbers
13 for j← tSize− 1 downto m− tStart do
14 sum1← sum1+ tWeights[ j]

15 W ←W + sum1, threshold←Wτ/2, cdf← 0, i← 0
16 while cdf< threshold do
17 cdf← cdf+ tWeights[i]
18 i← i + 1

19 kleft← tStart+ i, cdf← 0, i← tSize− 1
20 while cdf< threshold do
21 cdf← cdf+ tWeights[i]
22 i← i − 1

23 kright← tStart+ i

Copy weights between cuto� points

24 allocate w ∈ Rkright−kleft

25 for j← kleft to kright do
26 w[ j − kleft]← tWeights[ j − tStart]

27 return kleft, kright,w, W
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and second order backward difference steps

πk+1[(2− γ)I − (1− γ)hkQ] =
1
γ
πk+γ −

(1− γ)2

γ
πk,

which advance the time together by a step of size hk. The constant 0 < γ < 1 sets
the break point between the two steps. We set it to γ = 2−

p
2 ≈ 0.59 following the

recommendation of Bank et al. [4].
As a guess for the initial step size h0, we chose the uniformization rate of Q. The

kth step size hk > 0, including the 0th one, is selected such that the local error estimate

LTEk+1 =













2
−3γ4 + 4γ− 2

24− 12γ
hk

�

−
1
γ
πk +

1
γ(1− γ)

πk+γ −
1

1− γ
πk+1

�













(5.15)

is bounded by the local error tolerance

LTEk+1 ≤

�

τ−
∑k

i=0 LTEi

t −
∑k

i=0 ki

�

hk+1.

This Local Error per Unit Step (LEPUS) error control “produces excellent results for
many problems”, but is usually costly [69]. Moreover, the accumulated error at the end
of integration may be larger than the prescribed tolerance τ, since eq. (5.15) is only an
approximation of the true error.

An implementation of TR-BDF2 based on the pseudocode of A. L. Reibman and
Trivedi [69] is shown in Algorithm 5.15.

In lines 10 and 13 any linear equation solver from Section 5.1 on page 44 may be
used except power iteration, since the matrices, in general, do not have strictly negative
diagonals. Due to the way the matrices, which are linear combinations of I and Q, are
passed to the inner solvers, our TR-BDF2 integrator is currently limited to Q matrices
which are not in block form.

The vectors π0,πk and πk+γ,dk+1 may share storage, respectively, therefore only 4
state-space sized vectors are required in addition to the initial distribution π0.

The most computationally intensive part is the solution of two linear equation
per every attempted step, which may make TR-BDF2 extremely slow. However, its
performance does not depend on the stiffness of the Markov chain, which may make it
better suited to stiff CTMCs than uniformization [69].

5.3 Mean time to first failure

In MTFF calculation (Section 2.1.3 on page 7), quantities of the forms

MTFF = −πUQ−1
UU

︸ ︷︷ ︸

γ

1T, P(X (TFF+0) = y) = −πUQ−1
UU

︸ ︷︷ ︸

γ

qT
U D′ (2.4, 2.5 revisited)
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Algorithm 5.15 TR-BDF2 for transient analysis.

Input: infinitesimal generator Q ∈ Rn×n, initial distribution π0,
mission time t > 0, tolerance τ > 0
Output: transient distribution π(t)

1 allocate πk,πk+γ,πk+1,dk,dk+1,y ∈ Rn

2 maxIncrease← 10, leastDecrease← 0.9

3 timeLeft← t, h← 1/maxi|q[i, i]|,γ← 2−
p

2, C ←
�

�

�

−3γ4+4γ−2
24−12γ

�

�

�, errorSum← 0

4 πk← π0, dk← πkQ . VectorMatrixMultiplyFromLeft
5 while timeLeft> 0 do
6 stepFailed← false, h←min{h, timeLeft}
7 while true do

TR step

8 y← 2 ·πk . VectorScale
9 y← y+ γh · dk . In-place VectorAdd

10 Solve πk+γ(2I +−γhQ) = y for πk+γ with initial guess πk

BDF2 step

11 y←− (1−γ)
2

γ ·πk . VectorScale
12 y← 1

γ ·πk+γ . In-place VectorScale
13 Solve πk+1((2− γ)I + (γ− 1)hQ) = y for πk+1 with initial guess πk+γ

Error control and step size estimation

14 y←−1
γdk . VectorScale

15 y← y+ 1
γ(1−γ)πk+γQ . VectorMatrixAccumulateMultiplyFromLeft

16 dk+1← πk+1Q . VectorMatrixMultiplyFromLeft
17 y← y+

�

− 1
1−γ

�

dk+1 . In-place VectorAdd
18 LTE← 2Ch‖y‖, localTol← (τ− errorSum)/timeLeft · h
19 if LTE < localTol then // Successful step
20 timeLeft← timeLeft− h, errorSum← errorSum+ LTE

// Do not try to increase h after a failed step
21 if ¬stepFailed then h← h ·min{maxIncrease, 3

p

localTol/LTE}
22 break

23 stepFailed← true, h← h ·min{leastDecrease, 3
p

localTol/LTE}

24 Swap the references to πk,πk+1 and dk,dk+1

25 return πk
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are computed, where U , D, D′ are the set of operations states, failure states and a
specific failure mode D′ ( D, respectively.

The vector γ ∈ R|U | is the solution of the linear equation

γQUU = πU (5.16)

and may be obtained by any linear equation solver.
The sets U , D = D1 ∪ D2 ∪ · · · are constructed by the evaluation of CTL expressions.

If the failure mode Di is described by ϕi, then the sets D and U are described by CTL
formulas ϕD = ¬AX true∨ϕ1 ∨ϕ2 ∨ · · · and ϕU = ¬ϕD, where the deadlock condition
¬AX true is added to make (5.16) irreducible.

After the set U is generated symbolically, the matrix QUU may be decomposed in
the same way as the whole state space S. Thus, the vector-matrix operations required
for solving (5.16) can be executed as in steady-state analysis.
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Chapter 6

Evaluation

6.1 Testing

When developing an algorithm library for formal analysis of safety critical systems it is
vital to verify the correctness of the implementation. Since the complexity of the code
base makes formal verification difficult we confined ourselves to rigorously testing the
functionalities provided by the library.

In this section, we summarize work presented in [49] that was performed to verify
the correctness of our implementation of the data structure, operations framework and
the stochastic analysis algorithms.

6.1.1 Combinatorial testing

As described in Chapter 4 algorithms use the common vector and matrix data structure
to perform various operations. This makes the used storage techniques transparent
which in turn makes the code base more concise, reusable and less prone to errors.

The most important requirement concerning the data structure and operations is
mathematical correctness regardless of the storage technique and manner of execution
(e.g. parallel or sequential) used. Considering the number of implementations for a
given interface and the previous requirement we used a simple unit testing design
pattern (also known as interface testing pattern) as the core building block for the data
structure testing [61].

The basic idea behind this pattern is to write unit tests for interface operations
without any knowledge about the concrete implementation. Hiding implementation
details can be achieved in a number of ways. Some unit testing frameworks, such as
NUnit [65], support the usage of generic test classes and running them for multiple
concrete types.
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Since most of the time multiple instances of different types of interface implemen-
tations are needed in a single unit test we choose a more flexible approach for hiding
implementation details. This approach is based on class inheritance and abstract fac-
tory methods. Whenever an instance if a given interface is needed, the instantiation is
delegated to an abstract factory method in the test class.

Abstract test cases were created to describe desired behaviors of the operations.
Concrete test cases are derived from abstract tests and contain calls to the data structure
factory methods. Thus, the behavior of any operation may be tested for all possible
data structure classes.

Abstract tests

Writing unit tests for valid parameter values is straightforward since it is possible to
cover multiple valid parameter ranges with a single unit test. However testing for
invalid parameter values requires some care. There must only one invalid parameter per
unit test lest one error can obscure the others. This significantly increases the number
of unit tests. Therefore we aimed to gather every possible invalid parameter range
automatically.

We used Microsoft IntelliTest1 [57], which assists in automating white-box and
unit testing. IntelliTest automatically generates unit tests using constraint satisfaction
problem solving based on the source code of the method under test. Using IntelliTest
on our interface code contract classes provided many invalid parameter values which
were used in abstract unit tests.

Concrete tests

Derived classes of abstract tests are created for every possible combinations of data
structure classes by implementing the abstract factory method. Since the number
of possible combinations is too large to implement manually derived classes were
generated with a Microsoft Text Template Transformation Toolkit (T4) [58] template.

Pairwise testing was used to decrease the number of generated tests compared to full
combinatorial testing of implementation combinations. To generate the combinations
for pairwise testing we used the ACTS tool [12].

As a result of this testing process more than 78 000 unit tests were generated using
full combinatorial testing (more than 18 000 with pairwise testing) which together with
the behavior configuration files serve as a quasi-formal specification for the expected
behavior of future and modified implementations (e.g. performance optimization).

Breaking changes in implementation should either be rejected or the test suite
and configuration files should be revised as specification change. Every unit test was
executed successfully for both sequential and parallel operation implementations.

1formerly known as Pex [85]
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Concrete tests were executed with both configurations provided by the operation
framework as defaults, i.e. parallel and sequential, to ensure that computations are
logically equivalent.

6.1.2 Software redundancy based testing

In addition to testing the data structure and operation implementations, it is vital to
test the correctness of higher level algorithms used in the analysis workflow, e.g. the
linear equation solver and transient analysis algorithms.

Testing every implemented algorithm with unit tests would be tremendous work
that cannot be easily automated or maintained. Moreover, every algorithm is used
as part of a bigger workflow which raises the question of compatibility of algorithms
during an analysis.

As described in Section 3.2 for almost every step of the workflow numerous algo-
rithms are available.

Observation 6.1 The result of a performance analysis (e.g. reward calculation)
is mathematically independent of the used analysis workflow. It only depends on
the possible behaviors of the system and the definition of the required performance
measure. Two results calculated by two different analysis methods can only differ
from each other due to the numerical properties of the algorithms.

Combining our fully configurable workflow with Observation 6.1 presents a new
approach for testing the algorithm implementations in a maintainable and almost
automatic manner. We can take advantage of the concept of software redundancy
commonly used in safety critical applications.

The main idea behind software redundancy is to perform a calculation multiple
times with usually fundamentally different algorithms – often developed by independent
teams – thus minimizing the possibility of common mode failures. After the calculations
a voting component examines whether every algorithm calculated the same result. If
that’s not the case then one or more of the algorithms are incorrect.

In this testing phase our analysis workflow is ran with a given configuration and
the calculated reward and sensitivity values are saved. 588 mathematically consistent
configurations were generated and executed on multiple benchmark models and case
studies. The maximum absolute difference of the calculated results was examined as
an error indicator.

6.2 Measurements

In this section we introduce the models used throughout the testing and benchmarking
phase and present results about the performance of solver algorithms using the sparse
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Figure 6.1 Stochastic Petri net for the SharedResource model.

matrix and block Kronecker decomposition matrix forms.
Every model used for testing and measurement is publicly available at https:

//github.com/kris7t/stochastic-analysis in a variety of stochastic modeling for-
mats.

6.2.1 Models

Shared resource

Benchmark models were generated based on the Stochastic Petri Net (SPN) Shared-
Resource model shown in Figure 6.1.

The model contains a number of clients competing for a central resource (pS). Each
client may run a number of processes, which are represented by token on pCi

.
The model can be scaled by increasing the number of available shared resources,

the number of clients and the number of processes per client. In Section 6.2.2, 5 clients
were used and the number of processes and shared resources were set to equal values.
In Section 6.3, all parameters were swept independently.

Symmetric (Sym), slightly asymmetric (Asym) and significantly asymmetric (Degen)
versions of the model were created by assigning transition rates. In the first case, all
transition rates are equal to 1, while in the third case there are orders of magnitude of
difference between the transitions rates.

KanBan

The SPN model of KanBan (KB) manufacturing process [23] was used as another
benchmark model. The model was scaled by modifying the available resources at each
stage of the model resulting in an increase in the size of the state space.

https://github.com/kris7t/stochastic-analysis
https://github.com/kris7t/stochastic-analysis
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Table 6.1 Operation configurations and algorithms used in the benchmarks.

Analysis task Operation config. Solver Inner solver

Steady-state Parallel Gauss–Seidel −
BiCGSTAB −

Sequential Group Gauss–Seidel BiCGSTAB

Group Gauss–Seidel Jacobi

Transient Parallel Uniformization −

Cloud performability

The represents a Cloud architecture [37] with physical and virtual machines serving
incoming jobs using warm and cold spare resources in case of increasing load. Some
aspects of the model in [37] were modified because our library currently does not
support the Generalized Stochastic Petri Net (GPSN) formalism.

6.2.2 Results

Benchmarks on large models were performed with the analysis configurations shown
in Table 6.1. Each analysis configuration was run with both sparse and block Kro-
necker generator matrices. 19 models were created by scaling the models described in
Section 6.2.1.

Execution time was limited to 1 hour and the maximum memory allocation was
limited to 32 GiB. As runs for scaled versions of models were omitted if the analysis was
terminated due to limit crossing for a smaller model, only 152 runs were performed in
total. 81 runs exited after successful calculation of a result. Selected results are shown
in Table 6.2.

Figures 6.2 and 6.3 illustrate the state space size dependence of the behavior of the
BiCGSTAB linear equation solver. Figures 6.4 and 6.5 illustrate the state space size
dependence of the uniformization transient analysis algorithm.

As expected the storage requirements of block Kronecker generator matrices are
almost an order of magnitude smaller than those of sparse matrices.

For models with less than a few millions states the sparse form of the generator
matrix outperforms the block Kronecker form. However, for models with considerably
bigger state space sizes the block Kronecker form reduces both the execution time
and memory requirements of the analysis compared to the sparse form, which is also
apparent in Figures 6.2 to 6.5. A possible reason for this phenomenon is inefficient
CPU memory cache usage of the sparse storage.



76 EVALUATION

10

100

1000

105 106 107 108

State space size

E
xe

cu
tio

n 
tim

e 
(s

)

Matrix representation Kronecker Sparse

Figure 6.2 Execution times of steady-state analysis with the BiCGSTAB solver.
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Figure 6.3 Memory consumption of steady-state analysis with the BiCGSTAB solver.
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Figure 6.4 Execution times of transient analysis with uniformization.
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Figure 6.5 Memory consumption of transient analysis with uniformization.
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Table 6.2 Selected benchmark results (adapted from [49]).

Model States Generator Algorithm Memory Time

SR-Sym-7 10 775710 Sparse Uniformization 3 120 MiB 279 s
BiCGSTAB 3 450 MiB 236 s

BK Uniformization 650 MiB 222 s
BiCGSTAB 815 MiB 162 s

SR-Asym-7 10 775710 Sparse Uniformization 3116 MiB 316 s
BiCGSTAB 3450 MiB 236 s

BK BiCGSTAB 812 MiB 373 s
SR-Degen-7 10 775710 Sparse BiCGSTAB Breakdown

BK Group GS / Jacobi No convergence
SR-Sym-9 81 466099 Sparse BiCGSTAB 25 564 MiB 2542 s
SR-Asym-9 81 466099 Sparse BiCGSTAB Oscillation

BK Group GS / Jacobi 2388 MiB 9402 s
Cloud-3-2 20 047500 Sparse BiCGSTAB Out of memory

BK BiCGSTAB Breakdown
Group GS / Jacobi 684 MiB 3379 s

KanBan-5 2546 432 Sparse Uniformization 833 MiB 54 s
BiCGSTAB 911 MiB 92 s

BK Uniformization 360 MiB 70 s
BiCGSTAB 392 MiB 124 s

KanBan-7 41 644800 Sparse Uniformization 12 471 MiB 909 s
BK Uniformization 6253 MiB 1135 s

We can conclude that while block Kronecker generator matrices stored as expression
trees are significantly more complicated than sparse storage, the configurable operations
framework managed to perform the matrix multiplications efficiently for both small
and large model state spaces.

For models with similar transition rates the BiCGSTAB algorithm was found the most
effective steady-state solution method for both sparse and block Kronecker matrices.

Slower, but more memory efficient algorithms, such as Gauss-Seidel iteration and
Jacobi iteration, often diverged with the sparse matrix form while converged using the
block Kronecker form. This is due to different state orderings in the different matrix
representations.

For irregular models with transition rates of orders of magnitude difference it is
possible that BiCGSTAB will not converge while other algorithms yield a solution,
albeit only after many iterations.

In transient analysis, orders of magnitude differences in transition rates lead to



6.3. The convergence of IDRSTAB 79

highly stiff models. High stiffness increases the number of iterations performed by
uniformization significantly. In Figure 6.4, the stiff SR-Degen-3 model appears as an
outlier with nearly 500 s execution time despite having only 26464 states. Transient
analysis of larger versions of the SR-Degen did not finish withing the time limit.

6.3 The convergence of IDRSTAB

To study the convergence properties of IDR(s)STAB(`), we created several scaled
versions of the SharedResource-Symmodel by varying the the number of available shared
resources, the number of clients and the number processes per client between 1 and 5.
This allowed observing the behavior of the solver with a variety of matrix sizes. In all
problems sparse matrix storage was selected due to the relatively small size of the state
space.

IDR(s)STAB(`) was executed on the steady-state linear equations arising from
the generated stochastic models with parameter settings s = 1, 2,4, 8 and `= 1,2, 4,8.
Note that the case s = ` = 1 is mathematically equivalent to BiCGSTAB, albeit with
worse numerical properties in finite-precision arithmetic.

Due to the random initialization of the shadow Krylov subspace (see Algorithm 5.10
on page 57) each experiment was repeated with five different random seeds. Therefore
10 000 runs were performed in total.

The histogram of the observed behaviors of IDR(s)STAB(`) is shown in Figure 6.6.
Each histogram shows the observations for a particular (s,`) parameter setting. As the
cases s = 4 and `= 4 show performance very similar to s = 8 and `= 8, therefore they
were omitted in the interest of reducing clutter.

• “Success” refers termination of the algorithm with a solution within 200 iterations.

• “Breakdown” refers to calculations that resulted in a singular σ matrix and
therefore terminated.

• “Divergence” yielded residual norms increasing to the limit of double-precision
floating point.

• “No result” cases failed to produce a solution in 200 iterations, but did not
otherwise fail.

In addition, the first 50 iterations of trajectories from 5625 short experiments are
summarized in Figure 6.7. The trajectories are grouped by (s,`) parameters and state
space size.

It is apparent that only s = 1 cases managed to decrease residual norm and only
`= 1 lead to reliable decrease of residual norm over iterations for larger state spaces.
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For the other parameter settings, successful exit from the iteration happened only
due to our modifications to IDR(s)STAB(`) introduced in Algorithms 5.10 to 5.12
on pages 57–59. However, stability of convergence is still lacking, as our proposed
modifications are unable to handle singular or nearly singular σ matrices that arise
when IDR(s)STAB(`) is applied to steady-state analysis of CTMC models.

Settings with ` > s tend to result in rapid divergence of the residual to infinity, while
`≤ s often breaks down or oscillates.

Surprisingly, breakdowns occur even if s = ` = 1, i.e. if BiCGSTAB mode is used.
Before breakdown, the residual norm is approximately 6 ·10−7. This number is probably
the limit to the accuracy of the IDR(s)STAB(`) formulation of BiCGSTAB, as the
original BiCGSTAB algorithm utilizes a more stable residual update strategy.
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Chapter 7

Conclusion and future work

We have developed and presented our numeric backend to the configurable stochastic
analysis framework for the dependability, reliability and performability analysis of
complex asynchronous systems. Our presented approach is able to combine the strength
and advantages of the different algorithms and data structures into one framework.
Various optimization techniques were used during the development and many of the
algorithms are parallelized to exploit the advantages of modern mulitcore processor
architectures.

From the theoretical side, we have obtain preliminary results in the adaptation of
the state-of-the-art IDR(s)STAB(`) algorithm to steady-state stochastic analysis tasks
for integration into the framework.

In addition we have investigated the composability of the various data storage,
numerical solution and infinitesimal generator matrix representation techniques and
combined them together to provide configurable stochastic analysis in our framework.

Extensive investigation was executed in the field to be able to develop 3 generator
matrix decomposition and representation techniques, 7 steady-state solvers, 2 transient
analysis algorithms for the computation of engineering measures.

Our long term goal is to provide these analysis techniques also for a wider community,
we have integrated our library into the PetriDotNet framework. Our algorithms are
used also in the education for illustration purposes of the various stochastic analysis
techniques. In addition, our tool was also used in an industrial project: one of our
case-studies is based on that project. More than 70000 generated test cases serve to
ensure correctness as much as possible. In addition, software redundancy based testing
was applied to further improve the quality of our library.

Despite our attempts to be as comprehensive as possible, many promising directions
for future research and development are

• more extensive benchmarking of algorithms to extend the knowledge base about
the effectiveness and behavior of stochastic analysis approaches toward and
adaptive framework for stochastic analysis;

• completion of the work started on IDR(s)STAB(`) by improving the stabilization
part [77, 80] of the algorithm to attain convergence on a wide range of stochastic
models and parameter settings;
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• the implementation and development of further numerical algorithms, includ-
ing those that can take advantage of the various decompositions of stochastic
models [16, 17, 30];

• reduction of the size of Markov chains through the exploitation of model symme-
tries [14, 43];

• the development of preconditioners for the available iterative numerical solution
methods [51];

• distributed implementations of the existing algorithms [21];

• support for fully symbolic storage and solution of Markov chains [26, 63, 87];

• the use of tensor decompositions instead of vectors to store state distributions
and intermediate results to greatly reduce memory requirements of solution
algorithms [3, 31, 38].

Acknowledgment We would like to thank Prof. Peter Buchholz for his helpful com-
ments on Krylov subspace solution algorithms.

We would like to thank IncQueryLabs Ltd. for their support during the summer
internship.



85

References

[1] Kensuke Aihara, Kuniyoshi Abe, and Emiko Ishiwata. “A variant of IDRstab
with reliable update strategies for solving sparse linear systems”. In: Journal of
Computational and Applied Mathematics 259 (2014), pp. 244–258.

[2] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. “Approximative sym-
bolic model checking of continuous-time Markov chains”. In: CONCUR’99 Con-
currency Theory. Springer, 1999, pp. 146–161.

[3] Jonas Ballani and Lars Grasedyck. “A projection method to solve linear systems
in tensor format”. In: Numerical Linear Algebra with Applications 20.1 (2013),
pp. 27–43.

[4] Randolph E. Bank, William M. Coughran Jr., Wolfgang Fichtner, Eric Grosse,
Donald J. Rose, and R. Kent Smith. “Transient Simulation of Silicon Devices and
Circuits”. In: IEEE Trans. on CAD of Integrated Circuits and Systems 4.4 (1985),
pp. 436–451. doi: 10.1109/TCAD.1985.1270142.

[5] Richard Barrett, Michael W Berry, Tony F Chan, James Demmel, June Donato,
Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van
der Vorst. Templates for the solution of linear systems: building blocks for iterative
methods. Vol. 43. Siam, 1994.

[6] Falko Bause, Peter Buchholz, and Peter Kemper. “A Toolbox for Functional and
Quantitative Analysis of DEDS”. In: Computer Performance Evaluation: Modelling
Techniques and Tools, 10th International Conference, Tools ’98, Palma de Mallorca,
Spain, September 14-18, 1998, Proceedings. Vol. 1469. Lecture Notes in Computer
Science. Springer, 1998, pp. 356–359. doi: 10.1007/3-540-68061-6_32.

[7] Anne Benoit, Brigitte Plateau, and William J Stewart. “Memory efficient iterative
methods for stochastic automata networks”. In: (2001).

[8] Anne Benoit, Brigitte Plateau, and William J. Stewart. “Memory-efficient Kro-
necker algorithms with applications to the modelling of parallel systems”. In:
Future Generation Comp. Syst. 22.7 (2006), pp. 838–847. doi: 10.1016/j.
future.2006.02.006.

http://dx.doi.org/10.1109/TCAD.1985.1270142
http://dx.doi.org/10.1007/3-540-68061-6_32
http://dx.doi.org/10.1016/j.future.2006.02.006
http://dx.doi.org/10.1016/j.future.2006.02.006


86 REFERENCES

[9] Andrea Bianco and Luca De Alfaro. “Model checking of probabilistic and non-
deterministic systems”. In: Foundations of Software Technology and Theoretical
Computer Science. Springer. 1995, pp. 499–513.

[10] James T. Blake, Andrew L. Reibman, and Kishor S. Trivedi. “Sensitivity Analy-
sis of Reliability and Performability Measures for Multiprocessor Systems”. In:
SIGMETRICS. 1988, pp. 177–186. doi: 10.1145/55595.55616.

[11] BlueBit Software. .NET Matrix Library 6.1. Accessed October 26, 2015. url:
http://www.bluebit.gr/NET/.

[12] Mehra N Borazjany, Linbin Yu, Yu Lei, Raghu Kacker, and Rick Kuhn. “Combinato-
rial testing of ACTS: A case study”. In: Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on. IEEE. 2012, pp. 591–600.

[13] Peter Buchholz. “A class of hierarchical queueing networks and their analysis”.
In: Queueing Syst. 15.1-4 (1994), pp. 59–80. doi: 10.1007/BF01189232.

[14] Peter Buchholz. “Exact and ordinary lumpability in finite Markov chains”. In:
Journal of applied probability (1994), pp. 59–75.

[15] Peter Buchholz. “Hierarchical Structuring of Superposed GSPNs”. In: IEEE Trans.
Software Eng. 25.2 (1999), pp. 166–181. doi: 10.1109/32.761443.

[16] Peter Buchholz. “Multilevel solutions for structured Markov chains”. In: SIAM
Journal on Matrix Analysis and Applications 22.2 (2000), pp. 342–357.

[17] Peter Buchholz. “Structured analysis approaches for large Markov chains”. In:
Applied Numerical Mathematics 31.4 (1999), pp. 375–404.

[18] Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kemper. “Com-
plexity of Memory-Efficient Kronecker Operations with Applications to the So-
lution of Markov Models”. In: INFORMS Journal on Computing 12.3 (2000),
pp. 203–222. doi: 10.1287/ijoc.12.3.203.12634.

[19] Peter Buchholz and Peter Kemper. “On generating a hierarchy for GSPN analysis”.
In: SIGMETRICS Performance Evaluation Review 26.2 (1998), pp. 5–14. doi:
10.1145/288197.288202.

[20] Maciej Burak. “Multi-step Uniformization with Steady-State Detection in Non-
stationary M/M/s Queuing Systems”. In: CoRR abs/1410.0804 (2014). url:
http://arxiv.org/abs/1410.0804.

[21] Jaroslaw Bylina and Beata Bylina. “Merging Jacobi and Gauss-Seidel methods for
solving Markov chains on computer clusters”. In: Proceedings of the International
Multiconference on Computer Science and Information Technology, IMCSIT 2008,
Wisla, Poland, 20-22 October 2008. IEEE, 2008, pp. 263–268. doi: 10.1109/
IMCSIT.2008.4747250.

http://dx.doi.org/10.1145/55595.55616
http://www.bluebit.gr/NET/
http://dx.doi.org/10.1007/BF01189232
http://dx.doi.org/10.1109/32.761443
http://dx.doi.org/10.1287/ijoc.12.3.203.12634
http://dx.doi.org/10.1145/288197.288202
http://arxiv.org/abs/1410.0804
http://dx.doi.org/10.1109/IMCSIT.2008.4747250
http://dx.doi.org/10.1109/IMCSIT.2008.4747250


REFERENCES 87

[22] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann, and Rohit
Singh. “Measuring and Synthesizing Systems in Probabilistic Environments”. In:
J. ACM 62.1 (2015), 9:1–9:34. doi: 10.1145/2699430.

[23] Gianfranco Ciardo, Robert L Jones, Andrew S Miner, and Radu Siminiceanu.
“Logical and stochastic modeling with SMART”. In: Computer Performance Evalu-
ation. Modelling Techniques and Tools. Springer, 2003, pp. 78–97.

[24] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: an effi-
cient iteration strategy for symbolic state—space generation. Springer, 2001.

[25] Gianfranco Ciardo, Robert Marmorstein, and Radu Siminiceanu. “The saturation
algorithm for symbolic state-space exploration”. In: Int. J. Softw. Tools Technol.
Transf. 8.1 (2006), pp. 4–25. doi: http://dx.doi.org/10.1007/s10009-
005-0188-7.

[26] Gianfranco Ciardo and Andrew S. Miner. “Implicit data structures for logic and
stochastic systems analysis”. In: SIGMETRICS Performance Evaluation Review 32.4
(2005), pp. 4–9. doi: 10.1145/1059816.1059818.

[27] PJ Courtois and P Semal. “Block iterative algorithms for stochastic matrices”. In:
Linear algebra and its applications 76 (1986), pp. 59–70.

[28] Ricardo M. Czekster, César A. F. De Rose, Paulo Henrique Lemelle Fernandes,
Antonio M. de Lima, and Thais Webber. “Kronecker descriptor partitioning for
parallel algorithms”. In: Proceedings of the 2010 Spring SimulationMulticonference,
SpringSim 2010, Orlando, Florida, USA, April 11-15, 2010. SCS/ACM, 2010,
p. 242. isbn: 978-1-4503-0069-8. url: http://dl.acm.org/citation.cfm?
id=1878537.1878789.

[29] Dániel Darvas. Szaturáció alapú automatikus modellellenőrző fejlesztése aszinkron
rendszerekhez [in Hungarian]. 1st prize. 2010. url: http://petridotnet.inf.
mit.bme.hu/publications/OTDK2011_Darvas.pdf.

[30] Tugrul Dayar. Analyzing Markov chains using Kronecker products: theory and
applications. Springer Science & Business Media, 2012.

[31] Sergey V Dolgov. “TT-GMRES: solution to a linear system in the structured tensor
format”. In: Russian Journal of Numerical Analysis and Mathematical Modelling
28.2 (2013), pp. 149–172.

[32] Extreme Optimization. Numerical Libraries for .NET. Accessed October 26, 2015.
url: http://www.extremeoptimization.com/VectorMatrixFeatures.aspx.

[33] Fault Tolerant Systems Research Group, Budapest University of Technology
and Economics. The PetriDotNet webpage. Accessed October 23, 2015. url:
https://inf.mit.bme.hu/en/research/tools/petridotnet.

http://dx.doi.org/10.1145/2699430
http://dx.doi.org/http://dx.doi.org/10.1007/s10009-005-0188-7
http://dx.doi.org/http://dx.doi.org/10.1007/s10009-005-0188-7
http://dx.doi.org/10.1145/1059816.1059818
http://dl.acm.org/citation.cfm?id=1878537.1878789
http://dl.acm.org/citation.cfm?id=1878537.1878789
http://petridotnet.inf.mit.bme.hu/publications/OTDK2011_Darvas.pdf
http://petridotnet.inf.mit.bme.hu/publications/OTDK2011_Darvas.pdf
http://www.extremeoptimization.com/VectorMatrixFeatures.aspx
https://inf.mit.bme.hu/en/research/tools/petridotnet


88 REFERENCES

[34] Paulo Fernandes, Ricardo Presotto, Afonso Sales, and Thais Webber. “An Alter-
native Algorithm to Multiply a Vector by a Kronecker Represented Descriptor”.
In: 21st UK Performance Engineering Workshop. 2005, pp. 57–67.

[35] Bennett L. Fox and Peter W. Glynn. “Computing Poisson Probabilities”. In: Com-
mun. ACM 31.4 (1988), pp. 440–445. doi: 10.1145/42404.42409.

[36] Robert E Funderlic and Carl Dean Meyer. “Sensitivity of the stationary distribu-
tion vector for an ergodic Markov chain”. In: Linear Algebra and its Applications
76 (1986), pp. 1–17.

[37] Rahul Ghosh. “Scalable stochastic models for cloud services”. PhD thesis. Duke
University, 2012.

[38] Lars Grasedyck, Daniel Kressner, and Christine Tobler. “A literature survey of
low-rank tensor approximation techniques”. In: arXiv preprint arXiv:1302.7121
(2013).

[39] Winfried K. Grassmann. “Transient solutions in markovian queueing systems”. In:
Computers & OR 4.1 (1977), pp. 47–53. doi: 10.1016/0305-0548(77)90007-7.

[40] A. Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600
Market Street, Floor 6, Philadelphia, PA 19104), 1997. isbn: 9781611970937.
url: https://books.google.hu/books?id=IX9rrFe1YLQC.

[41] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. Accessed October 26, 2015.
2010. url: http://eigen.tuxfamily.org.

[42] Oleg Gusak, Tuğrul Dayar, and Jean-Michel Fourneau. “Lumpable continuous-
time stochastic automata networks”. In: European Journal of Operational Research
148.2 (2003), pp. 436–451.

[43] Serge Haddad and Patrice Moreaux. “Evaluation of high level Petri nets by means
of aggregation and decomposition”. In: Petri Nets and Performance Models, 1995.,
Proceedings of the Sixth International Workshop on. IEEE. 1995, pp. 11–20.

[44] Hans Hansson and Bengt Jonsson. “A Logic for Reasoning about Time and
Reliability”. In: Formal Asp. Comput. 6.5 (1994), pp. 512–535. doi: 10.1007/
BF01211866.

[45] Boudewijn R Haverkort. “Matrix-geometric solution of infinite stochastic Petri
nets”. In: Computer Performance and Dependability Symposium, 1995. Proceed-
ings., International. IEEE. 1995, pp. 72–81.

[46] Ilse CF Ipsen and Carl D Meyer. “Uniform stability of Markov chains”. In: SIAM
Journal on Matrix Analysis and Applications 15.4 (1994), pp. 1061–1074.

[47] David N Jansen. “Understanding Fox and Glynn’s “Computing Poisson probabili-
ties”. In: (2011).

http://dx.doi.org/10.1145/42404.42409
http://dx.doi.org/10.1016/0305-0548(77)90007-7
https://books.google.hu/books?id=IX9rrFe1YLQC
http://eigen.tuxfamily.org
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1007/BF01211866


REFERENCES 89

[48] Peter Kemper. “Numerical Analysis of Superposed GSPNs”. In: IEEE Trans. Soft-
ware Eng. 22.9 (1996), pp. 615–628. doi: 10.1109/32.541433.

[49] Attila Klenik and Kristóf Marussy. Configurable Stochastic Analysis Framework
for Asynchronous Systems. 1st prize. 2015. url: https://tdk.bme.hu/VIK/
DownloadPaper/Aszinkron-rendszerek-konfigurarhato.

[50] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R.
Bishop. “A unified sparse matrix data format for modern processors with wide
SIMD units”. In: CoRR abs/1307.6209 (2013). url: http://arxiv.org/abs/
1307.6209.

[51] Amy Nicole Langville and William J. Stewart. “Testing the Nearest Kronecker
Product Preconditioner on Markov Chains and Stochastic Automata Networks”.
In: INFORMS Journal on Computing 16.3 (2004), pp. 300–315. doi: 10.1287/
ijoc.1030.0041.

[52] Marco Ajmone Marsan. “Stochastic Petri nets: an elementary introduction”. In:
Advances in Petri Nets 1989, covers the 9th European Workshop on Applications and
Theory in Petri Nets, held in Venice, Italy in June 1988, selected papers. Vol. 424.
Lecture Notes in Computer Science. Springer, 1988, pp. 1–29. doi: 10.1007/3-
540-52494-0_23.

[53] Math.NET.Math.NET Numerics webpage. Accessed October 26, 2015. url: http:
//numerics.mathdotnet.com/.

[54] Carl D Meyer. “Stochastic complementation, uncoupling Markov chains, and the
theory of nearly reducible systems”. In: SIAM review 31.2 (1989), pp. 240–272.

[55] John F. Meyer, Ali Movaghar, and William H. Sanders. “Stochastic Activity
Networks: Structure, Behavior, and Application”. In: International Workshop on
Timed Petri Nets, Torino, Italy, July 1-3, 1985. IEEE Computer Society, 1985,
pp. 106–115. isbn: 0-8186-0674-6.

[56] Microsoft Research. TheMicrosoft CodeContract webpage. Accessed October 26, 2015.
url: http://research.microsoft.com/en-us/projects/contracts/.

[57] Microsoft Research. The Microsoft IntelliTest webpage. Accessed October 26, 2015.
url: http://research.microsoft.com/en-us/projects/pex/.

[58] Microsoft Research. The Text Template Transformation Toolkit webpage. Accessed
October 26, 2015. url: https://msdn.microsoft.com/en-us/library/
bb126445(v=vs.120).aspx.

[59] Aad PA van Moorsel and William H Sanders. “Adaptive uniformization”. In:
Stochastic Models 10.3 (1994), pp. 619–647.

[60] Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580.

http://dx.doi.org/10.1109/32.541433
https://tdk.bme.hu/VIK/DownloadPaper/Aszinkron-rendszerek-konfigurarhato
https://tdk.bme.hu/VIK/DownloadPaper/Aszinkron-rendszerek-konfigurarhato
http://arxiv.org/abs/1307.6209
http://arxiv.org/abs/1307.6209
http://dx.doi.org/10.1287/ijoc.1030.0041
http://dx.doi.org/10.1287/ijoc.1030.0041
http://dx.doi.org/10.1007/3-540-52494-0_23
http://dx.doi.org/10.1007/3-540-52494-0_23
http://numerics.mathdotnet.com/
http://numerics.mathdotnet.com/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/pex/
https://msdn.microsoft.com/en-us/library/bb126445(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/bb126445(v=vs.120).aspx


90 REFERENCES

[61] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

[62] M. Neuts. “Probability distributions of phase type”. In: Liber Amicorum Prof.
Emeritus H. Florin. University of Louvain, 1975, pp. 173–206.

[63] Ninth International Conference on Quantitative Evaluation of Systems, QEST
2012, London, United Kingdom, September 17-20, 2012. IEEE Computer So-
ciety, 2012. isbn: 978-1-4673-2346-8. url: http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=6354262.

[64] RJ Plemmons and A Berman. Nonnegative matrices in the mathematical sciences.
Academic Press, New York, 1979.

[65] Poole, Prouse, Busoli, Colvin, Popov. The NUnit webpage. Accessed October 26, 2015.
url: http://www.nunit.org/.

[66] William H Press. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

[67] S. Rácz, Á. Tari, and M. Telek. “MRMSolve: Distribution estimation of Large
Markov reward models”. In: Tools 2002. Springer, LNCS 2324, 2002, pp. 72–81.

[68] A. V. Ramesh and Kishor S. Trivedi. “On the Sensitivity of Transient Solutions of
Markov Models”. In: SIGMETRICS. 1993, pp. 122–134. doi: 10.1145/166955.
166998.

[69] Andrew L. Reibman and Kishor S. Trivedi. “Numerical transient analysis of markov
models”. In: Computers & OR 15.1 (1988), pp. 19–36. doi: 10.1016/0305-
0548(88)90026-3.

[70] Andrew Reibman, Roger Smith, and Kishor Trivedi. “Markov and Markov reward
model transient analysis: An overview of numerical approaches”. In: European
Journal of Operational Research 40.2 (1989), pp. 257–267.

[71] Olaf Rendel and MZ Jens-Peter. “Tuning IDR to fit your applications”. In: Pro-
ceedings of a Workshop at Doshisha University. 2011.

[72] Youcef Saad and Martin H Schultz. “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems”. In: SIAM Journal on scientific
and statistical computing 7.3 (1986), pp. 856–869.

[73] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.

[74] Conrad Sanderson. “Armadillo: An open source C++ linear algebra library for
fast prototyping and computationally intensive experiments”. In: (2010).

[75] Valeria Simoncini and Daniel B Szyld. “Interpreting IDR as a Petrov–Galerkin
method”. In: SIAM Journal on Scientific Computing 32.4 (2010), pp. 1898–1912.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6354262
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6354262
http://www.nunit.org/
http://dx.doi.org/10.1145/166955.166998
http://dx.doi.org/10.1145/166955.166998
http://dx.doi.org/10.1016/0305-0548(88)90026-3
http://dx.doi.org/10.1016/0305-0548(88)90026-3


REFERENCES 91

[76] Gerard LG Sleijpen and Diederik R Fokkema. “BiCGstab (l) for linear equa-
tions involving unsymmetric matrices with complex spectrum”. In: Electronic
Transactions on Numerical Analysis 1.11 (1993), p. 2000.

[77] Gerard LG Sleijpen and Henk A Van der Vorst. “Maintaining convergence proper-
ties of BiCGstab methods in finite precision arithmetic”. In: Numerical Algorithms
10.2 (1995), pp. 203–223.

[78] Gerard LG Sleijpen and Martin B Van Gijzen. “Exploiting BiCGstab (`) strategies
to induce dimension reduction”. In: SIAM journal on scientific computing 32.5
(2010), pp. 2687–2709.

[79] Peter Sonneveld. “CGS, a fast Lanczos-type solver for nonsymmetric linear sys-
tems”. In: SIAM journal on scientific and statistical computing 10.1 (1989), pp. 36–
52.

[80] Peter Sonneveld. On the convergence behaviour of IDR (s). Tech. rep. Delft Univer-
sity of Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Delft Institute of Applied Mathematics, 2010.

[81] Peter Sonneveld and Martin B van Gijzen. “IDR (s): A family of simple and fast
algorithms for solving large nonsymmetric systems of linear equations”. In: SIAM
Journal on Scientific Computing 31.2 (2008), pp. 1035–1062.

[82] William J Stewart. Probability, Markov chains, queues, and simulation: the math-
ematical basis of performance modeling. Princeton University Press, 2009.

[83] Williams J Stewart. Introduction to the numerical solutions of Markov chains.
Princeton Univ. Press, 1994.

[84] Masaaki Tanio and Masaaki Sugihara. “GBi-CGSTAB (s, L): IDR (s) with higher-
order stabilization polynomials”. In: Journal of computational and applied mathe-
matics 235.3 (2010), pp. 765–784.

[85] Nikolai Tillmann and Jonathan De Halleux. “Pex–white box test generation for.
net”. In: Tests and Proofs. Springer, 2008, pp. 134–153.

[86] Henk A Van der Vorst. “Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems”. In: SIAM Journal on
scientific and Statistical Computing 13.2 (1992), pp. 631–644.

[87] Yang Zhao and Gianfranco Ciardo. “A Two-Phase Gauss-Seidel Algorithm for
the Stationary Solution of EVMDD-Encoded CTMCs”. In: Ninth International
Conference on Quantitative Evaluation of Systems, QEST 2012, London, United
Kingdom, September 17-20, 2012. IEEE Computer Society, 2012, pp. 74–83. doi:
10.1109/QEST.2012.34.

http://dx.doi.org/10.1109/QEST.2012.34

	Contents
	Kivonat
	Abstract
	Hallgatói nyilatkozat
	Introduction
	Background
	Continuous-time Markov chains
	Markov reward models
	Sensitivity
	Time to first failure

	Kronecker algebra
	Continuous-time stochastic automata networks
	Stochastic automata networks as Markov chains
	Kronecker generator matrices
	Block Kronecker matrix composition


	Overview
	General stochastic analysis workflow
	Challenges

	Our workflow in PetriDotNet
	Architecture
	Current status
	Data structures
	Numerical algorithms


	Configurable data structure and operations
	Data structure
	Partials, splitting and composition
	Vectors
	Matrices
	Expression trees

	Operations
	Operation declarations
	Binding of operations to the data structure
	Efficient vector-matrix products


	Algorithms for stochastic analysis
	Linear equation solvers
	Explicit solution by LU decomposition
	Iterative methods
	Group iterative methods
	Krylov subspace methods

	Transient analysis
	Uniformization
	TR-BDF2

	Mean time to first failure

	Evaluation
	Testing
	Combinatorial testing
	Software redundancy based testing

	Measurements
	Models
	Results

	The convergence of IDRSTAB

	Conclusion and future work
	References

