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Kivonat

A modellellenőrzés egy formális verifikációs technika, melynek feladata a rendszerrel szem-
ben támasztott követelmények matematikailag precíz ellenőrzése a rendszer viselkedésmo-
delljén. A modellellenőrzés előnye, hogy a követelmények megsértése esetén képes végre-
hajtási szekvenciával (ellenpéldával) demonstrálni a rendszer helytelen működését. Álla-
potelérhetőség vizsgálatakor kiemelten fontos az elérhető állapotokba vezető szekvenciák
generálása, mivel sok alkalmazási területen (például modellalapú tesztelés) a fő kimenet
maga az ellenpélda.

Az első modellellenőrzők a problémát a rendszer lehetséges állapotainak szisztema-
tikus és gyakran kimerítő átvizsgálásával, vagyis az állapottér gráfjának előállításával ol-
dották meg. Ezeket az algoritmusokat explicit modellellenőrzőknek nevezzük, mivel az
állapotokat és állapotátmeneteket explicit módon tartják nyilván. Ez a megoldás azonban
nagyon hamar korlátokba ütközik, mivel az állapottér már viszonylag kis modellek esetén is
kezelhetetlenül nagyméretű lehet: ezt a jelenséget a szakirodalom állapottér-robbanásnak
nevezi.

Konkurens rendszerekben az állapottér-robbanásnak gyakori oka az egymástól függet-
len aszinkron műveletek teljes sorrendezése, amely rengeteg, a követelmény szempontjából
érdektelen köztes állapothoz vezet. A részleges rendezéses redukció az ekvivalens sorren-
dezéseket egyetlen reprezentatív szekvenciával helyettesítve csökkenti a bejárt állapotok
számát. A módszer az explicit modellellenőrzésre épít, így az ott használt technikák több-
nyire alkalmazhatóak maradnak.

Az állapottér-robbanás kezelésének egy másik módja az irányított modellellenőrzés.
Ez a módszer csak akkor hatékony, ha előre tudjuk, hogy a keresett állapot elérhető (ez
többféleképp biztosítható, például egy szimbolikus ellenőrzéssel). A módszer kihasználja,
hogy ha a célállapot elérhető akkor elegendő egy oda vezető utat felfedezni a teljes ál-
lapotér helyett, ezáltal csökkentve a memóriahasználatot. Ezt úgy valósítjuk meg, hogy
hagyományos keresési algoritmusok helyett vezérelt keresést alkalmazunk és egy heuriszti-
kával irányítjuk az állapottér-bejárást a célállapot felé, tehát nem végzünk hagyományos
kimerítő keresést.

A dolgozatban bemutatunk egy irányított modellellenőrzőt, ami egy új heurisztikával
irányítja az állapottér bejárást. Ezt a módszert kombináltuk a részleges rendezés redukció-
val, hogy az algoritmus nem elérhető célállapotok esetén is hatékony maradjon. A dolgozat
végén mérésekkel demonstráljuk az általunk készített eszköz képességeit és kiértékeljük
megközelítésünk előnyeit és hátrányait.

i



Abstract

Model checking is a formal verification technique for verifying requirements on behavioral
models of systems in a mathematically precise way. An advantage of model checking is that
in case the requirements are violated, it can produce an execution trace (counterexample)
to demonstrate the incorrect behavior of the system. When analyzing state reachability, it
is especially important to generate traces to reachable states, because a lot of applications
(e.g., model-based testing) use them as the primary output of the model checker.

Traditional model checking algorithms systematically and often exhaustively explore the
state-space of the system, i.e., they build the graph representation of the state-space.
These algorithms are called explicit model checkers, because they explicitly enumerate the
states and state transitions of the system. While explicit approaches are mature, they are
inherently limited by the size of the state-space that can fit into memory. Unfortunately,
even relatively small systems can have huge state-spaces, a phenomenon that is commonly
referred to as state-space explosion.

One reason of state-space explosion in concurrent systems is the interleaving semantics of
model checking, i.e., total ordering of independent, asynchronous operations. Examination
of each interleaving leads to a large amount of intermediate states that are irrelevant with
regard to the requirements. The main idea of partial order reduction is to substitute the
equivalent interleavings with a single representative trace to reduce the number of states
to discover. The technique builds on the explicit approach, so most of the methods used
there remain applicable.

Another way of handling the state-space explosion is directed model checking. The method
performs well only if we know that the sought state is reachable (this can be ensured via
many ways, e.g., a symbolic checking beforehand). The algorithm exploits the fact that
we only have to discover a trace to the sought state and do not have to discover the
whole state-space thus shrinking memory consumption. The main idea is using a heuristic
function to direct the search towards the sought state, and do not perform a traditional
exhaustive search.

In this work, we present a directed model checker which uses a new heuristic to guide the
state-space traversal, combined with Partial Order Reduction to boost our efficiency for
cases where a sought state is not reachable. The work also includes measurement results
to demonstrate and evaluate our approach.

ii



Chapter 1

Introduction

Model checking [4, 2] is a formal verification technique for verifying requirements on behav-
ioral models of systems in a mathematically precise way. An advantage of model checking
is that in case the requirements are violated, it can produce an execution trace (coun-
terexample) to demonstrate the incorrect behavior of the system. When analyzing state
reachability, it is especially important to generate traces to reachable states, because a lot
of applications (e.g., model-based testing) use them as the primary output of the model
checker.

The first model checker algorithms exhaustively enumerated every reachable state of the
model, and inspected these states whether they satisfy a criteria or not. They are called
explicit model checkers. This algorithm reached its limitations very soon, because even
small models can have huge state-spaces. This phenomenon is called state-space explosion.
In order to perform traditional explicit model checking we have to store all of the reachable
states, leading to enormous memory consumption thus this method often fails for larger
problems. Although model checking is a hard problem, there are algorithms that combat
the state-space explosion and enable us to check models with larger state-spaces.

One way to handle the state-space explosion is symbolic model checking [4]. Some of these
techniques usually use decision diagrams [3, 5] to compress the state-space, and store
sets of states instead of individual states. Directly manipulating the decision diagram
representations is fast and memory efficient, but the implicit encoding of states makes it
impractical to handle states explicitly – affecting the ability to produce traces. In this work
we decided not to complement these methods, because we focus on reachability problems,
and there the main output is the trace itself.

There are explicit methods [4] to handle the state-space explosion. These methods discover
a smaller, reduced state-space ins such a way that the interesting properties of the system
are preserved, but excluding states that are indifferent with regard to the current model
checking problem. The main issue with this approach that we do not know in advance
which states are important for the current model checking problem. We cannot discover
all the states, then exclude the unnecessary ones. That way we still have to store the
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full state space, the exact thing we want to avoid. These methods usually rely on some
structural property of the model or some additional information about the model and
use different, more complex graph-search algorithms that can decide a problem without
traversing the whole graph. This work focuses on such techniques, mainly due to their
capability of efficient trace generation.

One reason of state-space explosion in concurrent systems is the interleaving semantics of
model checking, i.e., total ordering of independent, asynchronous operations. Examination
of each interleaving leads to a large amount of intermediate states that are irrelevant
with regard to the requirements. An explicit technique, called partial order reduction [11]
combats the state-space explosion by substituting the equivalent interleavings with a single
representative trace to reduce the number of states to discover. We will give a detailed
overview of this approach in Section 2.4.

Another explicit technique handling the state-space explosion problem is directed model
checking [9]. This method exploits the fact that if the sought state is reachable, we do
not have to discover the full state-space, it is enough to traverse the trace leading to it.
This method uses heuristics to guide the state-space traversal, commonly with strategies
similar to A* search. However if the sought state is not reachable, there is no reduction, the
full state-space has to be explored. In these cases, the approach is slower than traditional
explicit techniques due to the cost of calculating the heuristics. That is why this algorithm
is highly dependent on a previous verdict of reachability, potentially decided by a symbolic
model checker beforehand. In this work, we assume that such a verdict is present, and we
propose a new heuristic to guide the state-space traversal in Chapter 4.

The structure of the thesis is the following. Firstly, we give a brief overview of the field and
the theoretical background of our work in Chapter 2. Secondly we give an overview of our
explicit model checking workflow in Chapter 3. Thirdly, we introduce our guided partial
order reduction algorithm in detail in Chapter 4. Fourthly we describe the implementation
of our model checking tool in Chapter 5. Fifthly we present our measurement results and
evaluating our tool’s capabilities. Finally we draw conclusions from our work and the
measurement results and propose a line of future work to further enhance our model
checker in Chapter 7.

2



Chapter 2

Background

In this chapter we introduce some basic concepts and methods used in the literature and
refer to related work which serves as the basis of our approach. Firstly, section 2.1 presents
Petri nets, a widespread modeling language used in the field of formal methods. Secondly,
section 2.2 introduces the Kripke structures commonly used to describe state-spaces in the
literature. Thirdly, section 2.3 presents the basic concepts of model checking and safety
properties which is the basis of our approach. Finally section 2.4 presents partial order
reduction, a method to combat the state-space explosion in explicit model checking.

2.1 Petri Nets

Our work relies on Petri nets as a modeling formalism: in this section we give a brief
introduction. For a full-detailed description of Petri nets, refer to [16].

Petri nets are a popular formalism which are especially suitable for modeling concur-
rent, asynchronous and nondeterministic systems. – this is why we chose it for the first
formalism to apply our solutions on.

Definition 1 (Petri net).
A Petri net is a 5-tuple PTN = (𝑃, 𝑇, 𝐴, 𝑊, 𝑀0) where:

∙ P is a finite set of places;

∙ T is a finite set of transitions, such that 𝑃 ∩ 𝑇 = ∅;

∙ 𝐴 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is the set of arcs;

∙ 𝑊 : (𝑃 ×𝑇 )∪(𝑇 ×𝑃 ) → N0 is a weight function such that 𝑊 (𝑥, 𝑦) > 0 iff (𝑥, 𝑦) ∈ 𝐴;

∙ 𝑀0 : 𝑃 → N0 is the initial marking, i.e., the number of tokens on each place. �

A Petri net consists of places, transitions and arcs. A state of the Petri net is determined
by the marking function (𝑀 : 𝑃 → N0) registering the number of tokens for every place.
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Throughout this work, we will assume that a Petri net is bounded, which means that
the number of tokens in every place is below a certain value in every reachable state.
Furthermore, we assume that there are no parallel arcs (arcs that has the same start and
end point) in the net, if there would be an equivalent net could be produced by merging
the parallel arcs. For the sake of convenience, we introduce some common notations used
to refer to the structure of the Petri nets.

- ∙𝑡 = {𝑝|𝑝 ∈ 𝑃 ∧ (𝑝, 𝑡) ∈ 𝐴}, i.e., the set of input places of t;

- 𝑡∙ = {𝑝|𝑝 ∈ 𝑃 ∧ (𝑡, 𝑝) ∈ 𝐴}, i.e., the set of output places of t;

- ∙𝑝 = {𝑡|𝑡 ∈ 𝑇 ∧ (𝑡, 𝑝) ∈ 𝐴}, i.e., the set of input transitions of p;

- 𝑝∙ = {𝑡|𝑡 ∈ 𝑇 ∧ (𝑝, 𝑡) ∈ 𝐴}, i.e., the set of output transitions of p;

- 𝑊 +(𝑡, 𝑝) = 𝑊 (𝑡, 𝑝) is the total amount of tokens transition 𝑡 adds to place 𝑝 when
fired.

- 𝑊 −(𝑡, 𝑝) = 𝑊 (𝑝, 𝑡) is the total amount of tokens transition 𝑡 removes from place 𝑝

when fired.

- 𝑊 * = 𝑊 + − 𝑊 − represents the sum of removed and produced number of tokens in
place 𝑝.

𝑊 * can be used to calculate whether transition t increases or decreases the number of
tokens on a place.

The behavior of a Petri net is defined by the following firing rules:

∙ A transition t is enabled iff ∀𝑝 ∈ ∙𝑡 : 𝑀(𝑝) ≥ 𝑊 (𝑝, 𝑡), i.e., all input places of t has
at least as many tokens as the weight of the input arcs of t.

∙ An enabled transition may fire and change the marking of the Petri net. Every
enabled transition can fire, but there is no ordering or precedence amongst them
inducing a non-deterministic behavior.

∙ When a transition t fires, it removes 𝑊 (𝑝, 𝑡) tokens from all of its input places 𝑝 ∈ ∙𝑡

then puts 𝑊 (𝑡, 𝑝) tokens to its output places 𝑝 ∈ 𝑡∙.

An example of the firing mechanism in Petri nets is shown on figure 2.1.

We call 𝜏 a firing sequence iff it is a sequence of transitions that can be fired in the Petri
net exactly in that order starting from the current state (commonly the initial state) of
the Petri net. The sequence of states reached after each step in 𝜏 (including the initial
state) is called a path and is denoted by 𝜌. We call a marking 𝑀 reachable in the Petri
net iff there is a path 𝜌 that ends in 𝑀 .

4



Figure 2.1. Firing, in a graphical representation of Petri net

2.2 Kripke Structures

The state-space of high-level models can be described by so-called Kripke structures [13].
Kripke structures are directed graphs, where the nodes are labeled. The states of the model
are represented by the labeled nodes of the Kripke structure while transitions correspond
to the arcs connecting the nodes. Labels provide a way to reason about states.

Definition 2 (Kripke structure). Given a set of atomic propositions AP a Kripke
structure is a 4-tuple 𝐾 = (𝑆, 𝐼, 𝑅, 𝐿), where:

∙ S is the finite set of states;

∙ 𝐼 ∈ 𝑆 is the set of initial states;

∙ 𝑅 ∈ 𝑆 × 𝑆 is the transition relation;

∙ 𝐿 : 𝑆 −→ 2𝐴𝑃 is the labeling function that maps a state to a subset of atomic
propositions; �

In a Kripke structure a path (trace) 𝜌 is a sequence of states, corresponding to a directed
path in the graph, i.e., states in 𝜌 follow each othr according to 𝑅.

2.2.1 Connection Between Petri Nets and Kripke Structures

As stated in section 2.2, Kripke structures can be used to represent the state-space of high
level models.

In case of Petri nets a state of the Kripke structure describes the marking of a Petri
net. The atomic propositions constituting the labels on the Kripke structure are relations
interpreted over the marking of the Petri net. The initial state of the Kripke structure
corresponds to the initial marking of the Petri net. Transitions of the Kripke structure can
be regarded as instances of the transitions of the Petri net – they correspond to a single
firing of an enabled transition. This way, the state-space of the Petri net is described by a
(not necessarily connected) Kripke structure. Exploring the state-space off the Petri net
essentially means the traversal of the Kripke structure.

5



Figure 2.2. Kripke structure describing state-space of Petri net

It is important to note, that (as shown in figure 2.2) the state-space of a Petri net model can
be much larger and much more complex than the structure itself, that is why discovering
the full state-space can be hard. In sections 2.3, 2.4 we will show methods to handle this
problem.

2.3 Model Checking

Model checking [4] is an automatic formal verification technique for exhaustively comput-
ing and analyzing the state-space to see if it satisfies a given requirement.

The input of the model checking procedure is the model of the system (in our work a Petri
net model) and some formal specifications (this work considers safety properties). The
states or traces of the model are examined and if the model violates the requirements it
a counterexample is given to demonstrate the error. (Commonly a trace to an erroneous
state which violated said specifications).

Figure 2.3. The general workflow of model checking

Due to the fact that model checking computes the state-space of high-level models, the
aforementioned state-space explosion arises. Sections 2.3.2, 2.4 will introduce two ways of
dealing with state-space explosion.
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2.3.1 Reachability

A common use of model checking is checking safety properties, i.e., that some unwanted
event or situation cannot occur in the system. This problem can be reduced to reachability
of these states.

”Bad“ states (or goal states in general) are usually described by state predicates referring
to state variables of the system (e.g., a given place in a Petri net must not have more
than 2 tokens). Checking reachability is then performed by evaluating the predicates on
reachable states to see ifa described state can be found.

State Properties

In this section we will introduce state predicates to describe a set of states. A state is in
the described set if it satisfies the state predicates. We describe the state predicates

The atomic state propositions are based on the marking of a Petri net in the following
form:

𝜑 ::= 𝑝𝑖 < 𝑘 | 𝑝𝑖 > 𝑘 | 𝑝𝑖 ≤ 𝑘 | 𝑝𝑖 ≥ 𝑘 | 𝑝𝑖 = 𝑘 | 𝑝𝑖 ̸= 𝑘 | ⊤ | ⊥

This rule generates the set of atomic propositions AP={ℓ1, ℓ2, ...ℓ𝑛} used as labels in the
Kripke structures, where 𝑝𝑖 ∈ 𝑃 and 𝑘 is a constant integer.

A state predicate formula is described in terms of atomic propositions as follows:

Φ ::= 𝜑𝑖 | ¬Φ | Φ ∨ Φ | Φ ∧ Φ

to denote a concrete formula generated by the grammar we will use 𝜙.

Example:

𝜙 ≡ 𝑝1 ̸= 1 ∧ (𝑝4 < 5 ∨ 𝑝30 ≥ 3) means that ”on place 𝑝1 cannot have exactly 1 token and
either 𝑝4 has less than 5 tokens or 𝑝30 has at least 3 tokens“.

A number of functions and notations are introduced below to describe certain aspects of
atomic propositions. Given a state predicate 𝜙, an atomic proposition ℓ and a marking
𝑀 .

∙ 𝐴𝑃 (𝜙) = {ℓ1 . . . ℓ𝑛} denote the set of atomic propositions in the current formula 𝜙.

∙ 𝑠𝑢𝑏(ℓ) ∈ 𝑃 (ℓ ∈ 𝐴𝑃 (𝜙) −→ 𝑝 ∈ 𝑃 ) is the subject of ℓ, i.e., the place ℓ refers to.

∙ 𝑘(ℓ) : ℓ ∈ 𝐴𝑃 (𝜙) −→ N the constant in ℓ.

∙ 𝑜𝑝(ℓ) : ℓ ∈ 𝐴𝑃 (𝜙) −→ {=, ̸=, <, ≤, >, ≥} the operator of ℓ.

∙ 𝐿𝑒𝑠𝑠(ℓ, 𝑀) =

⎧⎪⎪⎨⎪⎪⎩
true : 𝑀(𝑠𝑢𝑏(ℓ)) = 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {≠}or

𝑀(𝑠𝑢𝑏(ℓ)) < 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {=, >, ≥}
false : otherwise.

7



∙ 𝑀𝑜𝑟𝑒(ℓ, 𝑀) =

⎧⎪⎪⎨⎪⎪⎩
true : 𝑀(𝑠𝑢𝑏(ℓ)) = 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {≠}or

𝑀(𝑠𝑢𝑏(ℓ)) > 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {=, <, ≤}
false : otherwise.

𝐿𝑒𝑠𝑠 (𝑀𝑜𝑟𝑒) means that in 𝑀 there is currently less (more) token on 𝑠𝑢𝑏(ℓ) than any
state satisfying ℓ. These functions are used as guiding heuristics in our guided search
algorithm presented in Chapter 4

2.3.2 Directed Model Checking

Directed model checking [9] is an efficient method to combat the state-space explosion
problem in case a goal state is reachable. Explicit directed model checkers [6] replace the
standard depth-first search strategy with heuristic search in order to guide the exploration
of the state-space towards the goal states. If it is enough to find a single goal state, the
algorithm can terminate as soon as the first solution is found. In this case, guiding the
search towards a goal state can significantly reduce the number of states that has to be
traversed before termination.

The heuristic search algorithm is usually 𝐴*, while the most common heuristics are based
on some notion of distance between markings (e.g., Hamming distance) [9]. It is important
to note that such a heuristic is only useful when a goal state is actually reachable. That
is why this method is usually combined with other algorithms (e.g., a symbolic model
checking beforehand to decide reachability) to ensure the efficiency in cases, where no goal
state is reachable [9].

An important use case for directed model checking is in the field of model-based test
generation for software and hardware. With this approach, it is possible to compute test
cases to check if the implementation conforms to the specification model. This can be
regarded as an automated way of specification-based testing, reducing the cost of test
engineering and raising the quality of the product.

2.4 Partial Order Reduction

In this section we show another way of handling the state-space explosion problem.

For an illustration, see figure 2.4. In order to find a trace from P to Q, we must use
transitions a, b, c, but the order of these transitions does not affect the reachability of Q.
Partial order reduction would choose a representative ordering (e.g. a, c, b) omitting 4
intermediate states from the state-space without affecting the reachability.

Partial order reduction uses that commonly the reason behind state-space explosion in
concurrent systems is the interleaving semantics, i.e., the total ordering of actions in in-
dependent asynchronous processes. This interleaving leads to a huge number of possible
behaviors and intermediate states that can be irrelevant with regard to our requirements.
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Partial order reduction chooses some representative orderings from these traces and dis-
covers only them, resulting in a reduced state-space.

Partial order reduction[10, 11, 4, 15] is an explicit technique, so it stores the states of the
system explicitly. However the reduced state-space often allows to handle huge concurrent
models. An important requirement for the reduction to preserve interesting properties. In
this case of reachability properties it means that if a goal state 1 is reachable in the full
state-space it must be also reachable in the reduced state-space. It is important to note
that the reduction has to be performed without exploring the full state-space, because the
main reason of the reduction is to avoid storing all the states in the memory. Most of
the reduction approaches use some structural property of the model, because they can be
checked statically without computing the full state-space.

Figure 2.4. An example of indepently reorderable transitions

The idea of partial order reduction has been implemented in a number of approaches
[7, 15, 1, 10, 14, 11]. In this work, we use the stubborn sets method, which can be
considered as the state-of-the-art algorithm in this field.

2.4.1 Stubborn Sets

The name of the stubborn sets method comes from the strategy of calculating sets of
transitions whose firing can not disable transitions outside the stubborn set, and transitions
outside the stubborn sets cannot disable transitions from the stubborn set either. These
sets are stubborn in the sense that they stay enabled as long as only transitions of other
sets are fired. Note that these stubborn sets are correspond to the independent concurrent
processes, which we said partial order reduction uses to reduce the state-space.

1Note that states that are not characterized by the predicate can become unreachable
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The rationale behind stubborn sets is that in a given state it is enough to exhaustively
fire a single set, because every other set will stay enabled and can be processed in a later
state.

For convenience reasons, we define the following notations:

∙ 𝑠
𝑡1...𝑡𝑛−−−→ 𝑠′ means that if we fire transition sequence 𝑡1 . . . 𝑡𝑛 from 𝑠 we reach 𝑠′.

∙ 𝑠
𝑡1...𝑡𝑛−−−→ means that the transition sequence 𝑡1 . . . 𝑡𝑛 is enabled from 𝑠.

Definition 3 (Stubborn sets). STUB(s) ⊆ 𝑇 is a stubborn set in state s iff the fol-
lowing conditions hold [15]:

D0: STUB(s) is empty iff s is a deadlock state.

D1: ∀𝑡 ∈ 𝑇 and ∀𝑡1...𝑡𝑛 sequence such that each 𝑡𝑖 ∈ STUB(s) and for which 𝑠
𝑡,𝑡1...𝑡𝑛−−−−→ 𝑠′

it holds that 𝑠
𝑡1...𝑡𝑛,𝑡−−−−→ 𝑠′, i.e., if a 𝑠′ state is reachable from 𝑠 via firing any transition

from the net, and then all the STUB(s) members, stays reachable if we fire the
members of STUB(s) first and then 𝑡.

D2: ∀𝑡 ∈ STUB(s) and ∀𝑡1...𝑡𝑛 sequence such that each 𝑡𝑖 /∈ STUB(s) and for which
𝑠

𝑡1...𝑡𝑛−−−→ if 𝑠
𝑡−→ then 𝑠

𝑡1...𝑡𝑛,𝑡−−−−→, i.e., if a transitions from STUB(s) is enabled from
state 𝑠 no transition sequence outside the STUB(s) can disable it. �

The condition D0 ensures that deadlocks are preserved, i.e., we find a deadlock state in
the reduced state-space iff that state is a deadlock in the full state-space. Conditions D1,
D2 ensures the stubborn behavior of the STUB(s) members.

There can be many stubborn sets for a given state of a model, the key for the reduction
is to choose which sets to fire before the others. An ideal solution is to use the one
which takes the exploration closer to its goal. A more general direction is to choose the
smallest set in order to produce a smaller reduced state-space. Note, however that the
basic stubborn set methods only preserves deadlocks, so there is no guarantee that a set
contains the transitions to reach a a desired part of the state-space. In order to preserve
additional properties other constraints have to be fulfilled by the chosen sets. Since the
union of stubborn sets is also a stubborn set by definition, so it is possible to construct a
stubborn set that contains all the ”essential“ transitions. Chapter 4 will present a way of
acquiring such transitions.

Note that D1 and D2 are very hard to check based on the definition, because it would
require exploring the intermediate states, the exact thing tat the approach aims to avoid.
Most of the implementations use constructions that inherently satisfy D1 and D2, but
are easier to compute statically. One such way is to compute the independent transitions
based on the structure of the high-level model (see more in Section 4.2), which is a cheap
over-approximation.
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Chapter 3

Overview

In this chapter we give a brief overview of our workflow. Firstly we show a blackbox figure
of our tool on Figure 3.1, then we will introduce each component briefly and state the
reasons we applied each technique.

Figure 3.1. Our explicit model checking process

3.1 Constraint Processing

For the reasons detailed in Section 4.2.3 our algorithm needs to operate with a certain
form of the reachability criteria – in fact we need the formula to be in disjunctive normal
form and in negation normal form at the same time. This can by various transformation
as described in Section 4.2. Also it is important that we process the user input in a way
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that our tool understands. For example 𝐴&𝐵 means the same as 𝐴 𝑎𝑛𝑑 𝐵 or 𝐴&&𝐵,
however they are different inputs. For this preprocess task we introduced the syntax in
Section 2.3.1 and we will employ a stand-alone constraint processor application detailed
in Chapter 5.

3.2 The Guided Model Checker

This component performs the actual model checking given every input preprocessed. It
consists of two major methods. The algorithm is basically a directed model checker with
the aid of partial order reduction. The detailed description of the algorithms is shown in
Chapter 4.

3.2.1 Directed Search

The heart of our solution is a directed model checking algorithm utilizing a new heuristic
to guide the state-space traversal. For the reasons detailed in Chapter 1 this method
only performs well in cases where a goal state is reachable, so it heavily depends on other
algorithms. To see detailed description of this algorithm see Chapter 4.

3.2.2 Partial Order Reduction

Partial order reduction is a state-of-the-art explicit technique to combat the state-space
explosion. We combine this approach with our directed model checker to raise its effi-
ciency in cases it would otherwise fail. For a detailed description of this combination see
Chapter 4.

Even though we expected much from this combination, evaluation of measurements re-
vealed that we utilized partial oder reduction in a less effective way. We show a proposal
for a better approach of using partial order reduction with our heuristic search in Chapter 7

3.3 Contributions

This research is still in a premature state and we are still in the experimenting phase. Our
new heuristic for directed model checking is one of the main contributions of this work,
but to employ it efficiently in real-life scenarios we still need to develop more algorithms
that aids it in model checking. One of these methods were to run a symbolic model checker
beforehand and only employ it in cases a goal state is reachable [8]. Another approach
was to combine it with partial order reduction, but our strategy was not justified by our
measurements. Instead, we plan to investigate another solution to combine partial order
reduction and our heuristic. We present these ideas in Chapter 7.
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Chapter 4

Guided Partial Order Reduction

This chapter introduces our new explicit model checking algorithm building on concepts
of directed search and partial order reduction. The proposed method focuses on efficiently
generating traces to unsafe states even in large and complex systems. To handle cases
where the algorithm has to prove unreachability, the efficiency of partial order reduction
(see Section 2.4) is employed to complement the guiding heuristics. Nevertheless, our
approach tends to sacrifice performance in the unreachable case in favor of efficient trace
generation. Due to the techniques our approach builds on, we call it Guided Partial Order
Reduction (GPOR).

Figure 4.1. General workflow of guided partial order reduction

4.1 Guided Search in Petri Nets

Our work is based upon a new heuristic to perform directed model checking on Petri nets.
The introduced new algorithm incorporates this heuristic into partial order reduction to
build stubborn sets using the information about which transitions should be fired in order
to “get closer” the goal state. This section introduces the heuristic and our notion of
“closer” to introduce the theoretical foundations of the algorithm.
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For the rest of this section, we assume that the reachability criteria 𝜙 is given as the
conjunction of positive atomic propositions, i.e., 𝜙 = ℓ1 ∧ · · · ∧ ℓ𝑛. Section 4.2 will discuss
methods to reduce other forms of 𝜙 to this form.

4.1.1 Closed-Quarters Navigation with UP Sets

Figure 4.2. Place of UP sets in our workflow

Our heuristic is based on the information extracted from the structure of Petri nets: the
algorithm investigates if transitions can modify the number of tokens on “interesting”
places – e.g., places that appear in the requirement. Using this heuristic the algorithm
can prioritize transitions and fire the more promising ones first. As the Petri net reacha-
bility problem for bounded Petri nets is computationally hard, we can not ensure to find
the solution efficiently all the time. As a first approach, we define a set of “good” transi-
tions called the UP set. The idea of our algorithm is based on [14], however we propose
significant improvements.

Definition 4 (Positive UP set). Let 𝑈𝑃 +
𝑖 = {𝑡 | 𝑡 ∈ ∙𝑠𝑢𝑏(ℓ𝑖) ∧ 𝑊 *(𝑡, 𝑠𝑢𝑏(ℓ𝑖) > 0)},

i.e., all the transitions that adds more tokens on 𝑠𝑢𝑏(ℓ𝑖) than it removes. �

Definition 5 (Negative UP set). Let 𝑈𝑃 −
𝑖 = {𝑡 | 𝑡 ∈ 𝑠𝑢𝑏(ℓ𝑖) ∙ ∧𝑊 *(𝑡, 𝑠𝑢𝑏(ℓ𝑖) < 0)},

i.e., all the transitions that adds more tokens on 𝑠𝑢𝑏(ℓ𝑖) than it removes. �

Such positive and negative UP sets can be statically computed for every atomic propo-
sitions of 𝜙. In order to use the sets as guiding heuristics during state-space exploration
the proper sets have to be chosen for every unsatisfied atomic proposition.

Observation: If the operator of ℓ𝑖 is ̸=, both sets are useful. In this case we do not
know whether we want to increase or decrease the token count, we only know that the
present marking is not satisfying the atomic proposition. The choice between a positive or
negative UP set is determined by the values of the functions Less and More (introduced
in Section 2.3.1). Observation of the definitions of the functions reveals that in case of
operator “̸=”, both UP sets can help to satisfy the atomic proposition. This is reflected
in the following definition of UP sets.
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Definition 6 (UP set). Let 𝑠 be the marking of a Petri net and 𝜙 = ℓ1 ∧ · · · ∧ ℓ𝑛 a
reachability criteria. Then 𝑈𝑃 (𝑠) = (

⋃︀
{∀ℓ𝑖∈𝜙 | 𝐿𝑒𝑠𝑠(ℓ𝑖,𝑠)} 𝑈𝑃 +

𝑖 )∪(
⋃︀

{∀ℓ𝑖∈𝜙 | 𝑀𝑜𝑟𝑒(ℓ𝑖,𝑠)} 𝑈𝑃 −
𝑖 )

is the UP set corresponding to 𝑠. �

An UP(s) set is the union of the 𝑈𝑃 ±
𝑖 with regard to all the atomic propositions based

on the state 𝑠. The role of the UP set is to characterize “good transitions” based on the
following theorem.

Theorem 1 (Theorem of UP sets). Every 𝜌 path starting in 𝑠 and leading to a goal
state 𝑔 according to reachability criteria 𝜙 contains at least one firing from the transitions
in 𝑈𝑃 (𝑠). �

Proof 1. Indirect proof. Assume that a current state is not a goal state and there is a
path 𝜌 starting in 𝑠 leading to a goal state 𝑔 according to reachability criteria 𝜙 without
firing a transition in UP(s).

If ∃ℓ𝑖 ∈ 𝐴𝑃 (𝜙) : 𝐿𝑒𝑠𝑠(ℓ𝑖, 𝑠) then a transition along path 𝜌 has to raise the tokencount of
𝑠𝑢𝑏(ℓ𝑖). However transitions that can raise the token count on 𝑠𝑢𝑏(ℓ𝑖) is by definition in
𝑈𝑃 +

𝑖 , which is a subset of UP(s) according to Definition 6, so this assumption leads to a
contradiction.

If ∃ℓ𝑖 ∈ 𝐴𝑃 (𝜙) : 𝑀𝑜𝑟𝑒(ℓ𝑖, 𝑠) then a transition along path 𝜌 has to decrease the tokencount
of 𝑠𝑢𝑏(ℓ𝑖). However transitions that can decrease the token count on 𝑠𝑢𝑏(ℓ𝑖) is by definition
in 𝑈𝑃 −

𝑖 , which is a subset of UP(s) according to Definition 6, so this assumption leads to
a contradiction.

Otherwise, the definition of 𝐿𝑒𝑠𝑠 and 𝑀𝑜𝑟𝑒 implies that every atomic propositions of 𝜙

is satisfied which in term implies that 𝑠 is a goal state. This is again a contradiction. �

Note that both 𝑈𝑃 +
𝑖 and 𝑈𝑃 −

𝑖 can be computed in a preprocess step, because they do not
depend on the current state, only on structural properties off the model and an atomic
proposition. This way the calculation of UP(s) is a single decision based on the current
state and an union of the chosen sets. This can significantly reduce the overhead of UP
set computation during state-space exploration.

4.1.2 Road Signs in the Net: UP Layers

UP sets can be used to guide the search towards goal states, unless none of the chosen
transitions are enabled. To mitigate this situation, additional “road signs” has to be
defined in the model to guide the search up until a point where one of the transitions in
𝑈𝑃 (𝑠) become enabled. The basic idea of the following heuristic is that finding a state
in which a transition of 𝑈𝑃 (𝑠) is enabled is similar to the original problem of reaching a
goal state.

To implement this idea, layered structure is built for every 𝑈𝑃 ±
𝑖 , with every layer including

transitions that can enable transitions of the previous layer.
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Figure 4.3. The place of UP layers in our workflow

Definition 7 (𝑈𝑃 + layer). For every atomic proposition ℓ𝑖 ∈ 𝐴𝑃 (𝜙), we define the
𝑈𝑃 + as follows:

𝑈𝑃 +
𝑛,𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑛 = 0 : 𝑈𝑃 +

𝑖

∀𝑛 > 0 : {𝑡|𝑡 ∈ ∙ ∙ (𝑈𝑃 +
𝑛−1,𝑖) ∧ 𝑝 ∈ ∙(𝑈𝑃 +

𝑛−1,𝑖) ∧ 𝑊 *(𝑡, 𝑝) > 0}∖
𝑗<𝑛⋃︀
𝑗=0

𝑈𝑃 +
𝑛,𝑗

Definition 8 (𝑈𝑃 − layer). For every atomic proposition ℓ𝑖 ∈ 𝐴𝑃 (𝜙), we define the
𝑈𝑃 − as follows:

𝑈𝑃 −
𝑛,𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑛 = 0 : 𝑈𝑃 −

𝑖

∀𝑛 > 0 : {𝑡|𝑡 ∈ ∙ ∙ (𝑈𝑃 −
𝑛−1,𝑖) ∧ 𝑝 ∈ ∙(𝑈𝑃 −

𝑛−1,𝑖) ∧ 𝑊 *(𝑡, 𝑝) > 0}∖
𝑗<𝑛⋃︀
𝑗=0

𝑈𝑃 −
𝑛,𝑗

The topmost layer (𝑈𝑃 ±
0,𝑖) is the UP set defined in the previous section, then the role of

lower layers are to enable transitions in the higher layers. In addition, transitions can only
belong to the highest possible layer, meaning that every transition belongs to at most one
UP layer. Note that 𝑈𝑃 ± layers are still statically computable.

Choosing between 𝑈𝑃 ± layers again depends on the current state defined in the following
function.

Definition 9 (UP layers). Let 𝑠 be the marking of a Petri net and 𝜙 = ℓ1 ∧ · · · ∧ ℓ𝑛 a
reachability criteria. Then 𝑈𝑃 𝑛(𝑠) = (

⋃︀
{∀𝑖∈𝐼|𝐿𝑒𝑠𝑠(ℓ𝑖,𝑠)} 𝑈𝑃 +

𝑛,𝑖) ∪ (
⋃︀

{∀𝑖∈𝐼|𝑀𝑜𝑟𝑒(ℓ𝑖,𝑠)} 𝑈𝑃 −
𝑛,𝑖)

where 𝑠 is the current state of the Petri net. �

The definition is similar to Definition 6, 𝑈𝑃 𝑛(𝑠) is built based on the current state. Every
layer helps enabling the layer “on top of it”, while the topmost layer helps reaching a
goal state. The representation of these sets in the actual Petri net is a set of transitions
that influence the reachability of a goal state surrounded by similar sets that influence the
enabling of these transitions.

The following definition characterizes the UP layer that is a local best choice according to
our heuristics.

16



Definition 10 (Highest available UP layer). The highest available UP layer is the
highest layer that contains an enabled transition in state 𝑠, and is denoted by 𝑈𝑃 *(𝑠). �

To show that it is indeed a good choice to fire the transitions of 𝑈𝑃 𝑛(𝑠) we the following
lemma and theorem.

Lemma 1. Assuming that there is no transition enabled in 𝑈𝑃 𝑛(𝑠), there is no path 𝜌

starting in 𝑠 that contains a firing from 𝑈𝑃 𝑛(𝑠) but not from 𝑈𝑃 𝑛+1(𝑠). �

Proof 2. Similarly to the proof of Theorem 1, it is easy to see that a transition in 𝑈𝑃 𝑛(𝑠)
cannot become enabled unless tokens are placed onto its input places, but transitions
raising the token count on these places are in 𝑈𝑃 𝑛+1(𝑠). �

Theorem 2 (Theorem of UP layers). Every 𝜌 path starting in 𝑠 and leading to a goal
state 𝑔 according to reachability criteria 𝜙 contains at least one firing from the transitions
in 𝑈𝑃 *(𝑠). �

Proof 3. Inductive proof. If 𝑈𝑃 *(𝑠) = 𝑈𝑃 0(𝑠), then Theorem 1 provides a proof. If
𝑈𝑃 *(𝑠) = 𝑈𝑃 𝑛(𝑠) and 𝑛 > 0, then Definition 10 implies that none of the transitions
in 𝑈𝑃 𝑛−1(𝑠) is enabled. Based on Lemma 1, transitions in 𝑈𝑃 <𝑛(𝑠) can only become
enabled if at least one transition is fired from 𝑈𝑃 𝑛(𝑠).

Theorem 2 implies that it is inevitable to fire a transition from 𝑈𝑃 *(𝑠) if we want to reach
a goal state. This serves as the basis of our guided model checking algorithm, presented
in Section 4.2.

In order to be able to compute 𝑈𝑃 *(𝑠) it is important to prove that the number of non-
empty UP sets is finite.

Lemma 2 (UP layer calculation is finite). There is a finite integer 𝑛 such that
𝑈𝑃 𝑛(𝑠) = ∅. �

Proof 4. If we do not include any transition in 𝑈𝑃 𝑛(𝑠) then the statement holds. If we
include in every layer at least one transition, sooner or later (in a finite Petri net) the
remaining set of transitions we can choose from will become ∅, because we do not include
a transition more than once (see Definitions 7,8,9). �

If we find an empty UP layer UP𝑛(𝑠) = ∅, we can terminate the calculation of layers,
because an empty set of transitions has an empty set of input places, which, in turn, has
an empty set of input transitions (i.e., UP𝑛+1(𝑠) = ∅)

It is also worth noticing that if 𝑈𝑃 *(𝑠) = ∅ there is no path leading to a goal state (this
is a consequence of Theorem 2).
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4.2 Introducing the new algorithm

In this section we will introduce our guided partial order reduction algorithm that uses
the above described heuristic. The algorithm can generate traces to reachable states very
efficiently even in huge models.

As we mentioned in Section 2.4, there are many ways to create stubborn sets, and one
way is to heuristically guess which transitions are “helpful” to reach a goal state. In this
work we use UP layers as a guiding heuristic. We will construct our stubborn sets in a
way that they contain all enabled UP layer transitions. From the theoretical proofs above,
we know that transitions of the UP layers will eventually guide the search to a goal state.
Partial order reduction is necessary to make sure that the search is complete.

4.2.1 Preprocess Steps

As we described above, the 𝑈𝑃 ± sets and layers are computable before the actual model
checking procedure, saving computation time during the actual checking. If we would have
to compute the UP layers in every state from scratch, our algorithm would be very slow
and redundant, because (even with partial order reduction) the state-space is huge.

UP Layer Cache

As mentioned in Section 4.1, UP layers can be precomputed statically to boost the per-
formance of the algorithm. However this tabel can grow unnecessarily large, so it is often
an overhead to compute all of the layers in advance.

For this reason our algorithm uses a lazy computation strategy that only computes the
first layer initially and delays the computation of lower layers until necessary, but uses a
cache to save redundant computations.

Negation Normal Form

For our algorithm to work it is necessary to convert the reachability criteria to negation
normal form. Such a form can be reached using the DeMorgan rules on the expression-tree
recursively:

∙ ¬(𝐴 ∧ 𝐵) = ¬𝐴 ∨ ¬𝐵

∙ ¬(𝐴 ∨ 𝐵) = ¬𝐴 ∧ ¬𝐵

Example:

¬(¬(𝐴 ∧ 𝐵) ∨ 𝐶) ∧ 𝐷 = ¬𝐴 ∨ ¬𝐵 ∨ 𝐶 ∨ ¬𝐷

With these rules we can push the negations into the leaf-nodes, and absorb them by
negating the operators in ℓ. The operator negation rules are the following:
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∙ = in negation is ̸= and ̸= in negation is =

∙ < in negation is >= and >= in negation is <

∙ > in negation is <= and <= in negation is >

This step is necessary because negations must be built into the UP sets.

4.2.2 Exploration of the Reduced State-Space

In this section we will show the actual state-space exploration process, then we introduce a
method that produces stubborn sets without checking the conditions described in Section
2.4 but inherently satisfying them.

Computing Stubborn Sets

Figure 4.4. Place of partial order reduction in our workflow

We compute the stubborn sets in a way that inherently satisfies properties in Definition 3.
The essence of the method is to group the transitions in a Petri net to disjunct sets based
on their dependencies. Two transitions belong to the same set if one of them can disable
the other, i.e., transitions that have common input places. This is a stricter rule than the
ones described in Definition 3, but it is a relatively cheap over-approximation and can be
derived from the Petri net structure only.

Example:

On figure 4.5 there are three groups: Group1 = {𝑡1, 𝑡2, 𝑡5}, Group2 = {𝑡3}, Group3 = {𝑡4}.
The basis of the grouping is the common input place, because in ordinary Petri nets, the
only way to disable an enabled transition is to remove tokens from one (or more) of its
input places. A group is defined as the transitive closure of this dependecy relation. If
we find a transition that disables another, they belong to the same group together with
all the other transitions that can disable either. Every time we include a transition in a
group, we must check again for the transitions it has common input places with, and add
them to the group. For example, in figure 4.5, 𝑡1 cannot disable 𝑡5 but both can disable 𝑡2
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Figure 4.5. Grouping of transitions based on ability to disable
each other

so they belong to the same group (Group1). We call these groups of transitions dependecy
groups.

To satisfy Definition 3 we must make sure that if we include a transition in a stubborn
set, we include the whole dependency group it belongs to. To use the defined heuristics we
start from the best UP layer, 𝑈𝑃 *(𝑠), then add transitions of related dependency groups.

∙ D0: This requirement is only violated iff 𝑈𝑃 *(𝑠) is empty, but according to Theorem
2 this also means that goal states are not reachable from this state.

∙ D1 and D2: STUB members cannot disable transitions outside the STUB set and
a non-STUB members cannot disable a STUB members, due to the definition of
dependency groups thus inherently satisfy D1 and D2.

Discovering the Reduced State-Space

Figure 4.6. Place of state-space discovery in our workflow
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The core of the state-space exploration algorithm is depth first search. We start the
search from the initial state of the Petri net. The essence of our approach is that instead
of discovering every neighbor the current state. we compute a stubborn set and only fires
the transitions in it. As mentioned before, the core of each stubborn set is an UP layer so
heuristic search is achieved by firing those transitions first.
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Algorithm 1: Limited depth first search to produce reduced state-space
Input: the Petri net structure, the reachability formula (𝜙), and maxdepth the

depth limit to the search
Output: trace to a goal state if reachable, an empty set if not

1 var Stack and ExampleStack are stacks storing states;
2 var DiscoveredStates is a set to store the discovered states;
3 var depth=0 is an integer;
4 Set the Petri net to the initial state; Put the initial state on Stack;
5 while Stack is not empty do
6 var s = Stack.pop();
7 try to insert s to DiscoveredStates;
8 if DiscoveredStates already had s and we fired all of its UP layers then
9 if s is the the top element in ExampleStack then

10 ExampleStack.pop();
11 end
12 Stack.pop();
13 continue;
14 end
15 else
16 ExampleStack.push(s);
17 ++depth;
18 end
19 if s satisfies 𝜙 then
20 return ExampleStack;
21 end
22 if depth < maxdepth then
23 var STUB = Get the next stubborn set for s;

; // if we were ot in this state before, get the first
; // by different stubborn sets we mean
; // which UP layer we build it around

24 foreach t in STUB do
25 if t is not in DiscoveredStates then
26 var ss = the state result of firing t from current state;
27 Stack.push(ss);
28 end
29 end
30 end
31 if s is the the top element in Stack and we saw all of its stubborn sets then
32 Stack.pop();
33 ExampleStack.pop();
34 end
35 end
36 retrurn ExampleStack;
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Algorithm 1 presents the core of our explicit guided partial order reduction model checker.
In accordance with our plans, we sacrifice the unreachable cases in favor of generating
shorter traces faster. This is caused by the fact that if we backtrack to a state, we does
not pop it from the stack immediately (like we would in a traditional DFS), instead, we
try the stubborn set built around the next UP layer. This is a key step in the algorithm,
because there is no guarantee that the “best” stubborn set preserves reachability, it is
possible that the worse best stubborn set contains the key transition to reach a goal state.
Heuristics are only best guesses to direct the state-space traversal, in accordance with our
workflow shown in 4.1.

4.2.3 Strengths and Weaknesses of UP Layers

The heuristics we described are very efficient in guiding the DFS state-space discovery.
Combined with partial order reduction we can efficiently check models for safety prop-
erties, but there is a slight complication when it comes to complex specifications. If the
reachability criteria describe two disjunct sets of unsafe states that mutually exclude each
other, we face a problem illustrated on Figure 4.7.

Figure 4.7. Example for two disjunct set of unsafe states and the
interfering upsets

If the heuristic tries to direct the search towards multiple directions, although it gives
right answer, only a much longer longer, suboptimal traces is produced. This problem can
be solved by transforming the reachability criteria (𝜙) to disjunctive normal form (DNF).
By this, we can decompose the problem into easier sub-problems. These problems can be
solved sequentially or in parallel, yielding shorter counterexamples.
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In case of sequential execution, unreachable sub-problems can cause a memory and runtime
overhead, this is why it is advantageous to extract the exact description of a reachable
goal state from a symbolic model checking run, and use our algorithm as an efficient trace
generator.
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Chapter 5

Implementation

In this chapter we describe the prototype in which we implemented the algorithm described
in Chapter 4. Note that, although our algorithms comprise a complete model checking
solution, it is optimized to be more efficient if we use it only for trace generation and
perform a symbolic model checking beforehand [8].

5.1 Processing Constraints with ANTLR

In this section we briefly describe the C# program that processes the constraints and
transforms them to a form that the model checker can understand. For this we use
ANTLR [17] (ANother Tool for Language Recognition). With this tool we can easily
describe our own grammar that suits our goals the most and we are capable of switching
grammars easily, enabling us to support multiple syntaxes, facilitating integration as a
trace generator into other model checkers.

In this work we evaulate Boolean expressions describing token counts on places as detailed
in Section 2.3.1. For the ANTLR grammar that interprets our user input as constraints,
see Appendix A.

This program gets the constraints as a command-line argument and generates a C# con-
straint tree on which we use a visitor to explore, transform and serialize it in a canonical
form required by the model checker component. Note that this way the constraint pro-
cessor and the model checker is independent,providing an easy-to-change interface above
the solution.

We support various forms of logical operators( e.g., any of {&, &&, *, 𝑎𝑛𝑑} is interpreted
as logical and)but the output is indifferent of syntactical differences, separating concerns
between input processing and model checking.

It is important for the constraints to be in disjunctive normal form (DNF) and in negation
normal form (NNF) at the same time. Although we could transform the expression tree
into these forms, but because these requirements needed by our model checking algorithm
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only (and it can change in the future) we only employ the ANTLR language recognition to
interpret the various user inputs and convert them to a form that our model checker can
process easily and let the model checker do the DNF and NNF conversion in a preprocess
step.

5.2 The Guided Model Checker

In this this section we briefly introduce the model checker prototype which implements the
algorithms described in Chapter 4. The program is written in C++11. We chose C++11
because it is high-level enough that we do not have to make efforts to implement basic
data structures, such as hash tables or vectors, but low-level enough to perform low-level
memory operations (which we use often) efficiently.

5.2.1 Architecture

A simplified UML class diagram of the model checker tool is presented on Figure 5.1.

Figure 5.1. Simplified UML class diagram of the guided Mode
checker tool

Brief description of each class in Figure 5.1:

∙ State: A class representation of one state of a Petri net system. We use the token
counts on each place to describe a state as introduced in Section 2.1.

∙ StateHash: We store the discovered states of the model in a hash-table
(std::unordered_set) to gain performance for big state-spaces, for that we need a
hash function, this is a wrapper class for this hash function.

∙ ConstraintTreeNode: A base class for a reachability expression tree further
described in Section 2.3.1. Note that there is no class implementing negation, because
NNF always pushes them next to atomic propositions, which in turn can include
negation by changing their inner operators (see more in Section 4.2.1).
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∙ ConstraintTreeNodeOr: A child class for storing two expression nodes connected
by a logical or.

∙ ConstraintTreeNodeAnd: A child class for storing two expression nodes con-
nected by a logical and.

∙ ConstraintTreeNodeProp: A child class for representing an atomic proposition
in the expression. See more in Section 2.3.1.

∙ PetriNet: A class representing of a Petri net described in Section 2.1.

∙ Transition: A class representing of a transition in a Petri net, see more in Sec-
tion 2.1.

∙ Place: A class representing of a place in a Petri net, see more in Section 2.1.

∙ Arc: A base class for representing an arc in a Petri net, connecting a place and a
transition. See more in Section 2.1.

∙ PTArc: A base class for representing a place-transition arc in a Petri net.

∙ TPArc: A base class for representing a transition-place arc in a Petri net.

∙ Matrix: For efficiency reasons we store a matrix representation in a Petri net.
This matrix is actually the 𝑊 * structure for every place and transition described in
Section 2.1.

5.2.2 Normal forms

The Boolean language recognition is performed by a separate program (see Section 5.1), so
we can assume that they are well formed and only have to check the validity of place names.
Then because of the properties of our new heuristic described in Chapter 4 we transform
this expression into negation normal form and disjunctive normal form via Boolean rules
before we perform the model checking.

5.2.3 The state-space traversal

The state-space exploration is performed with Algorithm 1 described in Section 4.2. Dur-
ing the exploration we monitor the memory usage and runtime of the application and ter-
minate the model checker if it exceeds 10 minutes runtime or 4 GB memory consumption,
to aid the benchmark testing. The detailed measurement setup is described in Section 6.1.
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Chapter 6

Evaluation

In this chapter we provide detailed measurement data of our algorithm and compare our
tool with another tool currently used in the field of model checking. The data we show in
this chapter serves as a guideline for our future work, shows what we have reached so far
and highlights the issues where we can further improve our approach.

6.1 Measurements

In this section, first we describe the measurement process, then we show detailed results
demonstrating the performance of our tool. The analysis of the results is presented in
Section 6.2.

We used selected models of the Model Checking Contest1 as benchmarks to evaluate our
work. The detailed description of the models and reachability criteria can be found in
Appendix B.

6.1.1 Process of Measurements

We performed the measurements on the following system: Intel i7-3610-QM CPU @ 2.30
GHz, 6 GB DDR3-1333 MHz RAM, Microsoft Windows 10 operating system with .NET
platform 4.6. We limited the memory usage of all configurations to a maximum of 4 GB
and enforced a time limit of 10 minutes. If a test-case violated these limits we terminated it
and displayed the reason of termination in the results. We performed every measurement
setup 3 times and display the median of the results. The results of our measurements is
shown in Tables 6.1 and 6.2 in the columns of GPOR.

For a comparison, we measured the performance of a state-of-the-art tool, the ITS model
checker[12] developed by Laboratorie d’Informatique de Paris 6 2 on the same configura-
tion. Note that this is a symbolic model checker that uses hierachical set decision diagrams

1http://mcc.lip6.fr/2013/
2http://ddd.lip6.fr/index.php
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to explore the state-space. Although it is a symbolic model checker it is capable of trace
generation. This is one of the fastest state-of-the-art tool that we know of that is why we
chose it to compare our model checker to. The results of our ITS measurements is shown
in Tables 6.1 and 6.2 in the columns of ITS

6.1.2 Results of Our Approach

In this section we present our measurement results, the notations in the tables are the
following:

∙ The Model column contains the name of the model we ran test-case on.

∙ The Crit. column contains the identifier of reachability criteria we asked from our
model checkers. The description of identifiers can be found in appendix B

∙ The |S| column shows the size of the state-space of the model, if it is unknown, it
contains the “?” symbol.

∙ The RT columns shows the total runtime of the processes.

∙ The PMU columns shows the peak memory usage (working set) of the processes.

∙ The TL/DS columns shows the size of the discovered state-space (DS) in comparison
to the length of trace generated (number of states on the trace including the initial
and final state) (TL)

∙ > 4 GB means that the process terminated due to too much memory consumption.

∙ > 10 m means that the process terminated due to reaching the time limit.

∙ “–” means that the cell cannot contain valuable data due to termination or the data
is not interpreted in the current context (e.g., trace length (TL) is not interpreted
in unreachable cases)

∙ Asterisks in Table 6.1 means that ITS produced a trace, but it declares it “imprecise”
e.g., the validity of the trace is not verified.
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Model Crit. R? S PMU RT TL/DS
GPOR ITS GPOR ITS GPOR ITS

Dekker-10 1 X 6 144 2 MB 7 MB < 1 ms 0.17 s 3/3 1/6 144
Dekker-20 1 X 1.153 × 107 3 MB 39 MB 0.02 s 2.14 s 3/3 1/1.1 × 107

Dekker-50 1 X ? 3 MB 115 MB 0.02 s 12.64 s 3/3 1/ 4.85 × 914

FMS-10 1 X 2.501 × 109 2 MB 68 MB 0.01 s 3.41 s 10/10 10/2.5 × 106

FMS-100 1 X 2.703 × 1021 2 MB – 0.01 s > 10 m 100/100 –/–
FMS-500 1 X ? 2 MB – 0.01 s > 10 m 500/500 –/–

Peterson-2 1 X 20 754 11 MB 12 MB 1.6 s 0.6 s 43/8 923 36/20 754
Peterson-3 1 X 3.408 × 106 1 611 MB 66 MB 383.3 s 3.66 s 71/732 013 61/3.4 × 106

Peterson-4 1 X 6.299 × 108 – 575 MB > 10 m 50.19 s –/– 96/6.3 × 108

Kanban-10 1 X 1, 006 × 109 2 MB 177 MB < 1 ms 11.95 s 63/63 55/109

Kanban-100 1 X 1, 726 × 1019 2 MB – 0.01 s > 10 m 693/693 –/–
Kanban-1000 1 X ? 7 MB – 0.07 s > 10 m 6 993/6 993 –/–

DPhil-10 1 X 59 049 2 MB 7 MB < 1 ms 0.08 s 3/3 3/59 049
DPhil-100 1 X 5, 154 × 1047 5 MB 14 MB 0.02 s 0.58 s 3/3 3/5, 1 × 1047

DPhil-500 1 X 3.64 × 10238 74 MB 50 MB 0.40 s 5.01 s 3/3 3/3.6 × 10238

TokenRing-5 1 X 166 2 MB 7 MB* 0.01 s 0.23 s* 9/48 7/166*
TokenRing-10 1 X 58 905 6 MB 23 MB* 1.08 s 1.97 s* 9/1 558 7/58 905*

IBM B2S565S3960 1 X 1.551 × 1016 4 MB – 0.01 s > 10 m 226/226 –/–

Table 6.1. Measurement results of reachable cases
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Model Crit. R? S PMU RT TL/DS
GPOR ITS GPOR ITS GPOR ITS

Dekker-10 2 × 6 144 6 MB 6 MB 10.77 s 0.23 s –/6 144 –/6 144
Dekker-20 2 × 1.153 × 107 > 4 GB 14 MB – 2.53 s –/– –/1.1 × 107

Dekker-50 2 × ? > 4 GB 50 MB – 13.40 s –/– –/2.9 × 1016

FMS-10 2 × 2.501 × 109 > 4 GB 9 MB – 0.27 s –/– –/2.5 × 109

FMS-100 2 × 2.703 × 1021 > 4 GB – – > 10 m –/– –/–
0.27 s FMS-500 2 × ? > 4 GB – – 10 m –/– –/–

Peterson-2 2 × 20 754 12 MB 7 MB 3.00 s 0.51 s –/20 754 –/20 754
Peterson-3 2 × 3.408 × 106 – 22 MB > 10 m 2.58 s –/– –/3.4 × 106

Peterson-4 2 × 6.299 × 108 – 213 MB > 10 m 36.08 s –/– –/6.29 × 108

Kanban-10 2 × 1, 006 × 109 > 4 GB 6 MB – 0.6 s –/– –/109

Kanban-100 2 × 1, 726 × 1019 > 4 GB – – > 10 m –/– –/–
Kanban-1000 2 × ? > 4 GB – – > 10 m –/– –/–

DPhil-10 2 × 59 049 71 MB 5 MB 28.90 s 0.18 s –/59 049 –/59 049
DPhil-100 2 × 5, 154 × 1047 > 4 GB 8 MB – 215.83 s –/– –/5 × 1047

DPhil-500 2 × 3.64 × 10238 > 4 GB – – > 10 m –/– –/–
TokenRing-5 2 × 166 2 MB 6 MB 0.05 s 0.10 s –/166 –/166
TokenRing-10 2 × 58 905 37 MB 11 MB 71.25 s 1.34 s –/58 905 –/58 905

IBM B2S565S3960 2 × 1.551 × 1016 > 4 GB — – > 10 m –/– –/–

Table 6.2. Measurement results of unreachable cases
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6.2 Evaluation of Measurement Results

In this section we analyze the data we have collected from the measurements to highlight
the current strengths and issues of the algorithm as well as we compare the results of the
ITS tool with ours.

6.2.1 Strengths of Our Algorithm

The greatest strength of our algorithm is undoubtedly the capability of producing short
traces using very little memory and processor-time, making our tool a very good trace
generator for reachable cases. Note that we are able to produce short traces within a
fraction of a second with only a few MB of memory usage for such huge models whose
state-space size is unknown. These results are particularly showing the results of Kanban-
1000, FMS-500, Dekker-50 in Table 6.1. The ITS model checker, in these cases, performed
far worse in most reachable cases. Note, that the ITS produces shorter traces in many
cases but our trace lengths are not very different.

6.2.2 Room for Development

We have showed that our tool is far better for reachable cases than ITS, but in unreachable
cases the tables have turned. Our explicit approach could not compete with the symbolic
ITS model checker and performed far worse in these cases. This is shown in Table 6.2.

It is especially important to notice that in unreachable cases our model checker had to
discover the full state-space rendering our partial order reduction useless. This is because
of the incompatibility of our directed model checker and partial order reduction. In the
process of optimizing the heuristic search and preserving its soundness we lost the ability
to reduce the state-space. In Section 7.2 we will show a new way of combining partial
order reduction with our algorithm currently under development. We think this approach
will preserve the much desired reductive properties of partial order reduction and still
preserve the strengths of our directed model checking algorithm.

It is also important that in the Peterson model, our algorithm terminated due to timeout
not memory limit. This means that the calculation of the heuristic can be further im-
proved, because there are some models (In our measurements the Peterson model) that
are so complex in structure that our heuristic calculation is too complex and consumes
too much time.
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Chapter 7

Conclusion

In this section we summarize the results of our research and give a brief overview of our
future development plans, particularly focusing on the weaknesses of our approach focusing
on partial order reduction.

7.1 Effect of Partial Order Reduction

As the measurement results and analysis shows in Chapter 6 in the process of optimiz-
ing and correcting our new heuristic for guiding the state-space exploration we lost the
efficiency of the partial order reduction. This is because of the state-space exploration
algorithm shown in Algorithm 1.

When we trace back to a node after processing all the members of our stubborn set, we
build another stubborn set around the next best UP layer in the system. This causes that
in most cases, sooner or later we discover all the states of the model. This way we gain
mathematical correctness and soundness for our heuristic search and in cases of reachable
problems we gain efficiency, but in cases of a goal state is not reachable we still have to
explore the whole state-space leading to limited usage of our algorithm as a stand–alone
tool. In previous works we combined our algorithm with symbolic model checkers and only
used it for trace generation, but there is still room for development even if we only use
the tool for trace generation. This way the stubborn sets hinders us in trace generation
because of the larger size of states to explore states and we only need the directed model
checker. However we can also combine our algorithm with partial order reduction inside
our heuristic gaining the advantage of not exploring the full state-space. The next section
presents our idea of employing the stubborn sets method differently.

7.2 Future Plans

Figure 7.1 shows a way to employ partial order reduction inside an UP layer, thus discov-
ering only a reduced set of neighbors from every state, leading to a reduced state-space.
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Figure 7.1. Plans for combination of partial order reduction and
UP layers

In this scenario we would prioritize transitions by a heuristic (e.g., the closer UP layer
the better, or the more atomic propositions it satisfies the better, or a combination of the
above). And we try to fire the stubborn set containing the “best” transitions. Firing a
stubborn set does not disable the rest of the transitions, that way if we did not fire a “good”
transition that would help reaching a goal state we can fire it later, it will be enabled.
Of course we have to look out not to fire stubborn sets representing a circle to avoid
unnecessarily long traces. Our priority in the future is to implement this approach and
evaluate its efficiency and performance compared to this work and other tools currently
used in the field of model checking.

Furthermore we will try to implement a transition ordering heuristic, not just to be able
to prioritize some stubborn sets over others, but to try to produce shortest traces, which
is a valuable output in the field of model-based testing.

7.3 Summary

All in all we developed and implemented a very efficient explicit trace generator, which
uses a new kind of heuristic and produces very short traces using minimal amounts of
resources. Its efficiency is a result of sacrificing performance in unreachable cases thus
reducing its usability as a stand-alone model checker tool. In the future, we hope to gain
further advantage from a new approach of combining partial order reduction with our
directed model checking algorithm. Nevertheless, the proposed solution already fills the
gap of trace generation in the tools developed by our research group.
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Appendix A

ANTLR Grammar

The ANTLR4 grammar used to process constraints is the following:
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Appendix B

Description of Models

In this appendix we will enumerate and describe the basic properties of the tested models
and show the reachability criteria we tested on them. We used selected benchmark models
of the Model Checking Contest (MCC) from 2013.

In general all test cases are following the same pattern, for each model we ask our tool to
find a reachable marking and an unreachable one.

Dekker-n

This model is a variant of Dekker’s algorithm for mutual exclusion, it is parametrized by
the number of processes it realizes the algorithm on. The source of the model is the model
checking contest 2013. In this work we examined the Dekker-10, Dekker-20, Dekker-50
models where 10, 20, 50 process’ mutual exclusion were simulated.

We tested the following criteria on Dekker-n:

No. Question Reachable?
1 𝑝3/1 = 1 X

2 𝑝3/1 = 1 ∧ 𝑝3/2 = 1 ×

FMS-n

This Petri net is extracted a benchmark used for SMART. It models a flexible manufac-
turing system. It is parametrized with the starting token-count on each process. In this
work we simulated FMS-10, FMS-100, FMS-500

We tested the following criteria on FMS-n:

No. Question Reachable?
1 𝑃1 = 1 X

2 𝑃2 > 1000 ×

x



Peterson-n

This is a model of the Peterson’s algorithm for the mutual exclusion problem, in its gener-
alized version for N processes. This algorithm is based on shared memory communication
and uses a loop with N-1 iterations, each iteration is in charge of stopping one of the
competing processes. In this work we simulated Peterson-2, Peterson-3, Peterson-4.

We tested the following criteria on Peterson-n:

No. Question Reachable?
1 𝐴𝑠𝑘𝐹𝑜𝑟𝑆𝑒𝑐𝑡𝑖𝑜𝑛_0_1 = 1 ∧ 𝐶_𝑆2 = 1 X

2 𝐶𝑆_1 = 1 ∧ 𝐶𝑆_2 = 1 ×

Kanban-n

This Petri net is extracted a benchmark used for SMART. It models a Kanban system.
In this work we simulated Kanban-10, Kanban-100, Kanban-1000.

We tested the following criteria on Kanban-n:

No. Question Reachable?
1 𝑃1 = 1 X .
2 𝑃𝑚1 > 1000 ×

DPhil-n

This is the famous model that illustrates an inappropriate use of shared resources gener-
ating deadlocks. N philosophers share a table with N plates and sticks. They are thinking
and, when they need to eat, they go to the table, grab one stick from one side of their
plate, then the second from the other side, then eat, and then go back thinking. We
simulated Dphil-10, Dphil-100, Dphil-500.

We tested the following criteria on DPhil-n:

No. Question Reachable?
1 𝐸𝑎𝑡_4 = 1 X

2 𝐸𝑎𝑡_5 = 1 ∧ 𝐸𝑎𝑡_6 = 1 ×

TokenRing-n

A model from the MCC 2013, parametrized with the number of processes it contains. We
simulated TokenRing-5, TokenRing-10.

We tested the following criteria on TokenRing-n:
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No. Question Reachable?
1 𝑆𝑡𝑎𝑡𝑒_4_1 = 1 ∧ 𝑆𝑡𝑎𝑡𝑒_3_0 = 1 X

2 𝑆𝑡𝑎𝑡𝑒_3_1 = 1 ∧ 𝑆𝑡𝑎𝑡𝑒_3_0 = 1 ×

IBM

A complex industrial business model provided by IBM from the MCC 2013. Although all
the place and transition names are obfuscated, we know that this Petri has a workflow
structure (unique source and sink place).

We tested the following criteria on IBM:

No. Question Reachable?
1 𝑜𝑢𝑡𝑝𝑢𝑡 = 7 X

2 𝑜𝑢𝑡𝑝𝑢𝑡 > 8 ×
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