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Abstract. Nowadays, embedded and other controllers gain an even in-
creasing role in the operation of industrial processes. However, the op-
timization of controlled processes is a challenging task: the complexity
of the optimization is increased by the theoretical complexity of 1) con-
troller synthesis and 2) the computation of the state space of the con-
trolled process. In this paper we take one step towards the efficient opti-
mization of controlled processes by introducing a technique to compute
the composite state space of the controller and the controlled process.
The computation of the state space is even more difficult if the pro-
cess to be controlled has concurrent behaviour, where the so-called state
space explosion problem often prevents the exploration of the possible
behaviours. Saturation is a state space exploration strategy which can
combat the state space explosion problem efficiently. In this paper we uti-
lize saturation based iteration to efficiently compute the composite state
space i.e. possible behaviours. The algorithm expects the controller as
a traditional Büchi automaton and computes the composite state space
on-the-fly. The output of the algorithm than can be used for optimization
or other purposes.

1 Introduction

Optimization is a complex task, especially regarding controller systems. For such
systems it is not enough to only solve the optimization task, but additional
computation is needed to traverse the possible behaviours of the controller and
the process together (controlled process). This requires the computation of the
composite state space i.e. synchronous product of the controller and the process.
This paper focuses on the synchronous product generation: the approach uses
the so-called saturation strategy for state space exploration and encodes the
product symbolically.

Saturation [1] provides an efficient iteration strategy for exploring the possi-
ble states of concurrent systems. Since it operates directly on a symbolic repre-
sentation of a system, it is able to handle large state spaces.

The optimization process on Fig. 1. starts with the definition of the con-
troller specification (i.e. desired property of the process), usually using one of
the various temporal logics available. Due to the intuitiveness of linear time
specifications this research direction gets increasing attention. In this paper we
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Fig. 1. Overview of the approach

follow this direction by introducing a new algorithm which combines the effi-
ciency of saturation with the expressiveness of LTL specifications. We show how
former algorithms can be used to compactly encode the synchronous product of
the possible state space of the process and a Büchi automaton constructed from
the LTL property. Our work focuses on the symbolic encoding of the synchronous
product: the inputs are the Büchi automaton and the high level description of
the process. The output is a special symbolic encoding which can then be used
for synchronous product generation.

2 Background

In this section, we will briefly introduce the saturation iteration strategy and the
constrained saturation algorithm, which served as a basis of our developments.
At the end of the section the problem of synchronous product generation is
discussed.

Saturation As mentioned before, saturation [1] is a symbolic algorithm for state
space generation and model checking that is particularly efficient for concurrent,
asynchronous systems. Saturation explores the reachable state space Srch of a
model M = 〈S,Sinit, E ,N〉 composed of K components (or subsystems), where:

– S is the possible set of global states. We define a state variable for each
component denoted by s1, . . . , sK with possible local state spaces S1, . . . ,SK ,
so that the global state space can be defined as their Cartesian product:
S = S1 × · · · × SK . Each global state s is an K-tuple 〈s1, . . . , sK〉, where
each sk ∈ Sk = {0, 1, . . . } is the state of the kth component (1 ≤ k ≤ K).
The variables are mapped into symbolic variables of the encoding decision
diagrams;

– Sinit ⊆ S is the set of initial states, Srch ⊆ S represents the set of states
reachable from the initial states;



– E is the set of (asynchronous) events, usually transitions of a high-level
model;

– N ⊆ S × S is the next state relation defined as the union of the separate
next state relations of the events as following: N =

⋃
ε∈E Nε, where Nε is

the next state relation of event ε. We often use N as a function, defining
N (s) = {s′|〈s, s′〉 ∈ N} as the states that are reachable from s in one step
(and also N (S) as an extension to sets of states).

Saturation exploits the locality inherent in concurrent systems, where a single
event usually affects only a small number of components (state variables). An
event ε is independent from the component k, if 1) its firing does not change
the state of the component, and 2) its enabling does not depend on the state
of the component. If ε depends on component k, then we call it a supporting
variable: k ∈ supp(ε). Define Top(ε) as a function that returns the largest index
in supp(ε). Then Ek is the set of events: {ε ∈ E|Top(ε) = k}. For the sake of
convenience we use Nk to represent the next state function of all the events
ε ∈ Ek, formally Nk =

⋃
ε∈Ek Nε. Thus, the algorithm does not create a large,

monolithic next state function representation. Instead it divides the global next
state function N into smaller parts according to the set of events E in the high-
level model.

Symbolic encoding of the next state functions of events ε ∈ Ek relies on the
following observation: Nε(〈s1, . . . , sK〉) and Nε(〈s1, . . . , sk〉) × {〈sk+1, . . . , sK〉}
are equivalent. From this fact we can derive two important properties of satu-
ration: 1) in the encoding of Nε it is only required to encode the state changes
of state variables s1, . . . , sk, where k = Top(ε), as well as 2) it is possible to
apply the individual Nε functions in a finer granularity: Nε is applicable not
only on the full state space representation, but also on the local state space
representation composed of state variables s1, . . . , sk.

Saturation uses a special iteration strategy driven by decision diagrams, which
is highly efficient for asynchronous and concurrent systems [1]. The algorithm di-
vides the global fixed-point computation into smaller parts, as it computes a local
fixed-point with regard to a decision diagram node nk. A node nk is called satu-
rated, if it represents a local state space computed as the fixed-point of the tran-
sitive closure of local next state relations: S(nk) =

⋃
i:1≤i≤k

⋃
ε∈Ei N

∗
ε (S(nk)),

where S(nk) is the set of states represented by node nk [3].
In [3] the authors introduced an advanced saturation-based iteration strat-

egy for structural model checking. The algorithm, called constrained saturation,
computes the least fixed point of the reachability relation that satisfies a given
constraint. Constrained saturation serves as the basis of our product computa-
tion algorithm.

Büchi automaton A Büchi automaton is similar to a finite state automaton,
formally an automaton A is a tuple 〈Σ,Q,∆,Q0, F 〉, where Σ is a finite alphabet,
Q is a finite set of states, ∆ ⊆ Q×Σ×Q is a transition relation, Q0 ⊆ Q is a set
of initial states and F ⊆ Q is a set of accepting states. A run of an automaton



over an input word is an infinite sequence of states starting with an initial state,
where the transition relation holds between the consecutive states. An infinite
run is accepting if it passes an accepting state in F infinitely often.

Synchronous Product. We define the synchronous product of the model M
by interpreting the transition system generated by M as a Büchi automaton.
We define a labeling function L : S → 2AP assigning a valuation of the atomic
propositions of P to each state of M. The alphabet of the automaton corre-
sponding to M is the same as that of the property automaton: 2AP . Inputs
of its transitions are the valuations assigned to the target state by L. Syn-
chronous composition with this automaton forces the property automaton A
to read the valuations that appear on a state sequence of M. In terms of the
structures defined so far, the synchronous product can be defined as follows:
M×A = 〈Σ,S ×Q,∆×, Sinit ×Q0, F 〉, where ∆× = {〈〈s, q〉, α, 〈s′, q′〉〉|〈s, s′〉 ∈
N , 〈q, α, q′〉 ∈ ∆,α = L(s′)}.

3 Special Encoding Based On Constrained Saturation

In this section, we will characterize a special form of Büchi automata on which
our encoding relies. After that, we propose a new encoding that can be used as
an input for the constrained saturation algorithm to compute the product state
space.

3.1 Tableau Automata

The first step is the translation of the temporal expression into a Büchi automa-
ton. Observing the output automaton of widely used tableau-based conversion
algorithms (such as [2]) we identified a common structural property that can be
exploited to efficiently encode and compute the product. We refer to these kinds
of Büchi automata as tableau automaton.

Definition 1 (Tableau automaton). A tableau automaton is a tuple
〈AP , Q,∆,Q0, F, L

+, L−〉, where

– AP is a set of atomic propositions, 2AP being the alphabet of the automaton,

– Q is the set of states,

– ∆ ⊆ Q×Q is the transition relation,

– Q0 ⊆ Q is the set of initial states,

– F ⊆ Q is the set of accepting states, and

– L+ : Q→ 2AP and L− : Q→ 2AP are labeling functions, L+ assigning propo-
sitions that must hold in the given state, while L− assigning those that must
not.
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Fig. 2. Three forms of a Büchi automaton corresponding to the LTL property “aR b”.

A run of a tableau automaton over an input word is also an infinite sequence
of states q0q1 . . . starting with an initial state q0 ∈ Q0, but unlike simple Büchi
automata, there is an additional requirement beyond satisfying the transition
relation. For every i, the input letter αi ∈ 2AP of the word representing a
valuation of the atomic propositions must contain every proposition assigned to
qi+1 by L+ and must not contain any assigned by L−, formally: L+(qi+1) ⊆ αi
and L−(qi+1) ∩ αi = ∅. Accepting runs are defined the same way as for Büchi
automata.

At this point, it is important to emphasize that tableau automata are only a
special form of Büchi automata, with the same expressive power. An equivalent
Büchi automaton has the same states (including initial and final states), the same
alphabet, and a transition relation in the form of

⋃
〈q,q′〉∈∆{〈q, α, q′〉|L+(q′) ⊆

α,L−(q′) ∩ α = ∅}. Because of this equivalence, we will often refer to a Büchi
automaton directly corresponding to a tableau automaton to be in tableau form.
Every Büchi automata can be transformed into this form.

Figure 2 shows different representations of the LTL expression aRb. On Fig-
ure 2(a), the corresponding Büchi automaton is shown exactly as it is described
by the definition: each transition in the transition relation gets an own arc. La-
bels of the arcs are the sets representing valuations of the atomic propositions a
and b. Figure 2(b) shows the same automaton in a more compact form, merging
arcs and characterizing their labels with a conjunctive expression. This automa-
ton is in tableau form, since all of the arcs targeting the same state are labeled
by the same conjunction. Moving these labels to the state itself results in a
tableau automaton shown on Figure 2(c). Let φq denote the conjunction on the
arcs targeting q. Then the labeling functions L+ and L− are defined such that
every atomic proposition that is positive in φq is in L+(q), while those that are
negative are returned by L−(q).



3.2 Encoding the Product Automaton

For now, we assume that the state space and the next state relations of the
system are already computed. The specification is given as a Büchi automaton.
Since our main goal is to exploit the power of saturation in product generation,
we need to define the states and transitions in the way we did in Section 2.
Formally we build a product system which is a tuple M× = 〈S×,S×init, E×,N×〉
collecting states in S×, initial states in S×init and transitions into N× preferably
partitioned by events ε ∈ E× according to the events of the transition system.

Besides keeping the original state variables of the transition system, we need
one or more additional variables to encode the states of the automaton repre-
senting the property.1 Note that every event of the product system must affect
the encoding variables of the automaton, since their steps are synchronized. For
this reason, in order to keep the efficiency of the saturation iteration strategy,
these variables need to be situated in the lower levels of the decision diagram
encoding: inserting them immediately above the terminal level is an ideal choice.
This way the encoding has no impact on the Top values of system events. Since
the efficiency of saturation iteration strategy is highly dependent on the Top val-
ues of system events, not ruining the Top values produced by a good variable
order is a sane requirement towards any algorithm.

The encoding of the transitions is a bit more challenging: as mentioned in
Section 2 the steps of the system model and the property automaton need to
read the same input letters, i.e. valuations of atomic propositions in the checked
property. Thus it is insufficient to simply compute the Cartesian product of the
next state relation of the model and the transition relation of the automaton.

In Section 2, we have already defined the product automaton of M and
A. To define the next state relation of the product system, we will drop the
input labels of the transitions of the automaton: this can be done as saturation
is not interested in what input the product automaton reads during the state
space traversal as long as the system model and the property automaton both
read the same word. Formally, the next state relation of the product system is
N× = {〈〈s, q〉, 〈s′, q′〉〉|∃α ∈ 2AP , 〈〈s, q〉, α, 〈s′q′〉〉 ∈ ∆×}. While this definition
is mathematically correct and can even be realized as conjunctive-disjunctive
decomposition suitable for saturation [3] (i.e. events are kept and the next state
relation is the composition of next state relations of events), it fails to accomplish
one of our main goals: preserving the Top values of events.

If the synchronization on the input word is encoded into the next state re-
lation, Top values of every event are inevitably raised to the same value that
can even be K, the highest level possible. This means that saturation’s strategy
to apply the next state relation in a finer granularity is spoiled, every event is
processed on the same level and the optimizations of saturation targeting con-
currency are lost. To understand the reason of this raise in the Top values, we
define the subject level of atomic propositions.

1 The property automaton is typically small enough to get encoded into a single vari-
able, but a binary encoding (or anything in between) can also be used for a more
compact representation.



We assume that the truth value of an atomic proposition is only dependent
on a single state variable, we call this the subject of the atomic proposition. Let
Sub(p) denote the level on which this variable is encoded in the decision diagram.
Due to the synchronization, each step of the system model results in a step of the
property automaton. A step of the property automaton requires a full valuation
of the atomic propositions, so every event ε ∈ E× of the product system now
depends on all variables that are subjects of any p ∈ AP . By definition, this
means that supp(ε) ⊇ {i|∃p ∈ AP ,Sub(p) = i}, i.e. the support of ε contains
every level encoding variables that are subject to an atomic proposition in AP.
It is easy to see that Top(ε) is now at least max{i|∃p ∈ AP ,Sub(p) = i}. For
an example, imagine a property in which subjects of atomic propositions cover
every state variable, so regardless of variable ordering, all Top values are raised
to the maximum.

Since this is clearly not what we want to do, we devised a solution that
preserves the Top values of the events by decomposing the problem, separating
the next state relation and the constraint of reading the same word. This enables
us to keep saturation’s every advantage.

Our proposed solution exploits the way tableau automata work. Furthermore,
we employ the main idea of constrained saturation: check and fire. Instead of
intersecting relations, we 1) relax the next state relation of the product to N×∆
in order to ignore the input of the participating automata and then 2) only
allow state transitions reaching legal states. A reached state 〈s, q〉 is legal, if the
valuation L(s) determined by the system’s state satisfies φq, i.e. all propositions
in L+(q) are true and those in L−(q) are false. We use the characteristics of
tableau automata to be able to validate states, not steps – just like constrained
saturation does.

We have to constrain the steps of relaxed next state relation R = N × ∆
to traverse only legal states. As we utilize the constrained saturation algorithm
for this purpose, we have to compute the input constraint for the algorithm.
We have to recall now that constrained saturation computes the set of states
N (S)∩C in each step during the state space traversal, where C is the constraint
characterizing possible states. Following this idea, we define our constraint as the
set of legal states: C× = {〈s, q〉|s ∈ S, q ∈ Q,L+(q) ⊆ L(s), L−(q) ∩ L(s) = ∅}.

Last but not least, the initial states of the product system can be obtained by
pairing the appropriate initial states of A with initial states of M . The property
automaton is typically interpreted such that the input of the first step from the
initial state is the valuation implied by the initial state of M . This means that
we initialize the property with the current (initial) state of the system, observing
its behaviour starting from this point of time.

3.3 Abstracting the Constraint

The presented algorithm of Section 3.2 introduced an efficient encoding of
the product system by decomposing the transition relation into an over-
approximating next state relation and a constraint of legal states. We utilized



constrained saturation to build the state space of the product system. We de-
fined the legal state constraint as set C× = {〈s, q〉|s ∈ Srch , q ∈ Q,L+(q) ⊆
L(s), L−(q) ∩ L(s) = ∅}. With the previously defined next state relation R and
this constraint, the constrained saturation algorithm explores the state space
and builds a symbolic representation of the synchronous product.

We now introduce an abstraction layer providing the ability to build the
symbolic product representation. This abstraction layer will “virtualize” the le-
gal state constraint, letting us build the abstraction without precomputing the
state space of the system model. The virtual constraint will encode the possible
valuations and corresponding automaton states symbolically. Suppose that AP is
a list of atomic propositions pi ordered by Sup(pi), the level on which their sub-
jects are encoded. Then the constraint is the set

⋃
q∈Q(p1(q)× . . .×pn(q)×{q})

where pi(q) is a function assigning the possible valuations of pi that satisfies the
labeling of q, i.e. pi(q) = {true} if pi ∈ L+(q), pi(q) = {false} if pi ∈ L−(q) and
pi(q) = {true, false} otherwise.

This approach has the advantage of using the constrained saturation algo-
rithm with only a slight modification: the algorithm will only have to use the
simple function described above to determine the next constraint node based on
the valuations of the local states currently processed. This way the constraint
only depends on the property automaton and can be built before starting the
state space exploration.

4 Conclusion and Future Work

In this paper we introduced a basic algorithm which is suitable to serve as a
basic building element of the optimization of complex controlled process systems.
Our approach receives a special kind of Büchi automaton and the high level
description (for example Petri net) description of the system and produces the
synchronous product. The algorithm relies on the saturation iteration strategy,
which is widely used for model checking concurrent systems. With some slight
modifications we utilized it to be able to compute the synchronous product
i.e. the possible behaviours of the controlled process. In the future we plan to
integrate the introduced theory into practice and develop an on-the-fly algorithm
which can exploit saturation for supporting optimization tasks.
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