

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

PETRI NET BASED TRAJECTORY OPTIMIZATION

<u>Ákos Hajdu</u>, Róbert Német, Szilvia Varró-Gyapay, András Vörös

VOCAL 2014, Veszprém, Hungary, 16.12.2014.

European Union European Social Fund

Hungarian Government

INVESTING IN YOUR FUTURE

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

1. Introduction

- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

INTRODUCTION Petri Nets

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Information systems are becoming more complex

Modeling and automatic analysis is important

Modeling: Petri Nets

- Widely used modeling formalism
 - Asynchronous, distributed, parallel, non-deterministic systems
- Behavior: possible states and transitions
- Optimization problems
 - Optimal trajectory from the initial state to a given goal state
 - Reachability analysis

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Reachability analysis

- Checks, if a given state is reachable from the initial state
- $m_1 \in R(PN, m_0) \rightarrow "Is m_1$ reachable from m_0 in the Petri net PN?"
- Drawback: complexity

Complexity

- State space can be large or infinite
- Reachability is decidable, but at least EXPSPACE-hard
- No upper bound is known
- A possible solution is to use <u>abstraction</u>

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

• <u>CounterExample Guided Abstraction Refinement</u>

- General approach
 - Can handle large or infinite state spaces
- Works on an abstraction of the original model
 - Less detailed state space
 - Finite, smaller representation
- Abstraction refinement is required
 - An action in the abstract model may not be realizable in the original model
 - Refine the abstraction using the information from the explored part of the state space
- H. Wimmel, K. Wolf
 - Applying CEGAR to the Petri Net State Equation (2011)

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

CEGAR APPROACH ON PETRI NETS Initial abstraction

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

CEGAR APPROACH ON PETRI NETS Analysis of the abstract model

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

 Solving the state equation for the firing count of transitions

$$m_0 + C_X = m_1$$

- Integer Linear Programming problem
- Necessary, but not sufficient criterion for reachability

CEGAR APPROACH ON PETRI NETS Examining the solution

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Bounded exploration of the state space

Try to fire the transitions in some order

problem

Initial

abstraction

CEGAR APPROACH ON PETRI NETS Abstraction refinement

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- Exclude the counterexample without losing any realizable solution
- Constraints can be added to the state equation
 - The state equation may become infeasible
 - A new solution can be obtained
- Traversing the solution space instead of the state space

CEGAR APPROACH ON PETRI NETS Solution space

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

 $m_0 + C_X = m_1$

• Semi-linear space

- Base solutions
- T-invariants
 - Solutions of the homogenous part Cy = 0
 - Possible cycles in the Petri Net

Two types of constraints

- Jump: switch between base solutions
- Increment: reach non-base solutions

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

TRAJECTORY OPTIMIZATION Extensions to the CEGAR approach

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

• Our previous work

- Analyzing the algorithm
 - Correctness
 - Completeness
- Extending the set of decidable problems
- New optimizations

Current work

- Trajectory optimization using CEGAR
 - Assigning costs to transitions
 - New strategy for the solution space traversal

TRAJECTORY OPTIMIZATION Assigning costs to transitions

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

• Core of the CEGAR approach: state equation

- ILP problem
- ILP solver minimizes a function over the variables
- Variables are transitions in our case

Original algorithm

- Verification purpose \rightarrow Is there a soluton or not?
- Equal cost for each transition \rightarrow shortest trajectories

Our new approach

- Optimization purpose \rightarrow What is the optimal solution?
- Arbitrary cost for transitions
- ILP solver minimizes using the given cost

TRAJECTORY OPTIMIZATION New solution space traversal strategy

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

- Traversing the solution space of the state equation
- Original algorithm
 - Verification purpose \rightarrow Is there a soluton or not?
 - − Fast convergence \rightarrow DFS

Our new approach

- Optimization purpose \rightarrow What is the optimal solution?
- Store the solutions in a sorted queue
- Continue with the one with the lowest cost

PSEUDO CODE

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Input: Reachability problem $m_1 \in R(PN, m_0)$ and cost function *z* Output: Trajectory σ or "*Not reachable*"

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR

4. Evaluation

5. Conclusions

EVALUATION

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

Implementation

- PetriDotNet framework
 - Modeling and analysis of Petri nets
 - Supports add-ins

Measurements

- Traveling salesman problem
 - Graph traversal optimization
 - NP-complete

Number of nodes	Runtime (s)
4	0,04
6	0,14
8	0,66
9	0,90
10	1,95
11	9,49
12	24,57
13	1067,00

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

- 1. Introduction
- 2. The CEGAR approach on Petri nets
- 3. Trajectory optimization using CEGAR
- 4. Evaluation
- 5. Conclusions

CONCLUSIONS

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

New approach for the optimal trajectory problem

- Translation to the reachability of Petri nets
- Solving reachability using CEGAR
 - Handle transition costs
 - New strategy for solution space traversal
- Implementation and evaluation

Possible future direction

- Optimization of continuous systems

TÁMOP-4.2.2.C-11/1/KONV-2012-0004

National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

hajduakos182@gmail.com; vori@mit.bme.hu https://inf.mit.bme.hu/en/research/tools/petridotnet

European Union European Social Fund

Hungarian Government

INVESTING IN YOUR FUTURE