
Petri Net Based Trajectory Optimization

Ákos Hajdu1, Róbert Német1, Szilvia Varró–Gyapay2, and András Vörös1?

1 Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

2 Department of Computer Science and Systems Technology
University of Pannonia, Veszprém, Hungary

Abstract. Optimization problems are becoming more prevalent in the
design of complex systems. Petri nets are widely used for the modeling
of such systems. An optimization problem can be translated to find an
optimal trajectory where a cost is assigned to each step. The reachability
problem of Petri nets answers whether a given state is reachable from
the initial state. However, reachability analysis is a computationally hard
problem, especially in the case of asynchronous or infinite state systems.
In this paper we examine a recently published algorithm that solves
reachability using abstraction methods and we extend this approach to
be able to handle optimal trajectory problems.

1 Introduction

Nowadays, information systems are becoming more and more complex where
modeling and automatic analysis techniques gain an increasing task. Petri nets
are widely used for the description of such systems due to their expressive power
and simplicity. In addition cost parameters can be assigned to the transitions of
the Petri net that enables the modeling of optimization problems in discrete event
systems. Such optimization problems can be formulated as optimal trajectory
problems when an optimal path is searched for from a starting state to a target
state.

The so-called reachability problem is to answer the question whether a given
state is reachable from an initial state in the system. There are many algorithms
that solve or approximate the reachability problem of Petri nets. One of the most
efficient is the so-called “counterexample guided abstraction refinement” (CE-
GAR) algorithm, which takes the state equation of the Petri net as the initial
abstraction and refines it with constraints gained from the state space explo-
ration. As the reachability problem is at least EXPSPACE-hard, the algorithm
sacrifices the completeness for efficiency.

In this paper we introduce a new approach – based on the CEGAR algorithm
– to solve the optimal trajectory problem. Our algorithm traverses the state

? This publication has been supported by the European Union and Hungary and
co-financed by the European Social Fund through the project TÁMOP-4.2.2.C-
11/1/KONV-2012-0004 - National Research Center for Development and Market
Introduction of Advanced Information and Communication Technologies.

space with advanced exploration methods and discovers the necessary invariants
to find the trajectory. The algorithm is extended to handle cost functions and the
optimization problem drives the trajectory selection to find the optimal solution.

2 Background

In this section we introduce the background of our work. First, we present Petri
nets (Section 2.1) as the modeling formalism used in our work based on [7].
Then we introduce the reachability problem, which serves as a basis for opti-
mal trajectory search (Section 2.2). At the end of the section we present linear
programming briefly (Section 2.3).

2.1 Petri nets

Petri nets are graphical models for concurrent and asynchronous systems, pro-
viding both structural and dynamical analysis. A discrete Petri net is a tuple
PN = (P, T,E,W), where P is the set of places, T is the set of transitions, with
P 6= ∅ 6= T and P ∩ T = ∅, E ⊆ (P × T) ∪ (T × P) is the set of arcs and
W : E → Z+ is the weight function assigning weights w−(pj , ti) to the edge
(pj , ti) ∈ E and w+(pj , ti) to the edge (ti, pj) ∈ E.

A marking of a Petri net is a mapping m : P → N. If a place p contains k
tokens in a marking m then m(p) = k. The initial marking is denoted by m0.

Dynamic behavior. A transition ti ∈ T is enabled in a marking m, if m(pj) ≥
w−(pj , ti) holds for each pj ∈ P with (pj , ti) ∈ E. An enabled transition ti
can fire, consuming w−(pj , ti) tokens from places pj ∈ P with (pj , ti) ∈ E and
producing w+(pj , ti) tokens on places pj ∈ P with (ti, pj) ∈ E. The firing of
a transition ti in a marking m is denoted by m[ti〉m′ where m′ is the marking
after firing ti.

A word σ = t1t2 . . . tn ∈ T ∗ is a firing sequence. A firing sequence is realizable
in a marking m and leads to m′ (denoted by m[σ〉m′), if m[t1〉 . . . [tn〉m′. The
Parikh image of a firing sequence σ is a vector ℘(σ) : T → N, where ℘(σ)(ti) is
the number of the occurrences of ti in σ.

2.2 Reachability problem.

A marking m′ is reachable from m if a realizable firing sequence σ ∈ T ∗ exists, for
which m[σ〉m′ holds. The set of all reachable markings from the initial marking
m0 of a Petri net PN is denoted by R(PN,m0). The aim of the reachability
problem is to check if m′ ∈ R(PN,m0) holds for a given marking m′. The
reachability problem is decidable [6], but it is at least EXPSPACE-hard [5].

State Equation. The incidence matrix of a Petri net is a matrix C|P |×|T |,
where C(i, j) = w+(pi, tj)− w−(pi, tj). Let m and m′ be markings of the Petri
net, then the state equation takes the form m + Cx = m′. Any vector x ∈ N|T |
fulfilling the state equation is called a solution. Note that for any realizable
firing sequence σ leading from m to m′, the Parikh image of the firing sequence
fulfills the equation m + C℘(σ) = m′. On the other hand, not all solutions of
the state equation are Parikh images of a realizable firing sequence. Therefore,
the existence of a solution for the state equation is a necessary but not sufficient
criterion for the reachability. A solution x is called realizable if a realizable firing
sequence σ exists with ℘(σ) = x.

T-invariants. A vector x ∈ N|T | is called a T-invariant if Cx = 0 holds. A real-
izable T-invariant represents the possibility of a cyclic behavior in the modeled
system, since its complete occurrence does not change the marking. However,
during firing the transitions of the T-invariant, some intermediate markings can
be interesting for us.

Solution space. Each solution x of the state equation m + Cx = m′, can be
written as the sum of a base vector and the linear combination of T-invariants
[8], which can formally be written as x = b+

∑
i niyi, where b ∈ N|T | is the base

vector and ni ∈ N is the coefficient of the T-invariant yi ∈ N|T |.

2.3 Linear programming (LP)

Linear programming is a mathematical approach for finding an optimal solution
in a given mathematical model and requirements [2]. A linear programming
problem is formalized as follows:

minimize cTx,
subject to Ax ≤ b and x ≥ 0,

where x is the vector of variables, b, c are vectors and A is a matrix of coefficients.
The linear programming problem can be solved in polynomial time. When all
the variables of x are integers, the problem is called integer linear programming
(ILP) problem, which is NP-hard.

3 CEGAR

In this section we present the concept of abstraction (Section 3.1) and a recently
published algorithm that applies the CEGAR approach on the reachability prob-
lem of Petri nets (Section 3.2). Furthermore, we present some of our previous
improvements at the end of the section that optimize and extend the algorithm.

3.1 Abstraction

Abstraction is a general mathematical approach for solving hard problems. The
abstract model has a less detailed state space representation by hiding the irrele-
vant details. However, due to the abstraction, some action of the abstract model
may not be realizable in the original model. In this case, the abstraction has
to be refined. This approach is called the “counterexample guided abstraction
refinement” (CEGAR).

3.2 CEGAR approach on Petri nets

Recently, a new algorithm was published, which applies the CEGAR approach
on the reachability problem of Petri nets [8]. Figure 1 shows an overview of the
algorithm and each step is detailed later in this section.

Create initial
abstraction

Solve the
abstract model

Examine the
solution

Refine the
abstraction

Stop

Reachability
problem

State
equation

No solution

Solution

Realizable

Not realizableConstraints

Fig. 1. Petri net CEGAR algorithm flowchart

Initial abstraction. The input of the algorithm is a reachability problem m′ ∈
R(PN,m0), which is transformed into the initial abstraction, namely the state
equation of the form m0 + Cx = m′.

Solving the abstract model. Solving the abstract model (i.e. the state equa-
tion) is an integer linear programming problem. The ILP solver yields a minimal
solution with respect to the cost function. In the original algorithm [8] the sum
of the firing count of transitions is minimized in order to obtain trajectories with
the shortest length.

The feasibility of the state equation is a necessary, but not sufficient condition
for reachability, therefore if no solution exists, the target marking is not reach-
able. Otherwise, the obtained solution must be checked whether it is realizable
in the original model (i.e. in the Petri net PN).

Examining the solution. The solution of the state equation is a vector x ∈
N|T |, where x(t) denotes the number of times a transition t ∈ T has to fire
in order to reach m′ from m0. However, x does not include any information

about the order of the transition firings and whether they are enabled. Thus,
the algorithm must explore the state space of the Petri net with the limitation
that each transition t can fire at most x(t) times. If the target marking m′ can be
reached with this limit (i.e. x is realizable), it is a sufficient proof for reachability.
Otherwise, x is a counterexample and the abstraction has to be refined.

Refining the abstraction. If a solution x is not realizable, the ILP solver has to
be forced to generate a different solution. This can be done by adding additional
constraints (i.e. linear inequalities over transitions) to the state equation. The
following two types of constraints were defined in [8].

– Jump constraints have the form |ti| < n, where n ∈ N, ti ∈ T and |ti|
represents the firing count of the transition ti. Jump constraints can be used
to obtain different base vectors, exploiting their pairwise incomparability.

– Increment constraints have the form
∑k

i=1 ni|ti| ≥ n, where ni ∈ Z, n ∈ N,
and ti ∈ T . Increment constraints can be used to reach non-base solutions.
This means that a new solution x+ y is obtained, where y is a T-invariant.

After adding the new constraint, the state equation may become infeasible,
or a new solution is obtained. Figure 2 presents the solution space. The bottom
dots represent base solutions, while the cones represent the linear space formed
by the T-invariants. The upper dots correspond to non-base solutions. Jumps
are denoted by dashed arrows and increments by continuous arrows.

At each non-realizable solution multiple jump and/or increment constraints
can be applied. The algorithm traverses the solution space using depth-first
search until a realizable solution is found, or the state equation becomes infeasible
and there are no more solutions to backtrack to.

Fig. 2. Solution space of the state equation

Extensions. In our previous work [3] we proved by a counterexample that the
original algorithm [8] is incorrect and we suggested a solution to overcome the
problem. We also presented several examples where the algorithm could not

decide reachability. We extended the set of decidable problems, but the algo-
rithm still lacks completeness. Furthermore, we introduced some new optimiza-
tion methods in order to improve the efficiency of the algorithm [3].

4 Trajectory optimization

In this section we introduce our new approach that solves the optimal trajectory
problem based on the Petri net CEGAR algorithm (Section 4.1). We formu-
late our method using a pseudo code (Section 4.2) and we also present some
measurement results (Section 4.3).

4.1 Trajectory optimization using CEGAR

The core abstraction of the CEGAR algorithm is the state equation extended
with further constraints, which forms an ILP problem. The ILP solver yields a
solution minimizing a cost function on the variables. In the CEGAR approach
variables correspond to firing counts of transitions. Originally, the algorithm
assigned every transition an equal cost in order to produce trajectories with the
shortest length [8].

This behavior makes the CEGAR algorithm suitable for trajectory optimiza-
tion purposes. In our new approach we assign an arbitrary cost to transitions.
Therefore, the ILP solver now minimizes the total cost of the trajectory (i.e. the
sum of the costs of transitions) instead of its length.

In order to fit this strategy into the CEGAR approach, the solution space
traversal has to be modified slightly. The original algorithm explores the solution
space using DFS search for a fast convergence to a realizable solution. However,
we want an optimal solution regarding the cost function. Thus, we focus the
search on solutions with minimal total costs. This is achieved by storing the not
yet examined solutions in a sorted set, from which we always continue with the
minimal one.

Two examples can be seen in Figure 3 where the costs are written above the
transitions. Consider the example in Figure 3(a) where we want to produce a
token in p2. The minimal solution for the state equation is to fire t0 once and
t1 zero times (i.e. x0 = (1, 0)). However, this solution is not realizable since t0
is not enabled. By applying the jump constraint |t0| < 1, we obtain the solution
x1 = (0, 1) (i.e. firing t1 once), which is realizable.

Consider now the example in Figure 3(b) where we want to produce a token
in p0. The minimal solution for the state equation is to fire t0 once (i.e. x0 =
(1, 0, 0)). However this solution is not realizable since t0 is not enabled. By
applying the increment constraint |t1| ≥ 1, we can obtain the solution x1 =
(1, 1, 1), where the T-invariant {t1, t2} “borrows” a token in p1 to enable t0.

4.2 Pseudo code

Algorithm 1 presents our new approach using pseudo code. The input of the
algorithm is the reachability problem m′ ∈ R(PN,m0) and the cost z : T → Z

p2

p1

p0 t0

t1

2

1

(a) Jump constraint
example

p0p1p2 t0

t1

t2

1

1

2

(b) Increment constraint example

Fig. 3. Example nets for jump and increment constraints

assigned to transitions. The algorithm stores the solutions in a list Q. At first it
tries to solve the ILP problem with no constraints (the fifth parameter being ∅).
While there is a solution in the list that was not examined, the algorithm takes
out the solution x that has minimal total cost (zx). If the solution is realizable
by some firing sequence σ, the algorithm terminates. Otherwise it searches for
jump and increment constraints. An ILP problem is solved for each constraint
c′ by adding c′ to the previous constraints of x. If new solutions are found they
are put in the list Q. If all solutions were examined and no realizable is found,
the answer is “Not reachable”.

Algorithm 1: Trajectory optimizing CEGAR algorithm

Input : Reachability problem m′ ∈ R(PN,m0) and transition costs z
Output : Trajectory σ or “Not reachable”

1 C ← incidence matrix of PN ;
2 Q← ∅; // List of solutions
3 Q← SolveILP(m0,m

′, C, z, ∅);
4 while Q 6= ∅ do
5 x← {x | x ∈ Q, zx is minimal};
6 if x is realizable then stop and output σ for x;
7 else
8 foreach Jump and increment constraint c′ do
9 Q← SolveILP(m0,m

′, C, z, {constraints of x} ∪ {c′});
10 end

11 end

12 end
13 Output “Not reachable”;

4.3 Results

We implemented the CEGAR algorithm with our new approach as a plug-in
for the PetriDotNet framework [1]. We evaluated our implementation on the
traveling salesman problem. The results can be seen in Table 1.

Table 1. Measurement results for the traveling salesman problem

Number of nodes Runtime (s)

4 0,04
6 0,14
8 0,66
9 0,90
10 1,95
11 9,49
12 24,57
13 1067

Traveling salesman is a graph traversal optimization problem, which belongs
to the class of NP-complete problems [4]. The parameter of the problem is the
number of nodes in the graph.

5 Conclusion

In our paper we presented a promising new approach for the optimal trajectory
problem of discrete event systems. We translated this problem to the reachabil-
ity analysis of Petri nets by assigning a cost to the transitions. We solved the
reachability problem using the recently published and very efficient CEGAR ap-
proach. We extended the algorithm to be able to handle transition costs and we
modified the search strategy in order to reach the optimal solution. We imple-
mented our new approach and demonstrated its efficiency with measurements.
A possible future research direction is the optimization of continuous systems.

References

1. Homepage of the PetriDotNet framework., http://petridotnet.inf.mit.bme.hu/,
[Online; accessed 04-Nov-2014]

2. Dantzig, G.B., Thapa, M.N.: Linear programming 1: introduction. Springer-Verlag
New York, Inc., Secaucus, NJ, USA (1997)

3. Hajdu, Á., Vörös, A., Tamás, B., Mártonka, Z.: Extensions to the CEGAR approach
on Petri Nets. Acta Cybernetica 21(3), 401–417 (2014)

4. Karp, R.M.: Reducibility among combinatorial problems. Springer (1972)

5. Lipton, R.: The Reachability Problem Requires Exponential Space. Research report,
Yale University, Dept. of Computer Science (1976)

http://petridotnet.inf.mit.bme.hu/

6. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing. pp.
238–246. STOC ’81, ACM, New York, NY, USA (1981)

7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (April 1989)

8. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In: Tools
and Algorithms for the Construction and Analysis of Systems, 17th International
Conference, TACAS 2010 Proceedings. vol. 6605, pp. 224–238. Springer (2011)

	Petri Net Based Trajectory Optimization

