
Acta Cybernetica 22 (2016) 573–589.

Improving Saturation-based Bounded Model

Checking∗

Dániel Darvas†, András Vörös† and Tamás Bartha‡

Authors’ manuscript. Published in Acta Cybernetica, 22(3):573–589, 2016.
The final publication is available at http://www.inf.u-szeged.hu/actacybernetica/edb/.
DOI: 10.14232/actacyb.22.3.2016.2.

Abstract

Formal verification is becoming a fundamental step in assuring the cor-
rectness of safety-critical systems. Since these systems are often asynchronous
and even distributed, their verification requires methods that can deal with
huge or even infinite state spaces. Model checking is one of the current tech-
niques to analyse the behaviour of systems, as part of the verification process.

In this paper a symbolic bounded model checking algorithm is presented
that relies on efficient saturation-based methods. The previous approaches are
extended with new bounded state space exploration strategies. In addition,
constrained saturation is also introduced to improve the efficiency of bounded
model checking. Our measurements confirm that these approaches do not only
offer a solution to deal with infinite state spaces, but in many cases they even
outperform the original methods.

Keywords: model checking, symbolic model checking, CTL, bounded model
checking, saturation, asynchronous systems, compacting saturation

1 Introduction

The usage of formal methods is one of the possible solutions to assure the quality
of the more and more complex safety-critical, embedded systems. For this reason,
highly efficient formal verification algorithms are needed. Model checking is one
of the most prevalent formal verification technique. It is an automatic approach
to check whether the formal model (and thus the modelled system) satisfies its
specification. This specification can be expressed e.g. in Computation Tree Logic
(CTL) that is a popular temporal logic language thanks to the efficient verification
algorithms.

∗This work was partially supported by the ARTEMIS JU and the Hungarian Ministry of
National Development (NFM) in frame of the R5-COP (Reconfigurable ROS-based Resilient Rea-
soning Robotic Cooperating Systems) project.
†Department of Measurement and Information Systems, Budapest University of Technology

and Economics, Budapest, Hungary. E-mail: darvas@mit.bme.hu, vori@mit.bme.hu.
‡Institute for Computer Science and Control, MTA SZTAKI, Budapest, Hungary.



574 D. Darvas, A. Vörös, T. Bartha

Model checking traverses the state space of the model being analysed. Safety-
critical systems are often asynchronous, even distributed, therefore the composite
state space of their asynchronous subsystems can be as large as the Cartesian
product of the local components’ state spaces, i.e., the state space of the whole
system “explodes”. Symbolic methods [7] are advanced techniques to handle huge
state spaces of synchronous systems: instead of storing states explicitly, symbolic
techniques rely on an encoded representation of the state space. Ordinary symbolic
methods, however, usually perform poorly for asynchronous systems.

Saturation [3] is considered as one of the most effective state space generation
and model checking algorithms for asynchronous systems. It combines the efficiency
of symbolic methods with a special iteration strategy. Saturation-based state space
exploration computes the set of reachable states. The so-called saturation-based
structural model checking algorithm can evaluate temporal logic properties. Nowa-
days, the so-called constrained saturation-based structural model checking algorithm
is one of the most efficient algorithms for CTL model checking [13].

However, the state space of many complex models is either infinite, or too large
to be represented even symbolically. In these cases bounded model checking can be
a solution, as it explores and examines the prescribed properties on a bounded part
of the state space. Bounded saturation-based state space exploration was introduced
in [12], i.e., an algorithm that explores the state space only to some bounded depth.

Motivation and Previous Work. Former saturation-based approaches solved
only one of the problems: they could either be used for structural model checking
over the entire state space; or they could traverse the state space up to a given
bound, but without checking complex properties. In the method presented here
these two approaches are integrated. Our algorithm incrementally explores the state
space and performs structural model checking on the discovered bounded partial
state space. Furthermore, bounded model checkers usually do not support the full
CTL [8]. Although there were theoretical results in this field, former bounded model
checking approaches did not work well with CTL due to its branching semantics.

This paper extends our former work [11] described in Sect. 3.1 with new state
space exploration strategies and with an efficient formula evaluation algorithm
(namely constrained saturation) to traverse the bounded state space. This is the
first approach where the constrained saturation is used in bounded model checking.

The structure of our paper is as follows: Sect. 2 introduces the background and
prerequisites of our work. Sect. 3 gives an overview of the advanced saturation-
based algorithms our work relies on. Sect. 4 describes the improvements of the
bounded CTL model checking algorithm. Sect. 5 presents our measurement results.
At the end, our conclusions and ideas for future work complete the paper.

2 Background

In this section we outline the theoretical background of our work. First, we describe
decision diagrams, which form the underlying data structures of our algorithms.



Improving Saturation-based Bounded Model Checking 575

After that, we introduce the principles of bounded model checking. Finally, we
overview the saturation-based state space exploration algorithm and the model
checking background.

2.1 Decision Diagrams

This section is based on [11]. Decision diagrams are used in symbolic model checking
for efficiently storing the state space and the possible state changes of the models.
A Multiple-valued Decision Diagram (MDD) [3] is a directed acyclic graph, repre-
senting a function f consisting of K variables: f : {0, 1, . . .}K → {0, 1}. An MDD
has a node set containing two types of nodes: non-terminal nodes and terminal
nodes (terminal 0 and terminal 1). The nodes are ordered into K + 1 levels. All
non-terminal nodes are labelled by a variable index 1 ≤ k ≤ K, which indicates the
level the node belongs to (the variable it represents), and has nk (domain size of
the variable) arcs pointing to nodes in level k− 1. The terminal nodes are labelled
by the variable index 0.

In our representation, duplicate nodes are not allowed, so if two nodes have
identical successors in level k, they are also identical. These rules ensure that MDDs
provide a canonical and compact representation of a given function or set. The
function is evaluated by traversing the MDD top-down via the variable assignments
represented by the arcs between nodes.

Figure 1(a) depicts a simple example Petri net [9] model of a producer-consumer
system. The producer creates items and places them in the buffer, from where the
consumer removes them. For synchronizing purposes, the buffer’s capacity is one,
so the producer has to wait till the consumer takes away the item from the buffer.
This Petri net model has a finite state space containing 8 states. Figure 1(b) depicts
an MDD used for storing the encoded state space. Each edge encodes a possible
local state [3]. The possible (global) states are the paths from the root node to the
terminal one node. (The model has to be decomposed to be able to represent its
state space using decision diagrams efficiently. This decomposition will be discussed
in Section 2.3.)

producer buffer consumer

(a) The Petri net of the
producer-consumer model

terminal
level

consumer
level

producer &
buffer level

11

(b) State space
representation with MDD

(c) State space and distance
representation with EDD

Figure 1: Producer-consumer example

The bounded saturation-based state space exploration algorithms use Edge-
valued Decision Diagrams (EDDs) too. EDDs extend MDDs with extra informa-



576 D. Darvas, A. Vörös, T. Bartha

tion: they can represent f : {0, 1, . . .}K → N ∪ {∞} functions. It means that in
addition to storing the state space, they can also store the distance information for
bounded state space generation. As it is not directly used in our contributions, we
omit the detailed introduction of EDDs and we refer the reader to [12] for details.

2.2 Model Checking and Bounded Model Checking

Given a formal model, model checking [7] is an automated technique to decide
whether the model satisfies the specification. Formally: let M be a Kripke structure
and let f be a formula of temporal logic. The goal of model checking is to find all
states s of a model M such that M, s � f (meaning that the state s of model M
satisfies f).

Bounded model checking [2, 6] decides whether the model satisfies the specifi-
cation in a predefined number of steps, i.e., the depth of the state space traversal.
Formally the problem for the k-bounded state space is to find all states s of M
such that M, s �k f (meaning that the state s of model M satisfies f in at most k
steps). Among others, bounded model checking is useful when the full state space
is not needed to decide on a property. This is e.g. the case for shallow bugs.

Structural model checking uses set operations to evaluate temporal logic specifi-
cations by computing fixed points in the state space. CTL [7] is a widely used tem-
poral logic specifications formalism. It has expressive syntax, and structural model
checking provides efficient algorithms to analyse CTL specifications. CTL expres-
sions contain state variables, Boolean operators, and temporal operators. Temporal
operators occur in pairs in CTL: the path quantifier, either A (on all paths) or E
(there exists a path), is followed by the tense operator, one of X (next), F (future,
or finally), G (globally), and U (until). However, only three: EX, EU, EG of the 8
possible pairings is enough to express all the possible expressions due to duality [7].

2.3 Saturation

Saturation is a symbolic algorithm for state space generation and model checking.
Decomposition serves as the prerequisite for the symbolic encoding: the algorithm
maps the state variables of the chosen high-level formalism into symbolic variables
of the decision diagram. The global state of the model can be represented as the
composition of the local states of components: s = (s1, s2, . . . , sn), where n is the
number of components. See Figure 1(b) for a possible decomposition and the corre-
sponding MDD representation of the example model in Figure 1(a). Furthermore,
decomposition helps the algorithm to efficiently exploit locality, which is inherent
in asynchronous systems. Locality ensures that a transition usually affects only a
limited set of components or just certain parts of the submodels. The algorithm
divides the global next state function N into smaller parts: N =

⋃
e∈E Ne, where

E is the set of events in the high level model. The granularity of the decomposition
can be chosen arbitrarily [5].

Saturation uses symbolic encoding of the next state function. In our work we use
the symbolic next state representation from [1]. We represent N as a set of state



Improving Saturation-based Bounded Model Checking 577

pairs, thus it can be stored in a decision diagram. For this set representation R, the
following is true: s′ ∈ N (s) ⇔ (s, s′) ∈ R ⇔ R(s, s′) is true. The global relation
can be expressed by the symbolic next state relations of the events: R(s, s′) =∨
e∈E Re(s, s′). Applying Ne to a given set of states represented by S results in
Ne(S) = RelProd(Re,S), where RelProd is RelProd(R,S) = {s′|∃s ∈ S, (s, s′) ∈ R}
[5]. The smaller the partitions, the less computation they need, but there is a
minimum imposed by the high-level formalism.

Saturation uses a special iteration strategy, which is efficient for asynchronous
systems. The construction of the MDD representation of the state space starts
by building the MDD representing the initial state (Sinit). Then the algorithm
saturates every node in a bottom-up manner, by applying saturation recursively,
as if new states are discovered. Saturation iterates through the MDD nodes and
generates the complete state space representation using a node-to-node transitive
closure. This way saturation avoids the peak size of the MDD to be much larger
than the final size, which is a critical problem in traditional approaches.

Saturation-based Structural Model Checking. Saturation-based structural
CTL model checking was first presented in [4], where the authors introduced how
the least fixed point operators can be computed with the help of saturation. CTL
model checking explores the state space in a backward manner. It constructs the
inverse representation N−1 and computes the inverse next state, greatest and least
fixed points of the operators. The semantics of the three implemented CTL oper-
ators [7] is the following:

• EX: s0 � EX p iff ∃s1 ∈ N (s0) s.t. s1 � p. EX corresponds to the function
N−1, applying one step backward through the next state relation.

• EG: s0 � EG p iff s0 � p and ∀n > 0,∃sn ∈ N (sn−1) s.t. sn � p so that there
is a strongly connected component containing states satisfying p. This needs
a greatest fixed point computation. Saturation cannot be applied directly,
however the fixed point computation still benefits from the locality due to
decomposition.

• EU: s0 � E[p U q] iff s0 � p and ∃n > 0,∃s1 ∈ N (s0), . . . ,∃sn ∈ N (sn−1) s.t.
sn � q and sm � p for all m < n (or s0 � q). The states satisfying this property
are computed with the following least fixed point: lfp Z[q ∨ (p ∧ EXZ)], i.e.,
we search for a state q reached through only states satisfying p.

3 Bounded and Constrained Saturation

In this section an overview is given of the two saturation-based advanced algo-
rithms integrated in our new approach. Bounded saturation is used for state space
exploration. Constrained saturation is used to restrict structural model checking to
the bounded state space. Their integration leads to the saturation-based bounded
model checking algorithm, which exploits the efficiency of structural model checking
for bounded state spaces.



578 D. Darvas, A. Vörös, T. Bartha

3.1 Bounded Saturation

It is difficult to exploit the efficiency of saturation for bounded state space ex-
ploration, because saturation uses an irregular recursive iteration order, which is
completely different from traditional breadth-first traversal. Consequently, bound-
ing the recursive exploration steps of saturation does not necessarily guarantee this
bound to be global for the state space representation.

There are different solutions for this problem in the literature, both for globally
and locally bounded saturation-based state space generation. We chose one that
has already proved its efficiency [12]. Although MDDs provide a highly compact
solution for state space representation, bounded saturation needs additional dis-
tance information during the traversal. For this reason, our chosen algorithm uses
EDDs instead of MDDs, and —in addition to the state space— it also encodes
the minimal distance of each state from the initial state(s). The algorithm first
iterates through the state space until a given bound is reached. After that it cuts
the parts that are beyond the depth of the traversal from the EDD, thereby com-
puting the reachability set below the bound. The algorithms in [12] use multiple
different cutting strategies. In this work we use the strategy enforcing strict bounds
(TruncateExact method) extended with our caching mechanism from [11].

3.2 Constrained Saturation

In [13] the authors introduced an advanced saturation-based iteration strategy for
the purpose of structural model checking. The algorithm, called constrained sat-
uration, computes the least fixed point of the reachability relation that satisfies a
given constraint.

The main novelty of the new algorithm is the slightly different iteration style.
Instead of combining saturation with breadth-first traversal, it uses a pre-checking
phase. The algorithm builds on the following observation: in order to do the sym-
bolic step Ne from the set of states S to a set of states satisfying the constraint
C (represented by an MDD), we have to compute Ne(S) ∩ C. This contains an
expensive intersection operation after each step. Using the following observation:
Ne(S)∩C = RelProd(Re, S)∩C = RelProd({(s, s′)|Re(s, s′)∧s′ ∈ C}, S), the algo-
rithm can use pre-checking phase and avoid the computation-intensive intersection
operation after the symbolic state space step [13], simply skipping the steps that
“go out” of the constraint. Researches showed that the constrained saturation is
faster than traditional saturation when there is a constraint on the possible states.
This is the situation e.g. in the case of the EU CTL operator.

4 Efficient Methods for Saturation-based Bounded
Model Checking

In this section, a new, saturation-based bounded model checking algorithm is pre-
sented. The classical saturation-based, non-bounded model checking consists of



Improving Saturation-based Bounded Model Checking 579

two consecutive steps: 1) state space exploration; and 2) evaluation of the CTL
formula on the explored state space.

The bounded saturation-based model checking (see Fig. 2) performs these steps
in an iterative way, where the state space exploration is done until a given bound
b that is incremented in each iteration [11]. The input of this iterative algorithm is
the initial bound B and an increment value δ: after each iteration, model checking
analyses the property on the bounded state space and from the result it makes a
termination decision if the iteration has to be continued. If the search is continued,
then the procedure is restarted with an incremented depth b := b+ δ.

b:=B
Bounded state 

space exploration
with bound b

Checking the CTL 
formula on the 

bounded state space

state
space
EDD

Termination?

result

yes
b:=b+δ

no output:
result

Converting 
state space 

EDD to MDD

state
space
MDD

Figure 2: Overview of the saturation-based bounded model checking

Section 4.1 provides various methods for the bounded state space exploration
using saturation. Section 4.2 describes a new, hybrid state space exploration ap-
proach combining EDDs and MDDs. Section 4.3 improves the CTL formula check-
ing phase. Section 4.4 is dedicated to the discussion of the termination decision
mechanism. Finally, Section 4.5 summarizes the contributions.

4.1 State Space Exploration Strategies

The used search strategy for the bounded model checking has a significant impact
on performance. In this section different possible search strategy alternatives are
introduced and compared. With regard to bounded state space generation, there
are two main approaches: (1) Ideally, a fixed bound b can be given. The b-bounded
state space is explored and the specification is evaluated on it. We call it the fixed
bound strategy. This is typically not possible, as the necessary b is not known a
priori. (2) Given an initial bound B and increment value δ, the state space is
explored incrementally with bound b = B + (n − 1) · δ in each iteration n. The
procedure stops when the model checking question is answered, or it runs out of
resources. We call it the incremental strategy.

Traditionally, bounded model checking uses the incremental strategy, typically
looking one step further (δ = 1) in the state space in a breadth-first manner.
According to the characteristics of the saturation iteration strategy, our experiences
show that it is better to let saturation increase the depth by at least 5–10 steps.
Finding a good trade-off in choosing the iteration depth is important. A one-step
iteration would lose the efficiency of saturation. On the other hand, a too large
increase of search depth results in the loss of the efficiency of the bounded iteration
strategy.



580 D. Darvas, A. Vörös, T. Bartha

We have developed two basic incremental search strategies:

• The restarting strategy starts again from the initial state after each iteration,
and uses the increased bound in the exploration [11].

• The continuing strategy reuses the formerly explored bounded state space as
the set of initial states in the next iteration, and extends it using the bounded
saturation algorithm to represent the state space of the increased bound.

The restarting strategy is straightforward to implement and builds mainly on the
efficiency of saturation. It simply uses the bounded saturation algorithm with grow-
ing bound values. We refer the reader to our previous work [11]. For the continuing
strategy we had to modify the bottom-up building mechanism of the saturation al-
gorithm. For this purpose, we needed to extend the algorithm to be able to handle
even huge initial state sets. This extension contains the modification of the trun-
cating operations, the caching mechanisms in order to preserve correctness, and
the construction of the decision diagram representation to be able to handle huge
initial set of states. The continuing strategy can reuse more from the formerly built
data structures, making the algorithm typically more efficient than the restarting
algorithm.

The result of the bounded state space exploration step is an EDD containing
all the states that are within the current bound b, and the next-state relation R
encoded by an MDD. These artefacts are exactly the same for both incremental
strategies.

The next section describes a third, hybrid incremental search strategy, the com-
pacting strategy.

4.2 Compacting Strategy

The two incremental state space exploration strategies introduced in the previous
section have a common weakness: they store the whole [0; b] part of the state space
(i.e., the states with distance between 0 and b; marked as S[0;b] in the following) in
a single EDD. The algorithms use EDD for storing the distance information from
the initial state for each state, which is not possible in case of the MDD encoding.
This information is necessary to limit the state space exploration at the bound b.
The storage of the distance has its price to pay: the EDD representation of the
state space is typically less compact than the MDD representation (compare for
example Fig. 1(b) and Fig. 1(c)).

While it is unavoidable to store distance information for some states to enforce
the bound b, it is not necessary for all the states. Consider the nth iteration (n > 1).
In this case, the S[0;b′] should be the result of the bounded state space exploration
(where b′ = B+ (n− 1) · δ). However, the S[0;b′−δ] part was already explored in the
previous iteration, and it is known that these states will be present in S[0;b′] too.
These states can be stored in the more compact MDD format. The main idea of the
new so-called compacting saturation method is to store the state spaces discovered
in previous iterations using a more compact, MDD-based representation.



Improving Saturation-based Bounded Model Checking 581

Initial State Set. In the previous exploration strategies, each iteration was
started either from the initial state (fixed bound strategy, restarting strategy),
or from the state space of the previous iteration (that is S[0;b′−δ]). The goal of
compacting saturation is to avoid the EDD encoding for states S[0;b′−δ], if possible.
Therefore this exploration cannot be started from the initial state of from S[0;b′−δ],
as it would require the EDD encoding of these states.

It is easy to see that starting the algorithm from S[0;b′−δ] is unnecessary. Ob-
viously, N (S[0;b′−δ−1]) ⊆ S[0;b′−δ]. Therefore new states can only be found from
the states on the “border of the bounded state space”, i.e., from the states in
S[b′−δ;b′−δ], this will be the initial state set of the next iteration.

Details of the Compacting Saturation. In the following, the steps of the new
compacting saturation algorithm are described in details.

The first iteration of the compacting saturation is started from the state (set)
I1 = Sinit and it explores the state space until the bound b = B. The result
is the state set S[0;b] encoded by EDD. Then the algorithm computes the border
of the state space, i.e., S[b;b] = C1 and converts the EDD of S[0;b] to an MDD
representation M =M1. The CTL formula will be evaluated on M.

After, in each iteration n > 1 where the bound is b′ = B + (n − 1) · δ, the
exploration is started from In = Cn−1 = S[b′−δ;b′−δ]. The state space is explored
until the bound b′ that is S[b′−δ;b′]. Next, the algorithm computes the border of
the state space Cn = S[b′;b′] and converts the EDD of the state space explored in
the current iteration (S[b′−δ;b′]) to an MDD representation Mn. The MDD M is
modified in order to include Mn too, to represent M =

⋃n
i=1Mi. The evaluation

of the CTL formula will be performed on this M.

The state sets Ci can be computed using a modified version of the truncation
operators described in [12].

Avoiding to Revisit States. During the traversal the previously explored states
(M) should not be re-explored: no states of

⋃n
i=1Mi should be explored again in

iteration n + 1. To be more precise, the goal of the algorithms is the following to
keep: Mn+1 ∩ (

⋃n
i=1Mi \ In+1) = ∅ (overlap in the initial state set is allowed).

This is an obvious consequence of the state space parts defined above, i.e., S[b;b+δ]∩
S[b+δ;b+2δ] = S[b+δ;b+δ]. However, if a state s ∈ Mj (j < n) is reachable from In,
it can be explored during the iteration n causing that it will be part ofMn too. It
effectively means that the state s will be stored with two different distance value.
The algorithm has to prevent this situation for efficiency reasons and also to keep
the correctness.

A solution could be to subtract M from the state set of the current iteration
after each step. It would make the method correct, but not efficient. The prob-
lem is similar to the motivation of the constrained saturation, except that here
the forbidden states should be excluded, not the set of allowed states should be
respected. Using the observation of constrained saturation, the following will be
true: Ne(S) \ X = RelProd(Re, S) \ X = RelProd({(s, s′)|Re(s, s′) ∧ s′ /∈ X}, S)



582 D. Darvas, A. Vörös, T. Bartha

If we use the observation above with X =M as set of forbidden states, it can
be efficiently avoided to reexplore states that were already explored in previous
iterations.

4.3 Constrained Saturation using the Bounded State Space

Many model checking tools limit the syntax of the specification to a subset of the
CTL temporal language, in order to simplify the analysis task and to boost the
performance. We want to support the full semantics of CTL in model checking,
and thus we must use backward traversal. This is our main reason for choosing the
traditional, fixed point-based algorithms; as the semantics of forward and backward
CTL model checking are different (and incomparable) [8].

The naive approach to combine bounded exploration and structural model
checking would be to apply the fixed point computations from the bounded state
space on the complete lattice. However, the efficiency of this approach would con-
verge to traditional fixed point computations. Due to the symbolic representation
of the saturation algorithm, it would be possible to check certain states that are
not inside the explored, bounded part of the state space. It could be improved by
constructing the intersection of the result of fixed point iterations with the bounded
state space representation, but this still suffers from poor performance due to the
extensive use of the costly intersection operation.

Our aim is to exploit the constrained saturation iteration strategy to provide
an efficient bounded model checking algorithm. The symbolically encoded explored
bounded state space can serve as the constraint in the constrained saturation algo-
rithm. This way we can expeditiously bound the least fixed point computations: in-
stead of employing the intersection operation after each step (image computation),
the algorithms apply intersection only at the beginning of the fixed point compu-
tations (when they compute the inputs of the constrained saturation algorithm).
Below we define how the constrained saturation decides on the essential CTL op-
erators (where lfp denotes the least fixed point, and bss denotes the bounded state
space as stored by the MDD):

• EF: M, s �k EF p iff s0 ⊆ lfp Z[(p ∧ bss) ∨ (bss ∧ EXZ)] = ConsSatura-
tion(bss, p ∩ bss)1. This way we can directly exploit the constrained satura-
tion algorithm to produce the least fixed point in the given bounded state
space bss. The fixed point computational traversal explores only states inside
bss, while the only intersection operation is used at the computation of the
input argument: p ∩ bss. The result can be utilised by other, both least and
greatest fixed point operators.

• EU: M, s �k E[pU q] iff s0 ⊆ lfp Z[(q ∧ bss) ∨ (bss ∧ p ∧ EXZ)] = ConsSat-
uration(bss ∩ q, bss ∩ p). This is similar to using the constrained saturation
algorithm in traditional saturation-based model checking [13], but within a
bounded setting. The fixed point computational traversal explores only states

1For the pseudocode of the ConsSaturation function we refer the reader to [13].



Improving Saturation-based Bounded Model Checking 583

inside bss, while the only intersection operations are used at the computation
of the input arguments: bss ∩ p and bss ∩ q. This result can also be nested
into both least and greatest fixed point operators.

As greatest fixed point computations (EG) and simple next state operators (EX)
do not require such restrictions in the exploration, we apply traditional fixed point
algorithms for them. Although operator EF is just a special case of operator EU,
for performance reasons it is worth to be implemented separately.

4.4 Decision Mechanism

It is also necessary to be able to decide if an answer can be given to the requirement
checked. The bounded model checking is a semi-decision procedure, therefore it can
be used to ensure the following behavioural properties of the specification:

• Invariant or safety : proving these properties needs either the full state space
to be explored, or bounded model checking can give a finite counterexample
(or witness), if it exists.

• Liveness: bounded model checking can either find a lasso-shaped trace as
counterexample (or witness) to these properties, or the full state space has to
be explored to evaluate them.

• Other properties, like combination of safety and liveness properties: 3-valued
logic can be used for decision. We refer the reader to our previous work [11].

Obviously, the bounded model checking can also be terminated if the full state
space is already explored. In the case of the compacting algorithm, this can be
detected easily by checking if Cn = ∅. If Cn = ∅, the algorithm terminates.

Invariant and safety properties are usually proved (by symbolic model checking)
by finding inductive invariants without exploring the full state space. This approach
cannot be used directly for liveness properties.

Finding Inductive Proof Against Liveness Properties. The EDD-based
state space representation helps us to tell more about liveness properties. Refuting
liveness properties may come from the fact that: either (1) the algorithm has to
explore more from the state space to find a witness, or (2) the liveness property
does not hold, and there exists a counterexample in the bounded state space.

Our approach can handle these differences. This is in contrast to non-saturation-
based bounded model checking approaches, since they have to encode the difference
of the two cases into the SAT formula directly, which is inefficient. If a liveness
property EG p does not hold in the bounded state space bss, we can decide whether
to investigate the state space further, or to conclude that it will never hold. Let
pd=bound be the set of states, where p is true and their distance from the initial state
is d = bound. pd=bound is encoded in the EDD, we need to traverse it only once to
get this state set. It can be computed efficiently from the symbolic encoding. Let
result = lfp Z[pd=bound ∨ (p ∧ EXZ)] = ConsSaturate(p, pd=bound), thus result is



584 D. Darvas, A. Vörös, T. Bartha

the set of states from which the pd=bound states can be reached only through states
where p holds. If the initial state is not in the set result, the evaluation of EG p can
be finished, as the result cannot be true: s0 /∈ result⇒ s0 6� EG p.

4.5 Summary of the Contributions

In this section we described improvements of the saturation-based bounded model
checking algorithm. New incremental state space exploration algorithms were pre-
sented (continuing and compacting saturation) that can reduce the overhead of the
incremental methods compared to the fixed bound strategy.

With the novel use of constrained saturation, the algorithm avoids to examine
states outside of the discovered bounded state space in the model checking phase
without the need of expensive intersection operators. This way ∀f(Z): fp f(Z) ⊆
bss, for all fixed point the bounded saturation algorithm is bounded by the state
space, even for the least fixed point computations.

5 Evaluation

We have performed many measurements in order to examine the efficiency of our
new algorithm and compare it to a classical saturation-driven structural model
checking algorithm. We have also examined the scalability of the new approach and
compared to the former one. For this purpose we have developed an experimental
implementation using the C# programming language of the fixed bound strategy
(B-Fix ), the restarting incremental strategy (B-I-Rest), the continuing incremental
strategy (B-I-Cont), and for the compacting saturation (B-I-Comp). We have also
implemented the algorithm taken from [13] as the reference for comparison, which
we denoted in the measurements as “Unlim”. For the measurements we used a
desktop PC (Intel Core i7-3770 3.4 GHz CPU, 8 GB memory with Windows 7 x64
and .NET 4.0 framework).

5.1 Measurements on Benchmark Models

This section shows measurements on benchmark models widely known in the model
checking community. We used the models2 of Dining Philosophers (DPhil–N , [5]),
Flexible Manufacturing System (FMS–N , [5]), Tower of Hanoi (Hanoi–N , [11]), an
assembly line using Kanban method (Kanban–N , [5]), the Round Robin protocol
(RR–N , [3]), and the Slotted Ring protocol (SR–N , [3]).

Both the initial bound B and the increment distance δ are input parameters,
thus our algorithm can be fine-tuned by the user. If the properties to be proven
are expected to be “shallow”, then the algorithm can be set to work optimally for
smaller distances. On the other hand, when the properties to prove are “deeper”,
then both the initial bound and the increment distance can be set bigger to find a

2The models can be downloaded from http://petridotnet.inf.mit.bme.hu/publications/

AC2014-Saturation_DarvasEtAl_models.zip



Improving Saturation-based Bounded Model Checking 585

proof in fewer iterations. A priori knowledge about the expected behaviour of the
properties can significantly reduce the computational time.

Table 1 lists the runtime measurements for various CTL expressions on different
models with different parameters.

The Dining Philosophers (DPhil–N , where N is the number of philosophers)
model revealed that for those models, where the saturation algorithm answers the
model checking question quickly, the overhead of bounded model checking does not
pay off. This is also the case for the chosen requirements for the Round Robin (RR-
N) models, where the traditional saturation algorithm is highly efficient. These
models are built from many identical components with relatively small local state
spaces: the saturation algorithms traverses the possible state spaces very fast.

As can be seen in Table 1, saturation-based model checking can be highly ef-
ficient for asynchronous systems, and the modified bounded iteration strategy re-
quires more computational resources, so one would expect that for these (especially
for models DPhil and RR and SR) models the traditional approach performs bet-
ter. However, the SR–N models (where N is the number of communication nodes)
shows the advantage of bounded model checking, as traditional model checking
has high runtimes even for a relatively simple property. This is a typical use case
for bounded model checking as the property could be verified in a relatively small
depth. The SR–N models have quite complex behaviour, where bounded model
checking can significantly decrease the verification time.

We have measured the runtime for also synchronous models as the efficiency of
the algorithms depends also on the extent of the synchronization in the systems.
The verification goal was a combined safety-liveness property (EG(EF(B↓8 = 1)) of
the Towers of Hanoi models, where B↓8 = 1 denotes the placement of the 8th disk to
the 2nd rod, see the Petri net models for further details). The traditional structural
model checking approach (Unbounded) runs out of resources early. Running the
algorithm parameterised by the formerly computed bound (being enough to answer
the verification question) (Bounded, fixed bound) has the best runtime results. The
continuing strategy has advantage over the restarting strategy, as it uses up the
formerly computed results during the model checking.

Similar results can be observed for the FMS model. The measurements of
the FMS models also used a combined safety-liveness property that represents the
existence of a cycle in a certain set of states satisfying safety requirements (based
on [4]). The structural model checking algorithm time-outs for large parameters.
For small values of N the unbounded method had the lowest runtime, but for
increasing parameters the compacting saturation outperformed both the unlimited
and the other bounded algorithms. The compacting method provided better results
than the B-Fix method thanks to the efficient state space representation.

In some cases, like in the case of the FMS or the Kanban model with the chosen
requirements, the restarting strategy solves the model checking problem for every
parameter faster than the continuing strategy. We investigated the reason: as it
is depicted in Figure 3(a), the state space representation of asynchronous systems
(like FMS) grows steeply up to a maximal value (557 nodes), but after that it starts
decreasing (resembling a bell curve) until 148 that is the final size of the state space



586 D. Darvas, A. Vörös, T. Bartha

0 10 20 30 40
0

200

400

600

Bound

N
o
d

es
in

th
e

E
D

D

(a) FMS–3

0 100 200
0

1,000

2,000

3,000

Bound

N
o
d

es
in

th
e

E
D

D Continuing

Compacting

(b) Hanoi–8

Figure 3: Size of state space representation (EDD) at each iteration

Table 1: Run times of CTL expression evaluation

Run time3 [s]

N Unlim B-I-Rest B-I-Cont B-I-Comp B-Fix

(1) DPhil–N , expression: E(¬eating2 U eating1), B = 20, δ = 10)
10 0.09 0.10 0.09 0.33 0.04
50 0.12 5.02 5.12 1.81 0.58
100 0.22 12.78 12.92 3.88 1.45

(2) FMS–N , expression: EG(E(M1 > 0 U (P1s = P2s = P3s = 3))), B = 20, δ = 10)
25 1.00 40.02 40.57 18.65 37.39
50 5.54 56.31 59.51 21.96 44.99
100 48.33 61.68 63.51 21.78 47.03
1000 >600 60.17 62.12 21.69 47.67
10,000 >600 60.06 62.40 21.59 54.34

(3) Hanoi–N , expression: EG(EF(B↓8 = 1)), B = 20, δ = 10)
12 21.97 2.49 0.81 1.55 0.36
14 >600 2.89 0.98 2.39 0.46
16 >600 3.25 1.11 1.83 0.49
18 >600 3.60 1.22 1.91 0.56
20 >600 4.08 1.43 2.14 0.67

(4) Kanban–N , expression: EF(pout4 = 5), B = 20, δ = 10)
30 0.31 1.01 1.29 3.11 0.53
50 1.91 1.36 1.73 3.65 0.69
100 26.51 1.37 1.78 3.64 0.67
200 >600 1.37 1.74 3.68 0.68

(5) RoundRobin–N (RR–N), expression: EG(true), B = 10, δ = 5)
10 0.04 0.21 0.21 0.71 0.05
25 0.31 3.65 2.40 23.72 1.29
50 2.05 68.26 32.40 >300 12.49

(6) SlottedRing–N (SR–N), expression: EF(E2 = 1 ∧A2 = 1), B = 10, δ = 5)
100 7.59 0.89 0.92 2.95 0.84
200 60.08 2.31 2.37 8.94 2.29
300 294.76 4.31 4.43 18.34 4.30



Improving Saturation-based Bounded Model Checking 587

EDD. The continuing strategy uses these intermediate state space representations
as the initial state, which can be a large computational overhead compared to start-
ing the iteration from the initial state. By beginning model checking from scratch
(i.e., using the restarting strategy) we can exploit the efficiency of saturation for
building the state space representation. By modifying an intermediate representa-
tion (i.e., using the continuing strategy) the algorithm has to do more computation,
especially if the intermediate representation is larger than the final one.

The Kanban model shows the superiority of the bounded approaches compared
to the full state space exploration. In addition, we must emphasize here that the
new model checking algorithm is also superior to the former one of [11]. Constrained
saturation-based model checking could reduce the runtime of the verification of
properties from [11] on model Kanban–30 by approximately 70%. The reachability
property in Table 1 required 90% less time to be verified by the new CTL model
checking algorithm showing that we could efficiently utilize constrained saturation
in bounded model checking.

We also analysed the EDD sizes of the Hanoi model (see Figure 3(b)) (repre-
senting synchronous models). In this case, the size of the state space representation
grows constantly using the continuing strategy. However, the compacting satura-
tion can effectively reduce the size of the EDD representation by storing the states
discovered in previous iterations using MDD. That causes this sawtooth pattern.

5.2 Measurements on an Industrial Case Study

To evaluate our contribution we performed measurements on a model describing a
real, industrial safety function. Our case study is a safety function included within
the Reactor Protection System of a nuclear power plant [10]4. This safety function
initiates an emergency operation in case of a predefined chain of events happens.
The detection of the specific event chain requires a complex logic, the design of
which is error prone. This also puts emphasis on the necessity of using formal
verification to ensure correctness.

The safety function receives inputs from different sensors, and computes the
values of outputs, one of which initiates the emergency protection action. The
values of the outputs depend on the recent and past values of the inputs, and some
internal timers. The design of the controller was specified by simple combinatorial
(OR gates, AND gates, and inverters), and sequential (SR flip-flops, delay and
pulse modules) function blocks. The proper combination of these logic elements is
required to guarantee that the emergency protection action will be initiated only
in case of a specific dangerous event happened.

We have created a hierarchical coloured Petri net model of this safety logic. The
structure of the CPN model preserves the data flow characteristics of the function
block description. The subnets of the CPN model are the models for the functional
modules. After the subnets have been derived and verified separately, they only had
to be connected together properly [1]. The model can be parameterized, thus here

3The abbreviations used in the table headers are described in the first paragraph of Section 5.
4The authors of [10] decomposed the system and have done manual compositional verification.



588 D. Darvas, A. Vörös, T. Bartha

Table 2: Run times of CTL expression evaluation on PRISE models

Model Unlim B-I-Rest B-I-Cont B-I-Comp

Expression 1: OUTPUT-1 can be true.

PRISE S 2.84 s 1.14 s 1.21 s 1.34 s
PRISE M 11.18 s 13.66 s 8.91 s 4.79 s
PRISE L 27.88 s 13.72 s 8.98 s 4.80 s

Expression 2: There is no emergency action, if not necessary.

PRISE S 5.37 s 33.97 19.98 s 12.18 s
PRISE M 21.96 s > 1800 s 113.03 s 30.38 s
PRISE L 56.86 s > 1800 s 433.97 s 51.83 s

we measured three different models with different complexity (denoted by PRISE
S, M, and L).

The measurements being presented in Table 2 show that if the verification re-
quirement is “shallow” (Expression 1), then the bounded algorithms provide sig-
nificantly lower runtime than the unbounded algorithm, especially the compacting
method. Expression 2 requires the exploration of a relatively big part of the state
space. Therefore the bounded algorithms are slower than the unbounded algorithm.
However, the compacting scales better and it provides slightly better runtime than
the unbounded method for PRISE L. Also, the continuing strategy provides better
results than the restarting strategy. Furthermore the restarting strategy runs out
of memory for the PRISE M and L model, while the continuing and compacting
strategy finish the execution for both models.

6 Conclusion and Future Work

In this paper an advanced bounded model checking approach based on the satura-
tion algorithm was presented. It exploits the efficiency of saturation and enables
us to verify complex, or in certain cases even infinite-state models. This approach
also extends the set of asynchronous systems that can be analysed with symbolic
methods. The efficiency of the new approach was proved by measurements.

We intend to develop the presented solutions further. We will investigate the
use of forward model checking instead of the classical backward fixed point com-
putation, as we believe this can further improve the performance of our algorithm.
We also plan to use the constrained saturation algorithm in a different way, in order
to avoid redundant computations more efficiently.

References

[1] Bartha, T., Vörös, A., Jámbor, A., and Darvas, D. Verification of an industrial
safety function using coloured Petri nets and model checking. In Proc. of the



Improving Saturation-based Bounded Model Checking 589

14th Int. Conf. on Modern Information Technology in the Innovation Processes
of the Industrial Enterprises, pages 472–485. MTA SZTAKI, 2012.

[2] Biere, A., Cimatti, A., Clarke, E.M., and Zhu, Y. Symbolic model checking
without BDDs. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 1579 of LNCS, pages 193–207. Springer, 1999.

[3] Ciardo, G., Marmorstein, R., and Siminiceanu, R. Saturation unbound. In
Tools and Algorithms for the Construction and Analysis of Systems, volume
2619 of LNCS, pages 379–393. Springer, 2003.

[4] Ciardo, G. and Siminiceanu, R. Structural symbolic CTL model checking of
asynchronous systems. In Computer Aided Verification, volume 2725 of LNCS,
pages 40–53. Springer, 2003.

[5] Ciardo, G., Zhao, Y., and Jin, X. Ten years of saturation: A Petri net
perspective. In Transactions on Petri Nets and Other Models of Concurrency
V, volume 6900 of LNCS, pages 51–95. Springer, 2012.

[6] Clarke, E.M., Biere, A., Raimi, R., and Zhu, Y. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[7] Clarke, E.M., Grumberg, O., and Peled, D.A. Model Checking. The MIT
Press, 1999.

[8] Henzinger, T., Kupferman, O., and Qadeer, S. From pre-historic to post-
modern symbolic model checking. In Computer Aided Verification, volume
1427 of LNCS, pages 195–206. Springer, 1998.

[9] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, 1989.

[10] Németh, E. and Bartha, T. Formal verification of safety functions by
reinterpretation of Functional Block based specifications. In Formal Methods
for Industrial Critical Systems, volume 5596 of LNCS. Springer, 2009.

[11] Vörös, A., Darvas, D., and Bartha, T. Bounded saturation-based CTL model
checking. Proceedings of the Estonian Academy of Sciences, 62(1):59–70, 2013.

[12] Yu, A., Ciardo, G., and Lüttgen, G. Decision-diagram-based techniques for
bounded reachability checking of asynchronous systems. International Journal
on Software Tools for Technology Transfer, 11:117–131, 2009.

[13] Zhao, Y. and Ciardo, G. Symbolic CTL model checking of asynchronous sys-
tems using constrained saturation. In Automated Technology for Verification
and Analysis, volume 5799 of LNCS, pages 368–381. Springer, 2009.


